

1 Article

2

Permafrost Hydrology Research Domain: 3 Process-Based Adjustment

4 **Nikita Tananaev** ^{1,*}, **Roman Teisserenc** ² and **Matvey Debolskiy** ³5 ¹ Melnikov Permafrost Institute, SB RAS, Yakutsk, Russia; tananaevni@mpi.ysn.ru6 ² EcoLab, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France; roman.teisserenc@ensat.fr7 ³ Geophysical Institute, University of Alaska Fairbanks, Fairbanks AK, USA; mvdebolskiy@alaska.edu

8 * Correspondence: tananaevni@mpi.ysn.ru;

9 **Abstract:** Permafrost hydrology is an emerging discipline, attracting increasing attention as the
10 Arctic region is undergoing rapid change. However, the research domain of this discipline had
11 never been explicitly formulated. Both 'permafrost' and 'hydrology' yield differing meanings across
12 languages and scientific domains, hence 'permafrost hydrology' serves as an example of linguistic
13 relativity. The differing views of permafrost as either an ecosystem class or a geographical region,
14 and hydrology as a discipline concerned with either landscapes or generic water bodies, maintain a
15 language-specific touch in the definition of *permafrost hydrology*. From this point of view, the
16 English and Russian usage of this term is explained. A universal process-based definition is further
17 proposed, developed on a specific process assemblage, including (i) water table dynamics caused
18 by migration of an upper aquitard through freeze-thaw processes; (ii) water migration in soil
19 matrix, driven by phase transitions in the active layer; (iii) transient water storage in solid state in
20 both surface and subsurface compartments. This definition is shown to fill the niche in existing
21 vocabulary, and other definitions from northern hydrology field are revisited.

22 **Keywords:** active layer; Arctic hydrology; cold regions hydrology; linguistic relativity; permafrost
23 hydrology

24

25

1. Introduction

26 The Arctic is undergoing a sound transformation, affecting climate [1] and ocean temperature
27 [2], sea ice extent [3], terrestrial and marine biodiversity [4-5], driven by the Arctic amplification
28 phenomenon [6-8]. Long-term Arctic change effects on the Arctic water cycle are deduced from
29 observations and reanalysis data [9], while our understanding relies on existing forecasting and
30 modeling experience, together with general assumptions elaborated for temperate regions [10-11].
31 Whence Arctic terrestrial hydrology is counted similar, coherent or deducible by analogy with
32 temperate regions, its regional uniqueness, or 'Arcticness', may be questioned. However, the Arctic
33 is a frontier ecosystem with distinct features, where permafrost and related effects play an important
34 role.

35 The hydrological boundaries of the Arctic region are loosely defined by basin approach [12].
36 The Arctic hydrology domain, as a pan-Arctic drainage area, is hence extended southward up to the
37 smallest headwater streams of the inner Mongolia [13-14]. Integrated across millions of square
38 kilometers of drainage basins, the output signals of natural processes and human impacts are
39 transmitted to the Arctic ocean margin, feeding input to a complex marine system, and impacting
40 global oceanic freshwater turnover and chemistry [15-17]. This integral approach, coined by marine
41 science, blurs the physiographic diversity of the pan-Arctic basin, and a potential diversity of
42 hydrological response throughout the region.

43 Linking Arctic amplification to Arctic hydrology is complicated by an ambiguity of 'the Arctic'
44 definition, put into hydrological context. One should acknowledge that the Arctic amplification and
45 its effects on terrestrial hydrology occur in a very particular region in the high latitudes, regardless
46 its exact limits. They cannot be understood by analogy with the temperate regions, primarily

47 because of the permafrost-related effects. The latter have an enormous effect on the water cycle,
48 where most hydrological processes are confined to unfrozen layers in an otherwise frozen media
49 [18-20]. The direct linkage between the permafrost thermal state and the heat and water fluxes is a
50 unique regional feature [21-23]. Only in permafrost regions, phase transitions resulting from
51 long-term changes in temperature and/or precipitation definitively affect the hydraulic properties of
52 soils [24].

53 Permafrost hydrology, as a distinct research field, from its very beginning aimed at better
54 understanding and quantify these interconnections between frozen ground and hydrological
55 processes [25-26]. In a changing Arctic, attention is growing toward the role hydrology plays in the
56 organic matter and nutrient transport [27], and permafrost-climate feedback [28]. Long-term
57 upward trends in the active layer thickness can potentially liberate up to ca. 800 Pg of
58 perennially-frozen highly degradable organic carbon [29-30], the fate and transport of which
59 depend on the hydrological processes in the active layer and in Arctic streams [31-32].

60 However, the attempts to summarize the current state of knowledge in permafrost hydrology
61 are relatively scarce [11,19,33-34]. A recent review paper by Walvoord & Kurylyk [35] provides a
62 comprehensive overview of the major terms and fundamental concepts of permafrost hydrology.
63 Further advances in permafrost hydrology may require researchers to align their understanding of
64 the discipline domain, research objectives and methods. This brief paper discusses the limits of
65 relevance of permafrost hydrology, as a branch of modern geophysics, in the field of regional and
66 global change research. We attempt to redefine the permafrost hydrology domain through
67 process-based adjustment, and introduce several concepts relevant to future studies in the field.

