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Abstract: Permafrost hydrology is an emerging discipline, attracting increasing attention as the
Arctic region is undergoing rapid change. However, the research domain of this discipline had
never been explicitly formulated. Both 'permafrost' and 'hydrology' yield differing meanings across
languages and scientific domains, hence 'permafrost hydrology' serves as an example of linguistic
relativity. The differing views of permafrost as either an ecosystem class or a geographical region,
and hydrology as a discipline concerned with either landscapes or generic water bodies, maintain a
language-specific touch in the definition of permafrost hydrology. From this point of view, the
English and Russian usage of this term is explained. A universal process-based definition is further
proposed, developed on a specific process assemblage, including (i) water table dynamics caused
by migration of an upper aquitard through freeze—thaw processes; (ii) water migration in soil
matrix, driven by phase transitions in the active layer; (iii) transient water storage in solid state in
both surface and subsurface compartments. This definition is shown to fill the niche in existing
vocabulary, and other definitions from northern hydrology field are revisited.

Keywords: active layer; Arctic hydrology; cold regions hydrology; linguistic relativity; permafrost
hydrology

1. Introduction

The Arctic is undergoing a sound transformation, affecting climate [1] and ocean temperature
[2], sea ice extent [3], terrestrial and marine biodiversity [4-5], driven by the Arctic amplification
phenomenon [6-8]. Long—term Arctic change effects on the Arctic water cycle are deduced from
observations and reanalysis data [9], while our understanding relies on existing forecasting and
modeling experience, together with general assumptions elaborated for temperate regions [10-11].
Whence Arctic terrestrial hydrology is counted similar, coherent or deducible by analogy with
temperate regions, its regional uniqueness, or ‘Arcticness’, may be questioned. However, the Arctic
is a frontier ecosystem with distinct features, where permafrost and related effects play an important
role.

The hydrological boundaries of the Arctic region are loosely defined by basin approach [12].
The Arctic hydrology domain, as a pan—Arctic drainage area, is hence extended southward up to the
smallest headwater streams of the inner Mongolia [13-14]. Integrated across millions of square
kilometers of drainage basins, the output signals of natural processes and human impacts are
transmitted to the Arctic ocean margin, feeding input to a complex marine system, and impacting
global oceanic freshwater turnover and chemistry [15-17]. This integral approach, coined by marine
science, blurs the physiographic diversity of the pan—Arctic basin, and a potential diversity of
hydrological response throughout the region.

Linking Arctic amplification to Arctic hydrology is complicated by an ambiguity of ‘the Arctic’
definition, put into hydrological context. One should acknowledge that the Arctic amplification and
its effects on terrestrial hydrology occur in a very particular region in the high latitudes, regardless
its exact limits. They cannot be understood by analogy with the temperate regions, primarily
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because of the permafrost-related effects. The latter have an enormous effect on the water cycle,
where most hydrological processes are confined to unfrozen layers in an otherwise frozen media
[18-20]. The direct linkage between the permafrost thermal state and the heat and water fluxes is a
unique regional feature [21-23]. Only in permafrost regions, phase transitions resulting from
long-term changes in temperature and/or precipitation definitively affect the hydraulic properties of
soils [24].

Permafrost hydrology, as a distinct research field, from its very beginning aimed at better
understanding and quantify these interconnections between frozen ground and hydrological
processes [25-26]. In a changing Arctic, attention is growing toward the role hydrology plays in the
organic matter and nutrient transport [27], and permafrost—climate feedback [28]. Long-term
upward trends in the active layer thickness can potentially liberate up to ca. 800 Pg of
perennially—frozen highly degradable organic carbon [29-30], the fate and transport of which
depend on the hydrological processes in the active layer and in Arctic streams [31-32].

However, the attempts to summarize the current state of knowledge in permafrost hydrology
are relatively scarce [11,19,33-34]. A recent review paper by Walvoord & Kurylyk [35] provides a
comprehensive overview of the major terms and fundamental concepts of permafrost hydrology.
Further advances in permafrost hydrology may require researchers to align their understanding of
the discipline domain, research objectives and methods. This brief paper discusses the limits of
relevance of permafrost hydrology, as a branch of modern geophysics, in the field of regional and
global change research. We attempt to redefine the permafrost hydrology domain through
process—based adjustment, and introduce several concepts relevant to future studies in the field.

