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Abstract: In this paper, we introduce some basic idea of Variational iteration method for short (VIM) to solve the
Volterra’s integro-differential equations. The VIM is used to solve effectively, easily, and accurately a large class of
non-linear problems with approximations which converge rapidly to accurate solutions. For linear problems, it’s
exact solution can be obtained by only one iteration step due to the fact that the Lagrange multiplier can be exactly
identified. It is to be noted that the Lagrange multiplier reduces the iteration on integral operator and also
minimizes the computational time. The method requires no transformation or linearization of any forms. Two
numerical examples are presented to show the effectiveness and efficiency of the method. Also, we compare the
result with the result from Homotopy perturbation method (HPM). Finally, we investigate the absolute difference
between variational iteration method and homotopy perturbation method and draw the graph of difference
function by using Mathematica.

Keywords: Variational iteration method, Integro-differential equation, Lagrange multiplier, Homotopy
perturbation method.

1. Introduction

Volterra studied the hereditary influences when he was examining a population growth model. The
research work resulted in a specific topic, where both differential and integral operators appeared together in the
same equation. This new type of equations was termed as Volterra integro-differential equations, given in the form

PG = F) + A [ Ko op(© de )
0

Where p™(x) = Z:—z. Because the resulted equation in (1) combines the differential operator and the integral

operator, then it is necessary to define initial conditions p(0),p'(0),...,p" *(0) for the determination of the
particular solution p(x) of the Volterra integro-differential equation (1). Any Volterra integro-differential equation
is characterized by the existence of one or more of the derivatives p'(x),p" (x),. ... ... .... outside the integral sign. The
Volterra integro-differential equations may be observed when we convert an initial value problem to an integral
equation by using Leibnitz rule. The Volterra integro-differential equation appeared after its establishment by
Volterra. It then appeared in many physical applications such as glass forming process [1], nano-hydrodynamics
[2], heat transfer, diffusion process in general, neutron diffusion and biological species coexisting together with
increasing and decreasing rates of generating, and wind ripple in the desert. More details about the sources where
these equations arise can be found in physics, biology and engineering applications books. To determine a solution
for the integro-differential equation, the initial conditions should be given, and this may be clearly seen as a result
of involving p(x) and its derivatives. The initial conditions are needed to determine the exact solution.
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There are various numerical and analytical methods to solve such problems, for example, the homotopy
perturbation method [3], the Adomian decomposition method [4], but each method limits to a special class of
integro-differential equations. J.H. He used the variational iteration method for solving some integro-differential
equations [5]. This Chinese mathematician chooses [5] initial approximate solution in the form of exact solution
with unknown constants. M. Ghasemi et al solved the nonlinear Volterra's integro-differential equations [6] by
using homotopy perturbation method. In [7], the variational iteration method was applied to solve the system of
linear integro-differential equations. Also, J. Biazar et al solved systems of integro-differential equations by He's
homotopy perturbation method [8].

2. History of Variation Method (VIM)

The variational iteration method (VIM) developed in 1999 by He in [9-18] will be used to study the linear
wave equation, nonlinear wave equation, and wave-like equation in bounded and unbounded domains. The
method has been proved by many authors [19-31] to be reliable and efficient for a wide variety of scientific
applications, linear and nonlinear as well. It was shown by many authors that this method is more powerful than
existing techniques such as the Adomian method [32,33], perturbation method, etc. The method gives rapidly
convergent successive approximations of the exact solution if such a solution exists; otherwise a few
approximations can be used for numerical purposes. The method is effectively used in [10-25] and the references
therein. The perturbation method suffers from the computational workload, especially when the degree of
nonlinearity increases. Moreover, the Adomian method suffers from the complicated algorithms used to calculate
the Adomian polynomials that are necessary for nonlinear problems. The VIM has no specific requirements, such
as linearization, small parameters, etc. for nonlinear operators.

The variational iteration method, which is a modified general Lagrange multiplier method [34] has been
shown to solve effectively, easily and accurately, a large class of nonlinear problems with approximations which
converge quickly to accurate solutions. It was successfully applied to autonomous ordinary differential equation
[13], to nonlinear partial differential equations with variable coefficients [35], to Schrodinger-KDV, generalized
KDV and shallow water equations [36], to Burgers' and coupled Burgers' equations [37], to the linear Helmoltz
partial differential equation [38] and recently to nonlinear fractional differential equations with Caputo differential
derivative [39], and other fields [10,20,40,41-44]. On the other hand, one of the interesting topics among researchers
is solving integro-differential equations.