68 2. The definition of permafrost hydrology and linguistic relativity

69 Language is frequently argued to act as an active cognitive tool, both in sciences of humanity
70 and in physics [36]. Science is operating concepts, theories and models, which are all
71 language-based cognitive abstractions. As late A. Einstein [37] put it, "...the mental development of
72 an individual and his way of forming concepts depend to a high degree upon language". Our mode
73 of thought, comprehension and cognition is bound to our native language and its structure, the
74 statement known as the Sapir-Whorf hypothesis [38]. A non-universal nature of the current
75 knowledge originates in part from the international character of science, the development of certain
76 research fields in different language environments. Research in Earth sciences, including both
77 geocryology and hydrology domains, took differing directions in Soviet and Occidental science [39].
78 Subsequently, in the scientific language of these schools, either the literally identical term is
79 understood differently, or different untranslatable terms do exist. Both cases require a "vocabulary
80 alignment", establishing a common framework for informal discussions and collaboration. In the
81 case of *permafrost hydrology*, both words in the phrase are known to be understood and used
82 differently.

83 2.1. Permafrost

84 Permafrost is a layer of soil, rock, sediment or other earth material with a temperature that has
85 remained negative for two or more consecutive years, irrespective of its lithology or water/ice
86 content [40]. This definition remains unchanged, virtually unchallenged and is widely used in
87 Occidental literature [41]. Put simple, it allows the researchers to conclude on the presence at a given
88 point (e.g. pit, borehole) and, by extension, at a given depth, of frozen material that represents, and
89 embodies, permafrost. This definition assigns a term to a specific thermal state of soil or rock parcel
90 rather to an object or event class *per se* [42], and by extension, to a certain geological stratum, a
91 three-dimensional volume of frozen material. It yields certain material and temporal aspects, but
92 otherwise is largely void of context, and has to be placed in such to be properly understood. As such,
93 it makes part of several constructions, denoting:

94 (a) *generic properties*: permafrost + (thermal state); the only example since permafrost is defined
95 uniquely through temperature;

96 (b) *physical properties*: permafrost + (temperature, ice content); otherwise, 'frozen soil' is used in
97 references to particular material properties, such as heat transmissivity, hydraulic conductivity,
98 unfrozen water content *etc*;

99 (c) *spatial aspect*: permafrost + (region, area, zone, extent, distribution), also 'permafrost type';
100 (subsea, mountain, lowland, continuous, isolated) + permafrost, addressing physiographical
101 settings, and continuity;

102 (d) *geological features*: permafrost + (base, table, thickness);

103 (e) *temporal evolution*: permafrost + (dynamics, development, degradation/aggradation,
104 thawing/melting), though never 'permafrost freezing';

105 (f) *relative or possessive case*: permafrost + (construction, foundation, map, model, soil, carbon
106 pool, loss).

107 Russian scientific language discerns different aspects of permafrost, by assigning different
108 terms to permafrost:

109 (a) as a phenomenon: *мерзлота* [m̥irz̥l̥t̥'a], frozen ground, or rather *многолетне-мерзлые*
110 *породы* [mn̥og̥el̥'etn̥i-m̥i'ərz̥l̥j̥ə p̥or̥'od̥i], perennially frozen rock;

111 (b) as a territory underlain by those, fully or partially: *криолитозона*, [kr̥'iol̥itez̥'onə],
112 permafrost zone;

113 (c) a three-dimensional geological body: *многолетне-мерзлая толица* [mn̥og̥el̥'etn̥i-m̥i'ərz̥l̥j̥ t̥'ol̥iç̥a], perennially frozen rock layer).

114 Here *kryolitozona* connotes a specific physiographic region, whereas *mn̥og̥oletne-merzlaya tolscha*
115 emphasizes the vertical dimension of a frozen layer, though the two definitions are often used
116 interchangeably in the Russian literature.

117 2.2. *Hydrology*

118 The comparable level of ambiguity exists in defining 'hydrology' across languages. In the
119 English usage, *hydrology* refers mainly to a research discipline preoccupied with water, but can also
120 be used to reference the totality of water-related processes, and/or water budget of a particular
121 water body. The most frequent use includes constructions referring to:

122 (a) *methods and applications*: (statistical, isotope, engineering, computational, contaminant) +
123 hydrology, these are all separate research disciplines;

124 (b) *water cycle elements*: (surface–water, groundwater) + hydrology;

125 (c) *compartments*: (surface, subsurface, soil, active layer) + hydrology;

126 (d) *landscapes and specific objects*: (prairie, forest, peatland, floodplain, glacier, subglacial,
127 periglacial) + hydrology, implies the specific water cycling processes in these ecosystems; though
128 extremely rarely 'tundra hydrology', and never 'lake/river hydrology';

129 (e) *spatial aspect*: (land, catchment, watershed, drainage basin) + hydrology;

130 (f) *frozen water*: (snow, ice, meltwater) + hydrology; though never 'rain hydrology';

131 (g) *particular water bodies*: hydrology of the + (Pacific Ocean, Lena River, Great Lakes; each water
132 body can have its proper hydrology;

133 (h) *particular regions*: hydrology of the + (Everglades, Polk County, Northern Carolina, Arctic).