2. The definition of permafrost hydrology and linguistic relativity

Language is frequently argued to act as an active cognitive tool, both in sciences of humanity
and in physics [36]. Science is operating concepts, theories and models, which are all
language-based cognitive abstractions. As late A. Einstein [37] put it, “...the mental development of
an individual and his way of forming concepts depend to a high degree upon language”. Our mode
of thought, comprehension and cognition is bound to our native language and its structure, the
statement known as the Sapir-Whorf hypothesis [38]. A non-universal nature of the current
knowledge originates in part from the international character of science, the development of certain
research fields in different language environments. Research in Earth sciences, including both
geocryology and hydrology domains, took differing directions in Soviet and Occidental science [39].
Subsequently, in the scientific language of these schools, either the literally identical term is
understood differently, or different untranslatable terms do exist. Both cases require a “vocabulary
alignment”, establishing a common framework for informal discussions and collaboration. In the
case of permafrost hydrology, both words in the phrase are known to be understood and used
differently.

2.1. Permafrost

Permafrost is a layer of soil, rock, sediment or other earth material with a temperature that has
remained negative for two or more consecutive years, irrespective of its lithology or water/ice
content [40]. This definition remains unchanged, virtually unchallenged and is widely used in
Occidental literature [41]. Put simple, it allows the researchers to conclude on the presence at a given
point (e.g. pit, borehole) and, by extension, at a given depth, of frozen material that represents, and
embodies, permafrost. This definition assigns a term to a specific thermal state of soil or rock parcel
rather to an object or event class per se [42], and by extension, to a certain geological stratum, a
three-dimensional volume of frozen material. It yields certain material and temporal aspects, but
otherwise is largely void of context, and has to be placed in such to be properly understood. As such,
it makes part of several constructions, denoting:

(a) generic properties: permafrost + (thermal state); the only example since permafrost is defined
uniquely through temperature;
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96 (b) physical properties: permafrost + (temperature, ice content); otherwise, 'frozen soil' is used in

97  references to particular material properties, such as heat transmissivity, hydraulic conductivity,

98  unfrozen water content efc;

99 (c) spatial aspect: permafrost + (region, area, zone, extent, distribution), also ‘permafrost type’;
100  (subsea, mountain, lowland, continuous, isolated) + permafrost, addressing physiographical
101  settings, and continuity;

102 (d) geological features: permafrost + (base, table, thickness);

103 (e) temporal evolution: permafrost + (dynamics, development, degradation/aggradation,
104  thawing/melting), though never 'permafrost freezing';

105 (f) relative or possessive case: permafrost + (construction, foundation, map, model, soil, carbon
106  pool, loss).

107 Russian scientific language discerns different aspects of permafrost, by assigning different
108  terms to permafrost:

109 (a) as a phenomenon: mepsroma [mirrzlet'a], frozen ground, or rather wmnozoremte-mepsrvie
110 nopodvi [mnageli etnii-mi‘erzlijs per'odi], perennially frozen rock;

111 (b) as a territory underlain by those, fully or partially: xpuorumosona, [kr'iolitez ons],
112 permafrost zone;

113 (c) a three-dimensional geological body: mnozoremie-mepsras morua [mnagel’etni-mi’erzle;
114 t'olece], perennially frozen rock layer).

115 Here kryolitozona connotes a specific physiographic region, whereas mmnogoletne—merzlaya tolscha

116  emphasizes the vertical dimension of a frozen layer, though the two definitions are often used
117  interchangeably in the Russian literature.