3. Variational Iteration Method for Solving Volterra’s Integro-Differential Equations
The purpose of this paper is to extend the analysis of the variational iteration method to solve the system
of general nonlinear Volterra’s integro-differential equations which is as follows:

™ () = Hy (6,92 G0)s oo TP 00, 0306, s DSV GO, ey D0 (), DTV () )

+ f K, (x, 1 (), e, D), o o P (®), e, p™ (t)) dt
pi™ (x) = H, %x, P2 (), oo DTG, P (s e PSP, s D (), e, DIV () )

+ fx Ky (%, 6,910, e, DTV (O, e Da(®), PP (@) dt @
pi™ (%) _ Hn: (x pzz(x):, : ;;5’"; (x;, p; (x:):, , ngm):(x):, .,:pn Ex),: .:, P ()

+ f K, (x, (D) e, DT, P (), e, p (t)) dt

0
In above system, m is order of derivatives and the continuous several variables functions H; and K;, i =

1,2,3,........,n are given, the solutions to be determined are p;(x), i = 1,2,3, ... .....,n.
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For solving the above system by the variational iterative method, for simplicity, we consider all of terms as
restricted variation except pi(m) (x), i =123, ............,n. According to the variational iterative method, we derive
correction functional as follows:

pi,k+1(x) ;
=mam+fm@nﬁ?@>

— Hi (S, D11(S), v e ,pf,'z) Q) ey ) R ,pl(ml)k(s)), Dirrs(S), o ,pl(inl)k(s)), ...... g (), e Py k) (s))
S

- f K; (5, t, pric (), oo . ,plk)(t) ...... e (©), ,pf[;?(t))dt]ds

0
Fori=1,23,.... ,n and the stationary conditions of the above correction functional can be expressed as follows:

AM™M(s) =0
1- (mAM™D(s)| =
A =0, j=123...m-2  i=123,....n
2i(8)]s=x =0
The Lagrange multiplier, therefore, can be identified as follows:

(_1)771 m-1
Ai(s) = m(s - Xx)

As a result, we obtain the following iteration formulas
pl k+1 (x )

—num+ff_)

m

51 =0 i)

— H;(5, 513(5), oo .. ,pi",?(s)), ...... P (S), e e ,pf"?k(s)),m(s), ...... ,pf;”fk(s)), ...... e (8), o e ,pnk)(s))
S

- f K; (5, t, 5rye(£), o . ,pf,'?(t), ...... e (), e ,pf[;?(t))dt]ds

0
4. Numerical Examples for Seventh Order Boundary Value Problem by Using VIM

In this section, we present two examples to show efficiency and high accuracy of the variational iteration
method for solving Volterra integro-differential equations.
Example 01 Let us consider the system of integro-differential equations as follows:
X

|( p'(x) =—-1—x%—sinx + f(p(t) +q()dt

i

lq”(x) =1—2—sinx —cosx + f(p(t) - q(t))dt

Subjected to the initial conditions: p(0) =1, p'(0) =1, q(0) =0, q'(0) =2
With the exact solutions

p(x) =x +cosx, q(x) = x +sinx
According to VIM we have following iteration formulas

mﬂw)=m@>+f@—x>w@>+1+ﬂ+sms—f@uﬂ+quow4ds
0 0

Qree1(x) = q () + f(s —x) [q,’(’(x) —14+2+sins+coss — f(pk(t) — qk(t))dtl ds
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Now, we choose initial approximations p,(x) = 1 + x and q,(x) = 2x which satisfy initial conditions then, we get

X t X
3
pl(x)=1+x+f(x—t)(—1—t2—sint+f(1+3T)dT)dt=1+x+f(x—t)(—1—tz—sint+t+5t2)dt
0 0 0

X
1
=1+x+f(x—t)(—1+t+§t2—sint)dt
0
=1+x+ ( T 1) ( I i )
= X X X 2x 6x CosXx 2x 3x 8x X COSX Sinx

=1 12+1 3+1 4.+.
= ZX 6x 249( sin x

1 5 1 3 1 . )
-'-P1(x)=1—zx +§x +ax + sinx

X t X
1
ql(x)=2x+f(x—t) 1—2—sint—cost+f(1—T)dT dt=2x+f(x—t)(—1+t—§t2—sint—cost)dt
0 0 0

1 2 1 3 :
=2x+x(—x+—x - =X +cosx—1—smx)

2 6
1 1 . .