134 In Russian scientific vocabulary, this term has coherent meaning, but distinctly different usage.
135 The prevalent use is oriented towards generic objects void of spatial context, hence
136 'river/lake/reservoir/wetland hydrology' are all legitimate terms for disciplines studying these water
137 bodies *per se*. Landscapes, as connoting landcover classes, are never covered by the term, thus 'forest
138 hydrology' is absent from Russian vocabulary. Methods and applications form disciplines' names in
139 virtually the same style, *e.g.* 'engineering hydrology'. Likewise, distinct water objects can have its
140 own hydrology, *e.g.* 'the Danube Delta hydrology', but not the regions, thus 'Arctic hydrology' is an
141 illegitimate term. However, 'Arctic Ocean drainage basin hydrology' may serve as a close substitute,
142 coherent to the modern vision [11], and underscoring the fact that there is much less of the Arctic in
143 our 'Arctic hydrology' speech than we would normally assume.

144 2.3. *Permafrost hydrology*

146 Perennially and seasonally thawed layers, such as taliks and notably the active layer, are
147 excluded from permafrost by definition. However, it is frequently stated that 'most biogeochemical
148 and hydrological processes in permafrost are confined to the active layer' [43]. The active layer is
149 inherent to permafrost, as are the taliks, neither making part of it however. These are all layers, void
150 of permafrost by definition. Whatever is occurring in these layers, occurs outside permafrost.
151 Hydrological processes are nevertheless only active in these non-frozen media; that said, do they
152 really take place **in** permafrost?

153 Preceding discussion answers this question. Permafrost can be defined as either a geological
154 stratum, an ecosystem class, or a region; and meanings could be switched 'on the fly', as shows the
155 paragraph above. The other point is that *permafrost hydrology* may refer to a research discipline (the
156 scope of this paper), or a totality of terrain-specific hydrological processes. This ambiguity is
157 language-specific, since it exists in English but is impossible in Russian, where no hydrology of
158 ecosystem classes is possible, and hydrology is a discipline name, just occasionally applied to
159 particular water bodies.

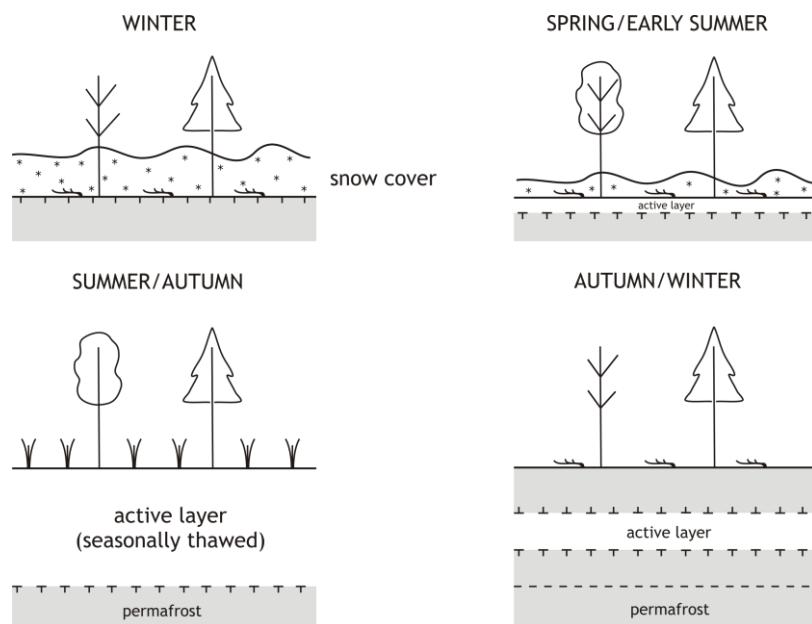
160 In Occidental literature, permafrost hydrology is a research discipline, studying "...the direct
161 and indirect effects of perennially frozen ground on the properties, occurrence, distribution,
162 movement and storage of water" [25]. This definition is an elegant attempt to express what comes
163 evident from our reasoning, that permafrost hydrology is studying hydrology in permafrost. As
164 such, it mimics the constructions like *forest hydrology*, and maintains a notion to permafrost as a
165 specific landcover (or 'undercover') or ecosystem class, therefore no Russian analogue could exist
166 (see above). Since permafrost is frozen soil/rock, the term interestingly aligns with the use of
167 'hydrology' with other frozen substrates, snow and ice.

168 In Russian usage, this discipline name took form 'permafrost rivers hydrology', or *гидрология*
169 *рек криолитозоны* [gidr ə' ogijə r'i'ek kr'iolitəz' oni], in a late 1980s Russian text by B.L. Sokolov,
170 later published in English as 'Hydrology of rivers of the cryolithic zone in the U.S.S.R.' [44].
171 Eventually, '*gidrologiya kriolitozony*' (permafrost hydrology) was used, though infrequently, in
172 Russian literature, and a permafrost hydrology laboratory was active at State Hydrological Institute
173 (Saint-Petersburg) since early 1990s until 2007.