118  2.2. Hydrology

119 The comparable level of ambiguity exists in defining ‘hydrology’ across languages. In the
120  English usage, hydrology refers mainly to a research discipline preoccupied with water, but can also
121  be used to reference the totality of water-related processes, and/or water budget of a particular
122 water body. The most frequent use includes constructions referring to:

123 (a) methods and applications: (statistical, isotope, engineering, computational, contaminant) +
124 hydrology, these are all separate research disciplines;

125 (b) water cycle elements: (surface-water, groundwater) + hydrology;

126 (c) compartments: (surface, subsurface, soil, active layer) + hydrology;

127 (d) landscapes and specific objects: (prairie, forest, peatland, floodplain, glacier, subglacial,

128  periglacial) + hydrology, implies the specific water cycling processes in these ecosystems; though
129  extremely rarely 'tundra hydrology', and never 'lake/river hydrology';

130 (e) spatial aspect: (land, catchment, watershed, drainage basin) + hydrology;

131 (f) frozen water: (snow, ice, meltwater) + hydrology; though never 'rain hydrology';

132 (g) particular water bodies: hydrology of the + (Pacific Ocean, Lena River, Great Lakes; each water
133 body can have its proper hydrology;

134 (h) particular regions: hydrology of the + (Everglades, Polk County, Northern Carolina, Arctic).
135 In Russian scientific vocabulary, this term has coherent meaning, but distinctly different usage.

136  The prevalent use is oriented towards generic objects void of spatial context, hence
137  river/lake/reservoir/wetland hydrology' are all legitimate terms for disciplines studying these water
138 bodies per se. Landscapes, as connoting landcover classes, are never covered by the term, thus 'forest
139  hydrology' is absent from Russian vocabulary. Methods and applications form disciplines’ names in
140  virtually the same style, e.g. ‘engineering hydrology’. Likewise, distinct water objects can have its
141  own hydrology, e.g. ‘the Danube Delta hydrology’, but not the regions, thus ‘Arctic hydrology’ is an
142 illegitimate term. However, ‘Arctic Ocean drainage basin hydrology’ may serve as a close substitute,
143 coherent to the modern vision [11], and underscoring the fact that there is much less of the Arctic in
144 our’Arctic hydrology’ speech than we would normally assume.

145 2.3. Permafrost hydrology
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146 Perennially and seasonally thawed layers, such as taliks and notably the active layer, are
147  excluded from permafrost by definition. However, it is frequently stated that ‘most biogeochemical
148  and hydrological processes in permafrost are confined to the active layer’ [43]. The active layer is
149  inherent to permafrost, as are the taliks, neither making part of it however. These are all layers, void
150  of permafrost by definition. Whatever is occurring in these layers, occurs outside permafrost.
151  Hydrological processes are nevertheless only active in these non-frozen media; that said, do they
152  really take place in permafrost?

153 Preceding discussion answers this question. Permafrost can be defined as either a geological
154  stratum, an ecosystem class, or a region; and meanings could be switched ‘on the fly’, as shows the
155  paragraph above. The other point is that permafrost hydrology may refer to a research discipline (the
156  scope of this paper), or a totality of terrain-specific hydrological processes. This ambiguity is
157  language-specific, since it exists in English but is impossible in Russian, where no hydrology of
158  ecosystem classes is possible, and hydrology is a discipline name, just occasionally applied to
159  particular water bodies.

160 In Occidental literature, permafrost hydrology is a research discipline, studying “...the direct
161  and indirect effects of perennially frozen ground on the properties, occurrence, distribution,
162  movement and storage of water” [25]. This definition is an elegant attempt to express what comes
163  evident from our reasoning, that permafrost hydrology is studying hydrology in permafrost. As
164  such, it mimics the constructions like forest hydrology, and maintains a notion to permafrost as a
165  specific landcover (or “undercover’) or ecosystem class, therefore no Russian analogue could exist
166  (see above). Since permafrost is frozen soil/rock, the term interestingly aligns with the use of
167  'hydrology' with other frozen substrates, snow and ice.

168 In Russian usage, this discipline name took form ‘permafrost rivers hydrology’, or zudporozus
169  pex xpuorumosorvi [gidr el' ogijo ri'ek kr'ioliitez onit], in a late 1980s Russian text by B.L. Sokolov,
170  later published in English as ‘Hydrology of rivers of the cryolithic zone in the U.S.SR. [44].
171  Eventually, ‘gidrologiya kriolitozony’ (permafrost hydrology) was used, though infrequently, in
172  Russian literature, and a permafrost hydrology laboratory was active at State Hydrological Institute
173  (Saint-Petersburg) since early 1990s until 2007.