—(—Exz+§x3—§x4+xcosx—smx—xsmx—cosx+1)

=2 12+1314 + sinx + 1=-1+ 12+1314+'+

=2x—ox’4oxt—ooxt —x ;mx ;osx 1— x —ox? 4 2x® —ooxt 4 sinx + cosx
.'.ql(x)=—1+x—zx2+§x3—ax4+sinx+cosx

Similarly,
1 1 1

pz(x)=x+(1—?x2+¥x4—?x6+---.........)
qz(x)=x+(x—§x3+ax5—ﬁx7+---.........)

Thus, the closed from solution are as follows:
p(x) = lim p,(x) = x + cosx
n—-oo
q(x) = lim q,(x) = x + sinx
n—-oo
This example has been solved by homotopy perturbation method in [45]. The solutions of this example by
homotopy perturbation method (HPM) are obtained as:

4 x6 x8 x10 x13
4 x—2x% - - -3
PO =4+ x—2x"+ = = 55 T 10080 907200 1556755200  ° C°5*
2x3 x5 x7 x9 xll x13
=y - - — 3si
() = 5% ===+ 35" 1260 T 90720 ' 9979200 _ 1556755200 _ > Sm¥

Example 02 Consider the following system of nonlinear integro-differential equations:

1 — 1 3 1 2 1 ; 2 2
PG =1- 3% = 3070 +5 [ 020 + @*(e)de

1 X
O At RIS
0

Subject to the initial conditions:
r0) =1 p©=2 q0O0=-1 4¢0)=0
Consider the initial conditions, the following iterative relations are obtained as
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r 1,1 1 )
Pra (0 =po00) + [ = 01 =367 =507 +5 [ AT + air)ane|

X 1 t
QG = 400 + [ (e = -1+ ¢ = p(©) + 3 [ GR(D) — AT J
0 0

Where p,(x) = 2x + 1, q,(x) = 1 and p, (x), g,(x) indicates the nth approximation of p(x) and q(x) respectively.

Now,
X t

1 1
(@) =2x+1 +f(x -t —§t3 +§f(4T2 + 4T + 2)dT)dt
0 0

1 1/4
=2x+1+f(x—t) 1—§t3+§(§t3+2t2+2t) dt
0

X
1. 2 ¢ 1

=2x+1+f(x—t)(1—§t3+§t3+t2+t)dt=2x+1+f(x—t)(1+§t3+t2+t)dt

0

1 1 1 1 1 1 1
=2 1 2_5_4_3)_(_2_5_4_3)
X+ +(x +12x+3x +2x Zx +15x +4x+3x

=1+2 +12+13+1 4+1 5
= XTI TR Teo”

1 2 1 3 1 4 1 5
-'.pl(x)=1+2x+§x +gx +§x +%x
X 1 t
g (x) =1+ f(x -t)(-1+t>—t(2t+1) +Zf(4T2 + 4T)dT)dt
0 0
X
1.4

=1+f(x—t) —1+t2—2t2—t+z(§t3+2t2) dt

0

X X

1 1 1 1

=1+J-(x—t)<—1—t2—t+§t3+Et2)dt=1+f(x—t)<—1—5t2—t+§t3)dt

y 1 1 1 1 1 %1 1
=1 2 4,3 _5)_(__ 2 _ a4 _ .3 _5)

+( X 16x 123( +112x Zx 8x 3x +15x

=1__ 2 _ .3 4 5

2 T Tt teo” . . .

=1—-= 2 __ 3_ " .4 A5
q.(x) 2x 6x 24x +60x
Similarly,
1 1 1 1 1 17 1 53 1
=l14+2x+-x+ -3+ —xt+ —x F ——x ——x7+ %8 + ?— 10
P2(%) XX T T2a 120" 720" Ts0a0" Te72" T 120960° T 103680
228096 1900800 6177600
1 11 13 17 47

=_1__2__ 3 _ L 4 _ - 5 _ T .6 _ 7+ 9+ 10+— 11
92(*) 2" 6)16 24 T120% T 720" T10080" T 241920 T 1036800° T 11404800 "

12

+ 12672007
and so on.