174 How can we define whether a specific hydrological process has anything to do with permafrost
175 hydrology? Hydrological objects vary greatly in size, and the largest Arctic drainage basins can have
176 their headwaters either in discontinuous permafrost regions, or non-permafrost areas. Which share
177 should permafrost hydrology claim in these cases, and how may we discern it from other
178 hydrologies?

179 **3. Permafrost hydrology: process-based definition**

180 In permafrost domain, water finds its way from precipitation, snowmelt or ground ice
181 meltdown to streams, subjected to the universal action of gravity, much as elsewhere on Earth.
182 Viewed as a region, permafrost (*kriolitozona*) hosts processes, unrelated to the frozen ground
183 influence on water transfer and storage. Universal physical laws are governing water movement at
184 any given point, but a specific set, or 'assemblage', of hydrological processes may exist, defining
185 which laws are the most applicable, and which forces are dominating, under particular conditions
186 and in particular landscapes. This approach is not uncommon to Earth sciences. Geomorphology
187 acknowledges specific landforms as imprints of particular (set of) geomorphic processes or events,
188 e.g. palaeo-ice stream beds [45], and defines the environment through landform assemblages,
189 notably the definition of paraglacial environment [46].


190 Permafrost can be perceived, by definition, as a specific ecosystem class, thence, arguably, there
191 exists a typical assemblage of hydrological processes, through which a research domain of
192 permafrost hydrology can be defined. The unique process assemblage for permafrost hydrology
193 includes: (a) water table migration caused by upper aquitard development through freeze-thaw
194 processes; (b) water migration in soil matrix, driven by phase transitions in the active layer; (c)
195 transient water storage in solid state in the subsurface compartment. Implied processes are not

196 solely hydrological, and may also be regarded as cryogenic, related to phase transitions in soils [47],
 197 or periglacial, driving landscape conditioning by frost action [48].

198 *3.1. Water table migration*

199 Thawing front, or the active layer base, acts as a cryogenic aquitard for the percolating water
 200 [49]. Infiltration is restricted by frozen soil or, under certain conditions in frost heave–susceptible
 201 soils, by segregation ice lenses formed during freezing [50]. Hydraulic conductivity of frozen soils
 202 depends on the volume of pores occupied by ice: it varies from 15% to 35% of the non-frozen soil
 203 when ice content is between 0.3 and 0.5, and declines to almost zero at ice content over 0.6 [51].
 204 Rapid decline in hydraulic conductivity is in part related to selective freezing of soil pores, when
 205 larger pores freeze earlier owing to lower capillary forces [52].

206 Thawing front position within the soil column evolves through a temporal continuum of states,
 207 as shown in Figure 1, and hydrological processes follow this evolution [18,35,53]. The annual cycle
 208 starts in late winter when the active layer is frozen and the subsurface compartment is virtually void
 209 of moving water. Solar radiation penetrates the snow cover [54], and early thawing in topsoil can
 210 proceed under snow. Subsequently, this thawed layer partly accommodates meltwater runoff
 211 during spring.

212

213 **Figure 1.** Active layer is a dynamic feature, whose state is constantly evolving. Snapshots of typical
 214 and illustrative states are shown, though intermediate states do exist and form a temporal
 215 continuum.

216 Seasonal thaw develops throughout warm period, and groundwater table variations during
 217 this time can be caused solely by the thawing front propagation. On the onset of autumn, when soil
 218 starts refreezing, the active layer *de facto* accommodates two aquitards, (a) frozen top-soil surface, (b)
 219 active layer base, which is also a local freezing front. The former limits late autumn rainwater
 220 infiltration, while the latter accumulates available water to form an ice-rich transient layer [55]. The
 221 unfrozen soil stores water throughout freezing period, and may reroute it toward the streams late
 222 winter or early spring [56].

223 Permafrost virtually eliminates loss to infiltration and cuts off deep ground water recharge,
 224 except by talik zones. Catchment response to storms therefore depends less on antecedent
 225 conditions, and active layer depth is an important factor. Active layer development leads to
 226 decreasing water table slope and hydraulic head in the subsurface compartment, affecting
 227 stream–groundwater interaction.

228 3.2. *Soil water migration*

229 Water redistribution in the active layer occurs mostly during active layer freezing, and affects
230 both vertical and lateral migration. Vertical water migration to the freezing front is observed in
231 fine-grained soils [57] and peat [58], while in coarser material, water is forced to migrate downward
232 from the freezing front [59]. Pore pressure excess in the residual active layer during late autumn and
233 early winter (Figure 1) promotes lateral migration of water in the saturated layer, what is called
234 'piston flow' in Russian literature [59].

235 Ice lenses developed in soil through ice segregation serve as local freezing fronts, hence several
236 regions of upward and/or downward migration can be present in the active layer at any given
237 moment. Consequently, multiple local desiccation zones are developed in the soil profile, causing
238 differential compaction, cracking, and resulting in an overall increase in vertical permeability [60]
239 and hydraulic conductivity [61].