174 How can we define whether a specific hydrological process has anything to do with permafrost
175  hydrology? Hydrological objects vary greatly in size, and the largest Arctic drainage basins can have
176  their headwaters either in discontinuous permafrost regions, or non-permafrost areas. Which share
177  should permafrost hydrology claim in these cases, and how may we discern it from other
178  hydrologies?

179 3. Permafrost hydrology: process-based definition

180 In permafrost domain, water finds its way from precipitation, snowmelt or ground ice
181  meltdown to streams, subjected to the universal action of gravity, much as elsewhere on Earth.
182  Viewed as a region, permafrost (kriolitozona) hosts processes, unrelated to the frozen ground
183  influence on water transfer and storage. Universal physical laws are governing water movement at
184  any given point, but a specific set, or ‘assemblage’, of hydrological processes may exist, defining
185  which laws are the most applicable, and which forces are dominating, under particular conditions
186  and in particular landscapes. This approach is not uncommon to Earth sciences. Geomorphology
187  acknowledges specific landforms as imprints of particular (set of) geomorphic processes or events,
188  e.g. palaeo-ice stream beds [45], and defines the environment through landform assemblages,
189  notably the definition of paraglacial environment [46].

190 Permafrost can be perceived, by definition, as a specific ecosystem class, thence, arguably, there
191  exists a typical assemblage of hydrological processes, through which a research domain of
192  permafrost hydrology can be defined. The unique process assemblage for permafrost hydrology
193  includes: (a) water table migration caused by upper aquitard development through freeze-thaw
194 processes; (b) water migration in soil matrix, driven by phase transitions in the active layer; (c)
195  transient water storage in solid state in the subsurface compartment. Implied processes are not
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196  solely hydrological, and may also be regarded as cryogenic, related to phase transitions in soils [47],
197  or periglacial, driving landscape conditioning by frost action [48].

198  3.1. Water table migration

199 Thawing front, or the active layer base, acts as a cryogenic aquitard for the percolating water
200  [49]. Infiltration is restricted by frozen soil or, under certain conditions in frost heave-susceptible
201  soils, by segregation ice lenses formed during freezing [50]. Hydraulic conductivity of frozen soils
202  depends on the volume of pores occupied by ice: it varies from 15% to 35% of the non-frozen soil
203  when ice content is between 0.3 and 0.5, and declines to almost zero at ice content over 0.6 [51].
204  Rapid decline in hydraulic conductivity is in part related to selective freezing of soil pores, when
205  larger pores freeze earlier owing to lower capillary forces [52].

206 Thawing front position within the soil column evolves through a temporal continuum of states,
207  as shown in Figure 1, and hydrological processes follow this evolution [18,35,53]. The annual cycle
208  starts in late winter when the active layer is frozen and the subsurface compartment is virtually void
209  of moving water. Solar radiation penetrates the snow cover [54], and early thawing in topsoil can
210  proceed under snow. Subsequently, this thawed layer partly accommodates meltwater runoff
211  during spring.

WINTER SPRING/EARLY SUMMER

snow cover N
active layer ==
SUMMER/AUTUMN AUTUMN/WINTER

A A

YY1 Y YIYY OV I

N Y PO O Yy VO PO Y Sy W

active layer
T T T TTTT TT T T TT

active layer
(seasonally thawed)

T TTTTTTTTTTTT  mEmmmmsm—m——————————====

2 1 2 permafrost permafrost
213 Figure 1. Active layer is a dynamic feature, whose state is constantly evolving. Snapshots of typical
and illustrative states are shown, thou intermediate states do exist an orm a tempora
214 d ill i h hough i di d i d f poral
215 continuum.
216 Seasonal thaw develops throughout warm period, and groundwater table variations during

217  this time can be caused solely by the thawing front propagation. On the onset of autumn, when soil
218  starts refreezing, the active layer de facto accommodates two aquitards, (a) frozen top-soil surface, (b)
219  active layer base, which is also a local freezing front. The former limits late autumn rainwater
220  infiltration, while the latter accumulates available water to form an ice-rich transient layer [55]. The
221  unfrozen soil stores water throughout freezing period, and may reroute it toward the streams late
222 winter or early spring [56].