Thus, the closed from solution are as follows:

p(x) = lim p,(x) = x + e*

q(x) = Eljm: qn(x) =x —e*
This example has been solved by homotopy perturbation method in [45]. The solutions of this example by
homotopy perturbation method (HPM) are obtained as:
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p(x) =1+ 2x +%x2 +%x3 +%x4 +F10x5 + o
q(x) = —1—%x2 —gx3 —%x‘*—m 5— .
Table 1. Comparison of numerical results for example 01
X VIMp(x)  VIM q(x) HPM p HPM q Diff. p(x) Diff. q(x)
0 1 0 1 0 0 0
0.1 1.09500 0.19983 1.09500 0.19983 0 2.78E-17
0.2 1.18007 0.39867 1.18007 0.39867 4.44E-16 5.55E-17
0.3 1.25534 0.59552 1.25534 0.59552 4.44E-15 1.11E-16
0.4 1.32106 0.78942 1.32106 0.78942 1.45E-13 8.66E-15
0.5 1.37758 0.97943 1.37758 0.97943 2.12E-12 1.57E-13
0.6 1.42534 1.16464 1.42534 1.16464 1.90E-11 1.68E-12
0.7 1.46484 1.34422 1.46484 1.34422 1.22E-10 1.24E-11
0.8 1.49671 1.51736 1.49671 1.51736 6.07E-10 7.05E-11
0.9 1.52161 1.68333 1.52161 1.68333 2.51E-9 3.26E-10
1.0 1.54030 1.84147 1.54030 1.84147 8.95E-9 1.28E-9
r Y
7 110C10 Difference of pﬁH
15 6 010 Difference of q
5010010
10 400110
— VM p 3010010
05 — VM ¢ 201010
""""" HPM p 1o 0
| | | e HPM qX. | | | | L
02 04 06 08 10 02 04 06 08 10
(a) (b)

Figure 1. Comparison of numerical results for example 01: (a) Comparison of VIM with HPM; (b) Absolute difference between

VIM & HPM.
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Table 2 Comparison of numerical results for example 02
x  VIMpkx) VIMq(x) HPM p HPM q Diff. p(x) Diff. q(x)
0 1 -1 1 -1 0 0

0.1 1.20517 -1.00517 1.20517 -1.00517 1.41E-9 1.41E-9

0.2  1.42140 -1.02140 1.42140 -1.02140 9.15E-8 9.15E-8

03  1.64986 -1.04986 1.64986 -1.04986 0.00000106 0.00000106

04  1.89182 -1.09182 1.89182 -1.09182 0.00000603 0.00000603

05 214872 -1.14872 2.14870 -1.14870 0.00002335 0.00002335

0.6 242212 -1.22212 2.42205 -1.22205 0.00007080 0.00007080

0.7 271375 -1.31375 2.71357 -1.31357 0.00018129 0.00018129

0.8  3.02554 -1.42554 3.02513 -1.42513 0.00041026 0.00041026

09  3.35960 -1.55960 3.35876 -1.55876 0.00084486 0.00084486

1.0  3.71828 -1.71828 3.71667 -1.71667 0.00161516 0.00161516

! Y
Difference of pEH
010 Difference of q
0.0008
0.0006
0.0004
‘ ‘ , ‘ - X
02 04 0.6 0.8 1.0
0.0002
il
\ N N L L L X
02 04 06 08 10
(@) (b)
Figure 2. Comparison of numerical results for example 02: (a) Comparison of VIM with HPM; (b) Absolute difference between
VIM & HPM.

5. Conclusion

In this paper, we applied the Variational Iteration Method (VIM) for solving the systems of Volterra integro-
differential equations. It is important to point out that some other methods should be applied for systems with
separable or difference kernels. Whereas, the VIM can be used for solving systems of Volterra integro-differential
equations with any kind of kernels. By comparing the results of other numerical methods such as homotopy
perturbation method, we conclude that the VIM is more accurate, fast and reliable. Besides, VIM does not require
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small parameters; thus, the limitations of the traditional perturbation methods can be eliminated, and the
calculations are also simple and straight forward. These advantages has been confirmed by employing two

examples. Therefore, this method is a very effective tool for calculating the exact solutions of systems of integro-
differential equations.

Author Contributions: These authors contributed equally to this work.
Conflicts of Interest: The authors declare no conflict of interest.
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