240 3.3. *Transient water storage*

241 Permafrost is capable of redistributing water fluxes, acting in a wide range of timescales.
242 Seasonally, water can be captured in the active layer as textural and segregation ice in winter, to be
243 released in spring and summer upon active layer thawing. In clastic material, e.g. blockfields or
244 kurums, spring meltwater freeze up in large pores and is released as summer advances [62]. Icings
245 are typical permafrost hydrology features, that can capture, store and redistribute groundwater on
246 the timescale from seasons to several years or even decades [44,63-64]. The runoff volume
247 intercepted by icings can be as high as 12% to 22% of total basin discharge under continuous
248 permafrost conditions [65]. Water trapped in ice-rich transient layer will only be released upon
249 continuous climate warming, which is on timescales from hundreds to thousand years [55]. Ice
250 wedges and textural or massive ice, e.g. in the Ice Complex deposits or buried glaciers, can be
251 preserved throughout millennia before re-entering the global water cycle when exposed in river
252 banks or marine cliffs or subject to thermokarst degradation [66-67].

253 Hydrological and cryological processes occurring within the "permafrost area" explain the
254 diversity and complexity of "permafrost hydrology". Accordingly, its definition should not be static,
255 and should integrate this complexity, in terms of both spatial variability and temporal evolution.

256 4. **Permafrost hydrology: spatial domain**

257 Hydrological studies are generally based on basin approach. An elementary watershed is the
258 smallest response unit, and water routing processes are spread and averaged across. Though some
259 processes are studied at a stand scale, e.g. infiltration or transpiration, observed river runoff is
260 attributed to a certain catchment area, where water routing and transfer do occur.

261 Plethora of studies concerning permafrost hydrology and defining its current state were
262 conducted in discontinuous and even sporadic permafrost regions, wherever permafrost underlies
263 the full areal extent of the research site [68]. An effective budget-saving strategy, this approach
264 requires a certain degree of coalescence between the permafrost extent and the study area extent, to
265 be relevant as a permafrost hydrology study.

266 To formally define if a study can be distinguished as permafrost hydrology study, we suggest a
267 strategy described further in the Table 1. The applicability of this strategy depends on relative scale
268 of the study compared to extent of global permafrost regions defined by continuity criteria [69]. For
269 the small-scale studies, at least the active layer and top of the permafrost should be included in the
270 domain, so that all the processes associated with active layer could be accounted for. The mesoscale
271 (ca. 25 – 2 500 km²) catchments are included in the permafrost hydrology domain when their surface
272 is underlain by continuous permafrost. In discontinuous permafrost, the existing taliks under lakes
273 and channels are to be closed or, if these are open taliks, they should play a significant confining role
274 for the sub-permafrost aquifer [72]. On the global basin scale, the presence of permafrost-affected
275 sub-catchments should be acknowledged, and relevant cryogenic processes should be taken into
276 account.

277

Table 1 Permafrost hydrology applicability in relation to both permafrost and study extent

Study area extent	Area	Permafrost extent			
		patchy < 10%	sporadic 10-50%	discontinuous 51-90%	continuous > 90%
Stand plot	point	Yes	Yes	Yes	Yes
Slope; representative elementary watershed, REW [70]	< 10 km ²	No	Yes	Yes	Yes
Mesoscale watershed; hydrological response unit, HRU [71]	< 2 500 km ²	No	No	Yes	Yes
Macroscale watershed and global basins	> 2 500 km ²	Permafrost-affected HRUs should be explicitly described or modelled as such			

278

279 5. Definitions in Arctic hydrology: existing and revised

280 5.1. Existing definitions

281 Research fields emerging from acknowledgement of a highly regional character of hydrological
 282 processes include: Arctic hydrology, cold-regions hydrology, high-latitude hydrology, northern
 283 hydrology, periglacial hydrology, permafrost hydrology, polar hydrology. These terms are used
 284 interchangeably, without giving a notice, and the difference is largely unclear and confusing.

285 *Arctic hydrology* is widely used to denote the processes in the Arctic Ocean and atmosphere,
 286 where terrestrial sub-system plays a minor role [14]. Recently, *Arctic terrestrial hydrology* was
 287 thoroughly reviewed, its terrestrial contributing area expanded well beyond Arctic river basins,
 288 while Arctic freshwater domain embraces the good part of the Northern Hemisphere, including
 289 atmospheric and marine compartments [10].

290 The 40°N latitude roughly serves as a southern limit for the *cold-regions hydrology*, though other
 291 specific criteria are imposed on the definition of a cold region [19]. *High-latitude hydrology*, in its turn,
 292 envisions its southern limit at 60°N latitude [47], sharing it with *northern hydrology* in its earlier
 293 definition [73]. Later, *northern hydrology* has been encompassing the processes in the tundra and taiga
 294 ecosystems [74], or post-glacial settings in boreal, temperate coniferous and mixed forests [75].