223 Permafrost virtually eliminates loss to infiltration and cuts off deep ground water recharge,
224 except by talik zones. Catchment response to storms therefore depends less on antecedent
225  conditions, and active layer depth is an important factor. Active layer development leads to
226  decreasing water table slope and hydraulic head in the subsurface compartment, affecting
227  stream-groundwater interaction.
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228  3.2. Soil water migration

229 Water redistribution in the active layer occurs mostly during active layer freezing, and affects
230  both vertical and lateral migration. Vertical water migration to the freezing front is observed in
231  fine-grained soils [57] and peat [58], while in coarser material, water is forced to migrate downward
232  from the freezing front [59]. Pore pressure excess in the residual active layer during late autumn and
233 early winter (Figure 1) promotes lateral migration of water in the saturated layer, what is called
234  ‘piston flow’ in Russian literature [59].

235 Ice lenses developed in soil through ice segregation serve as local freezing fronts, hence several
236  regions of upward and/or downward migration can be present in the active layer at any given
237  moment. Consequently, multiple local desiccation zones are developed in the soil profile, causing
238  differential compaction, cracking, and resulting in an overall increase in vertical permeability [60]
239  and hydraulic conductivity [61].

240  3.3. Transient water storage

241 Permafrost is capable of redistributing water fluxes, acting in a wide range of timescales.
242  Seasonally, water can be captured in the active layer as textural and segregation ice in winter, to be
243  released in spring and summer upon active layer thawing. In clastic material, e.g. blockfields or
244 kurums, spring meltwater freeze up in large pores and is released as summer advances [62]. Icings
245  are typical permafrost hydrology features, that can capture, store and redistribute groundwater on
246  the timescale from seasons to several years or even decades [44,63-64]. The runoff volume
247  intercepted by icings can be as high as 12% to 22% of total basin discharge under continuous
248  permafrost conditions [65]. Water trapped in ice-rich transient layer will only be released upon
249  continuous climate warming, which is on timescales from hundreds to thousand years [55]. Ice
250  wedges and textural or massive ice, e.g. in the Ice Complex deposits or buried glaciers, can be
251  preserved throughout millennia before re-entering the global water cycle when exposed in river
252  banks or marine cliffs or subject to thermokarst degradation [66-67].

253 Hydrological and cryological processes occurring within the “permafrost area” explain the
254  diversity and complexity of “permafrost hydrology”. Accordingly, its definition should not be static,
255  and should integrate this complexity, in terms of both spatial variability and temporal evolution.

256 4. Permafrost hydrology: spatial domain

257 Hydrological studies are generally based on basin approach. An elementary watershed is the
258  smallest response unit, and water routing processes are spread and averaged across. Though some
259  processes are studied at a stand scale, e.g. infiltration or transpiration, observed river runoff is
260 attributed to a certain catchment area, where water routing and transfer do occur.

261 Plethora of studies concerning permafrost hydrology and defining its current state were
262  conducted in discontinuous and even sporadic permafrost regions, wherever permafrost underlies
263  the full areal extent of the research site [68]. An effective budget-saving strategy, this approach
264  requires a certain degree of coalescence between the permafrost extent and the study area extent, to
265  Dberelevant as a permafrost hydrology study.

266 To formally define if a study can be distinguished as permafrost hydrology study, we suggest a
267  strategy described further in the Table 1. The applicability of this strategy depends on relative scale
268  of the study compared to extent of global permafrost regions defined by continuity criteria [69]. For
269  the small-scale studies, at least the active layer and top of the permafrost should be included in the
270 domain, so that all the processes associated with active layer could be accounted for. The mesoscale
271 (ca.25-2500 km?) catchments are included in the permafrost hydrology domain when their surface
272 is underlain by continuous permafrost. In discontinuous permafrost, the existing taliks under lakes
273  and channels are to be closed or, if these are open taliks, they should play a significant confining role
274 for the sub-permafrost aquifer [72]. On the global basin scale, the presence of permafrost-affected
275  sub-catchments should be acknowledged, and relevant cryogenic processes should be taken into
276  account.
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277 Table 1 Permafrost hydrology applicability in relation to both permafrost and study extent