295 *Periglacial hydrology* was used once to address the processes in the periglacial sector of
 296 Vatnajökull ice cap [76]. Since permafrost is in the heart of periglacial landscapes, *permafrost*
 297 *hydrology* may stand for periglacial hydrology in the hydrologist's eyes. *Polar hydrology* was a recent
 298 research effort of Norwegian Water Resources and Energy Directorate in Svalbard [77].

299 5.2. Revised definitions

300 The Arctic region is part of the global system, and as such receives influence from many distant
 301 regions, that should not be added to the Arctic domain on this purpose. True, that Arctic boundary
 302 has several definitions, both political and natural, and what is included, depends on the scope.
 303 However, the only boundary which has been clearly demarcated is a political boundary, and the
 304 view of the Arctic as a political region, and not an ecoregion, is arguably more correct. In this case,
 305 *Arctic hydrology* should focus on freshwater resources in the Arctic regions, its quantification,
 306 availability and quality, and hydrological risk assessment, serving the people of the North.
 307 'Acknowledge, not include' is a proper strategy for defining domains, including that of Arctic
 308 hydrology.

309 Ecosystem, or ecoregion boundaries are used to define northern, or boreal, hydrology as
310 concerned with tundra and taiga ecosystems, and interactions between vegetation communities and
311 water fluxes [74]. 'Northern' requires a supplementary definition of 'southern hydrology', be it
312 either Antarctic or Mediterranean climate. Hence, *boreal hydrology* sounds more appropriate, as
313 connoting the existence of typical boreal ecosystems, such as forests (*taiga*) and wetlands.

314 *High-latitude hydrology*, as a definition, is subject to a question of which latitude is high enough,
315 in hydrological sense. High latitudes are felt 'high' thanks to rough climate, therefore high-latitude
316 is defined here as hydrology of Köppen *E* climate regions, including any regional study concerning
317 particular rivers or watersheds, and emphasizing particular site-specific features, as highly seasonal
318 flow, snow redistribution impact *etc*. As such, it makes part of larger *cold-regions hydrology* domain,
319 where cold regions are defined based on climate [14]. With progressive climate change, warming the
320 Arctic at an impressive rate, these definitions will also change their spatial coverage.

321 Climate boundaries of Köppen classification will shift southward, and regions previously
322 considered as cold are expected to become warmer. High-latitude and cold-region hydrology could
323 be therefore considered as endangered species. We should track vigilantly the hydrological effects of
324 these changes; this is, to our opinion, one of the most important objectives of permafrost hydrology
325 research.

326 6. Future progress in permafrost hydrology domain

327 Permafrost hydrology is already a well-established research discipline as well as a general
328 framework for the scientific advance and planning, even though the use of the term is undermined
329 by a strong blend with other terminologies. Upon defining its scope and objectives, its major concern
330 should turn to the development of discipline-specific methods, best suited for particular research
331 purposes.

332 Tracer hydrology methods are promising in acquiring information on flow paths and residence
333 times in northern catchments [75,78]. Freeze-thaw processes leave a distinct imprint on ^2H and ^{18}O
334 signatures in soil moisture, that can be traced to specific locations (by soil type), processes (*e.g.* ice
335 segregation), ground ice forms (pingo, aufeis, ice wedges), or, speculatively, even to certain
336 cryostructures. Rare earth elements are used to track hydrologic pathways, distinguishing fast and
337 slow subsurface flows, or mineral or organic layers [79]. These data should be used in combination
338 with field data on active layer dynamics, water table, vegetation, and precipitation, including rain
339 chemistry, in assessing the activity of certain flowpaths and its spatio-temporal variability.

340 Organic carbon and its transformation affected by hydrological processes, is a subject of utter
341 importance in the scope of permafrost-climate feedback. Methane production is an anaerobic
342 process, depending on the permafrost thaw rate and the water table position in the soil profile ([80],
343 and references therein). Old permafrost-derived carbon is highly biodegradable, and is rapidly
344 consumed by bacteria in headwater system [81-82]. Optical and molecular properties of dissolved
345 organic carbon can be used to track the reaction of slopes and headwaters to progressive active layer
346 development.

347 Modelling strategies accounting for permafrost-specific processes should be developed or
348 further enhanced for their better representation. The most promising approaches include: (i) coupled
349 water and heat balance models of various dimension and complexity, *e.g.* 'zero-dimensional' model
350 of Boike *et al.* [22], PFLOTRAN [83], SUTRA 3.0 (aka SUTRA-ice) [84] and permaFOAM [85], to
351 mention but a few; (ii) explicit two-dimensional heat transfer model with phase transitions, where
352 water and heat fluxes are decoupled [86]; (iii) semi-distributed models with simplistic permafrost
353 description as an impermeable layer, and no heat transfer module [87-88].

354 Water movement and redistribution in the subsoil compartment, along with phase transitions
355 and related volumetric changes, necessarily perform geomorphic work. This complex overlap gives
356 birth to a certain cryo-fluvial interaction [89], where periglacial landforms develop as a function of
357 local hydrology, while surface runoff reuses and reshapes linear forms created by cryogenic
358 processes. Ultimately, integrated models should be developed describing the water routing in the

359 subsoil, its heat imprint and geomorphic consequences, the development of non-channelized
360 drainage network (water tracks) and thermokarst gullies.

361 7. Conclusions

362 Hydrological processes in periglacial environments are often regarded as "...azonal processes
363 operating in cold environments", and as such believed to "...differ little, if at all, from similar
364 processes in other climatic environments" [48]. They are thought to be "...not unique to [permafrost]
365 districts, but their intensities differ from those in temperate latitudes [25]. From what is known, the
366 conclusion is that permafrost hydrology can be defined through a process assemblage, unique for
367 permafrost regions. Other hydrologies do exist, and, having their definitions and scopes revised,
368 could provide extremely important insights. This paper offers such revision, and other revisions
369 may follow, to the benefit for conscious science, and the Northern communities.

370 Scientific advance is constrained by the absence of common language, untranslatability of major
371 'local' terms coined by different national schools. This constraint can only be overruled by the
372 acknowledging the existence of multiple meanings in national scientific domains, and cross-linking
373 these meanings, by discussion and consensus. Advancement of research and collaboration is
374 sustained by this terminological framework, elaborated by the researchers in order to transfer and
375 share their expertise. Clear research objectives and hypotheses arguably serve science not less than
376 our sophisticated field and modeling methods.

377 **Author Contributions:** All authors contributed to the text. Conceptualization and writing – original draft
378 preparation, N.T.; writing – review and editing, N.T, R.T. and M.D. All authors have approved the submitted
379 version of the manuscript.

380 **Funding:** This research was partially funded by Russian Fund for Basic Research, project №17-05-00948a (N.T.),
381 TOMCAR-Permafrost Marie Curie International Reintegration Grant FP7-PEOPLE-2010-RG, project reference:
382 277059 (R.T.).

383 **Acknowledgments:** The paper was conceived and partially written while N.T. served as an invited professor to
384 EcoLab, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France. The support and assistance from EcoLab
385 staff are highly appreciated.

386 **Conflicts of Interest:** The authors declare no conflict of interest. The funders had no role in the design of the
387 study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to
388 publish the results.

389 References

1. Sorokina, S.A.; Li, C.; Wettstein, J.J.; Kvamstø, N.G. Observed atmospheric coupling between Barents Sea ice and the warm–Arctic cold–Siberian anomaly pattern. *J. Clim.* **2016**, *29*, 495–511. DOI: 10.1175/JCLI-D-15-0046.1.
2. Wijffels, S.; Roemmich, D.; Monselesan, D.; Church, J.; Gilson, J. Ocean temperatures chronicle the ongoing warming of Earth. *Nat Clim Change* **2016**, *6*, 116–118. DOI: 10.1038/nclimate2924.
3. Francis, J.A.; Chan, W.; Leathers, D.J.; Miller, J.R.; Veron, D.E. Winter Northern Hemisphere weather patterns remember summer Arctic sea-ice extent. *Geophys. Res. Lett.* **2009**, *36*, L07503. DOI: 10.1029/2009GL037274.
4. Sturm, M.; Racine, C.; Tape, K. Increasing shrub abundance in the Arctic. *Nature* **2001**, *411*, 546–547.
5. Cronin, T.M.; Cronin, M.A. Biological response to climate change in the Arctic Ocean: the view from the past. *Arctos* **2015**, *1*(4). DOI: 10.1007/s41063-015-0019-3.
6. Holland, M.M.; Bitz, C.M. Polar amplification of climate change in coupled models. *Clim. Dyn.* **2003**, *21*, 221–232. DOI: 10.1007/s00382-003-0332-6.
7. Serreze, M.C.; Barrett, A.P.; Stroeve, J.C.; Kindig, D.M.; Holland, M.M. The emergence of surface-based Arctic amplification. *The Cryosphere* **2009**, *3*, 11–19. DOI: 10.5194/tc-3-11-2009.
8. Serreze, M.C.; Barry, R.G. Processes and impacts of Arctic amplification: A research synthesis. *Glob. Planet. Change* **2011**, *77*, 85–96. DOI: 10.1016/j.gloplacha.2011.03.004.

407 9. Serreze, M.C.; Bromwich, D.H.; Clark, M.P.; Etringer, A.J.; Zhang, T.; Lammers, R. Large-scale
408 hydro-climatology of the terrestrial Arctic drainage system. *J Geophys Res.* **2002**, *108*, D2, 8160. DOI:
409 10.1029/2001JD000919.

410 10. Francis, J.A.; White, D.M.; Cassano, J.J.; Gutowski Jr, W.J.; Hinzman, L.D.; Holland, M.M.; Steele, M.A.;
411 Vörösmarty, C. An arctic hydrological system in transition: Feedbacks and impacts on terrestrial, marine
412 and human life. *J Geophys Res.* **2009**, *114*, G04019. DOI: 10.1029/2008JG000902.