Permafrost extent

Study area extent Area patchy  sporadic  discontinuous continuous
<10% 10-50% 51-90% >90%

Stand plot point Yes Yes Yes Yes
Slope; representative <10 km? No Yes Yes Yes
elementary watershed,
REW [70]
Mesoscale watershed; <2500 km?2 No No Yes Yes
hydrological response unit,
HRU [71]
Macroscale watershed and >2 500 km? Permafrost-affected HRUs should be explicitly
global basins described or modelled as such

278
279 5. Definitions in Arctic hydrology: existing and revised

280  5.1. Existing definitions

281 Research fields emerging from acknowledgement of a highly regional character of hydrological
282  processes include: Arctic hydrology, cold-regions hydrology, high-latitude hydrology, northern
283  hydrology, periglacial hydrology, permafrost hydrology, polar hydrology. These terms are used
284  interchangeably, without giving a notice, and the difference is largely unclear and confusing.

285 Arctic hydrology is widely used to denote the processes in the Arctic Ocean and atmosphere,
286  where terrestrial sub-system plays a minor role [14]. Recently, Arctic terrestrial hydrology was
287  thoroughly reviewed, its terrestrial contributing area expanded well beyond Arctic river basins,
288  while Arctic freshwater domain embraces the good part of the Northern Hemisphere, including
289  atmospheric and marine compartments [10].

290 The 40°N latitude roughly serves as a southern limit for the cold—regions hydrology, though other
291  specific criteria are imposed on the definition of a cold region [19]. High-latitude hydrology, in its turn,
292  envisions its southern limit at 60°N latitude [47], sharing it with northern hydrology in its earlier
293  definition [73]. Later, northern hydrology has been encompassing the processes in the tundra and taiga
294 ecosystems [74], or post-glacial settings in boreal, temperate coniferous and mixed forests [75].

295 Periglacial hydrology was used once to address the processes in the periglacial sector of
296  Vatnajokull ice cap [76]. Since permafrost is in the heart of periglacial landscapes, permafrost
297  hydrology may stand for periglacial hydrology in the hydrologist’s eyes. Polar hydrology was a recent
298  research effort of Norwegian Water Resources and Energy Directorate in Svalbard [77].

299  5.2. Revised definitions

300 The Arctic region is part of the global system, and as such receives influence from many distant
301  regions, that should not be added to the Arctic domain on this purpose. True, that Arctic boundary
302  has several definitions, both political and natural, and what is included, depends on the scope.
303  However, the only boundary which has been clearly demarcated is a political boundary, and the
304  view of the Arctic as a political region, and not an ecoregion, is arguably more correct. In this case,
305 Arctic hydrology should focus on freshwater resources in the Arctic regions, its quantification,
306  availability and quality, and hydrological risk assessment, serving the people of the North.
307  ‘Acknowledge, not include’ is a proper strategy for defining domains, including that of Arctic
308  hydrology.
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309 Ecosystem, or ecoregion boundaries are used to define northern, or boreal, hydrology as
310  concerned with tundra and taiga ecosystems, and interactions between vegetation communities and
311  water fluxes [74]. ‘Northern’ requires a supplementary definition of ‘southern hydrology’, be it
312  either Antarctic or Mediterranean climate. Hence, boreal hydrology sounds more appropriate, as
313  connoting the existence of typical boreal ecosystems, such as forests (taiga) and wetlands.

314 High-latitude hydrology, as a definition, is subject to a question of which latitude is high enough,
315  in hydrological sense. High latitudes are felt ‘high’ thanks to rough climate, therefore high-latitude
316  is defined here as hydrology of Képpen E climate regions, including any regional study concerning
317  particular rivers or watersheds, and emphasizing particular site-specific features, as highly seasonal
318  flow, snow redistribution impact etc. As such, it makes part of larger cold-regions hydrology domain,
319  where cold regions are defined based on climate [14]. With progressive climate change, warming the
320  Arctic at an impressive rate, these definitions will also change their spatial coverage.

321 Climate boundaries of Koppen classification will shift southward, and regions previously
322  considered as cold are expected to become warmer. High-latitude and cold-region hydrology could
323  be therefore considered as endangered species. We should track vigilantly the hydrological effects of
324 these changes; this is, to our opinion, one of the most important objectives of permafrost hydrology
325  research.

326 6. Future progress in permafrost hydrology domain

327 Permafrost hydrology is already a well-established research discipline as well as a general
328  framework for the scientific advance and planning, even though the use of the term is undermined
329 by astrong blend with other terminologies. Upon defining its scope and objectives, its major concern
330  should turn to the development of discipline-specific methods, best suited for particular research
331  purposes.

332 Tracer hydrology methods are promising in acquiring information on flow paths and residence
333  times in northern catchments [75,78]. Freeze-thaw processes leave a distinct imprint on 2H and 80
334  signatures in soil moisture, that can be traced to specific locations (by soil type), processes (e.g. ice
335  segregation), ground ice forms (pingo, aufeis, ice wedges), or, speculatively, even to certain
336  cryostructures. Rare earth elements are used to track hydrologic pathways, distinguishing fast and
337  slow subsurface flows, or mineral or organic layers [79]. These data should be used in combination
338  with field data on active layer dynamics, water table, vegetation, and precipitation, including rain
339  chemistry, in assessing the activity of certain flowpaths and its spatio-temporal variability.

340 Organic carbon and its transformation affected by hydrological processes, is a subject of utter
341  importance in the scope of permafrost—climate feedback. Methane production is an anaerobic
342 process, depending on the permafrost thaw rate and the water table position in the soil profile ([80],
343  and references therein). Old permafrost-derived carbon is highly biodegradable, and is rapidly
344 consumed by bacteria in headwater system [81-82]. Optical and molecular properties of dissolved
345  organic carbon can be used to track the reaction of slopes and headwaters to progressive active layer
346  development.

347 Modelling strategies accounting for permafrost-specific processes should be developed or
348  further enhanced for their better representation. The most promising approaches include: (i) coupled
349  water and heat balance models of various dimension and complexity, e.g. ‘zero-dimensional’ model
350  of Boike et al. [22], PFLOTRAN [83], SUTRA 3.0 (aka SUTRA-ice) [84] and permaFOAM [85], to
351  mention but a few; (ii) explicit two-dimensional heat transfer model with phase transitions, where
352  water and heat fluxes are decoupled [86]; (iii) semi-distributed models with simplistic permafrost
353  description as an impermeable layer, and no heat transfer module [87-88].

354 Water movement and redistribution in the subsoil compartment, along with phase transitions
355  and related volumetric changes, necessarily perform geomorphic work. This complex overlap gives
356  birth to a certain cryo—fluvial interaction [89], where periglacial landforms develop as a function of
357  local hydrology, while surface runoff reuses and reshapes linear forms created by cryogenic
358  processes. Ultimately, integrated models should be developed describing the water routing in the
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359  subsoil, its heat imprint and geomorphic consequences, the development of non-channelized
360  drainage network (water tracks) and thermokarst gullies.

361 7. Conclusions

362 Hydrological processes in periglacial environments are often regarded as “...azonal processes
363  operating in cold environments”, and as such believed to “...differ little, if at all, from similar
364  processes in other climatic environments” [48]. They are thought to be “...not unique to [permafrost]
365  districts, but their intensities differ from those in temperate latitudes [25]. From what is known, the
366  conclusion is that permafrost hydrology can be defined through a process assemblage, unique for
367  permafrost regions. Other hydrologies do exist, and, having their definitions and scopes revised,
368  could provide extremely important insights. This paper offers such revision, and other revisions
369 may follow, to the benefit for conscious science, and the Northern communities.

370 Scientific advance is constrained by the absence of common language, untranslatability of major
371  ‘local’ terms coined by different national schools. This constraint can only be overruled by the
372  acknowledging the existence of multiple meanings in national scientific domains, and cross-linking
373  these meanings, by discussion and consensus. Advancement of research and collaboration is
374 sustained by this terminological framework, elaborated by the researchers in order to transfer and
375  share their expertise. Clear research objectives and hypotheses arguably serve science not less than
376  our sophisticated field and modeling methods.
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