413 11. Bring, A.; Fedorova, I.; Dibike, Y.; Hinzman, L.; Mård, J.; Mernild, S.H.; Prowse, T.; Semenova, O.;
414 Stuefer, S.L.; Woo, M.K. Arctic terrestrial hydrology: A synthesis of processes, regional effects, and
415 research challenges. *J Geophys Res: Biogeosci.* **2016**, *121*, 621–649. DOI: 10.1002/2015JG003131.

416 12. Lammers, R.B.; Shiklomanov, A.I.; Vörösmarty, C.; Fekete, B.M.; Peterson, B.J. Assessment of
417 contemporary Arctic river runoff based on observational discharge records. *J Geophys Res.* **2001**, *106*,
418 3321–3334.

419 13. Syed, T.H.; Famiglietti, J.S.; Zlotnicki, V.; Rodell, M. Contemporary estimates of Pan–Arctic freshwater
420 discharge from GRACE and reanalysis. *Geophys Res Lett.* **2007**, *34*, L19404. DOI: 10.1029/2007GL031254.

421 14. Prowse, T.; Bring, A.; Mård, J.; Carmack, E.; Holland, M.; Instanes, A.; Vihma, T.; Wrona, F.J. Arctic
422 Freshwater Synthesis: Summary of key emerging issues. *J Geophys Res: Biogeosci.* **2015**, *120*, 1887–1893. DOI:
423 10.1002/2015JG003128.

424 15. Fichot, C.G.; Kaiser, K.; Hooker, S.B.; Amon, R.M.W.; Babin, M.; Bélanger, S.; Walker, S.A.; Benner, R.
425 Pan-Arctic distributions of continental runoff in the Arctic Ocean. *Scientific Rep.* **2013**, *3*, 1053. DOI:
426 10.1038/srep01053.

427 16. Nummelin, A.; Illiçak, M.; Li, C.; Smedsrød, L.H. Consequences of future increased Arctic runoff on Arctic
428 ocean stratification, circulation, and sea ice cover. *J Geophys Res: Oceans* **2016**, *121*, 617–637. DOI:
429 10.1029/2015JC011156.

430 17. Semiletov, I.; Pipko, I.; Gustafsson, Ö.; Anderson, L.G.; Sergienko, V.; Pugach, S.; Dudarev, O.;
431 Charkin, A.; Gukov, A.; Bröder, L.; Andersson, A.; Spivak, E.; Shakhova, N. Acidification of East Siberian
432 Arctic Shelf waters through addition of freshwater and terrestrial carbon. *Nat Geosci.* **2016**, *9*, 361–365. DOI:
433 10.1038/ngeo2695.

434 18. Hinzman, L.; Kane, D.L.; Gieck, R.E.; Everett, K.R. Hydrologic and thermal properties of the active layer in
435 the Alaskan Arctic. *Cold Reg Sci Technol.* **1991**, *19*(2), 95–110.

436 19. Woo, M.K. *Permafrost hydrology*. Springer: Berlin Heidelberg, Germany, 2012; 564 p.

437 20. Kane, D.L.; Yoshikawa, K.; McNamara, J.P. Regional groundwater flow in an area mapped as continuous
438 permafrost, NE Alaska (USA). *Hydrogeol J.* **2013**, *21*, 41–52.

439 21. Wright, R.K. Preliminary results of a study on active layer hydrology in the discontinuous zone at
440 Schefferville, Nouveau-Québec. *Géographie physique et Quaternaire* **1979**, *33*, 359–368. DOI:
441 10.7202/1000370ar.

442 22. Boike, J.; Roth, K.; Overduin, P.P. Thermal and hydrologic dynamics of the active layer at a continuous
443 permafrost site (Taymyr Peninsula, Siberia). *Water Resour Res.* **1998**, *34*, 355–363. DOI: 10.1029/97WR03498.

444 23. Weismüller, J.; Wollschläger, U.; Boike, J.; Pan, X.; Yu, Q.; Roth, K. Modeling the thermal dynamics of the
445 active layer at two contrasting permafrost sites on Svalbard and on the Tibetan Plateau. *The Cryosphere*
446 **2011**, *5*, 741–757. DOI: 10.5194/tc-5-741-2011.

447 24. Burt, T.P.; Williams, P.J. Hydraulic conductivity in frozen soil. *Earth Surf Proc.* **1976**, *1*, 349–360.

448 25. Woo, M.K. Permafrost hydrology in North America. *Atmosphere-Ocean* **1986**, *24*, 201–234.

449 26. Woo, M.K.; Kane, D.L.; Carey, S.K.; Yang, D. Progress in permafrost hydrology in the new millennium.
450 *Permafrost Periglac Process.* **2008**, *19*, 237–254. DOI: 10.1002/ppp.613.

451 27. Frey, K.E.; McClelland, J.W. Impacts of permafrost degradation on arctic river biogeochemistry. *Hydrol
452 Process.* **2009**, *23*, 169–182.

453 28. Lawrence, D.M.; Koven, C.D.; Swenson, S.C.; Riley, W.J.; Slater, A.G. Permafrost thaw and resulting soil
454 moisture changes regulate projected high-latitude CO₂ and CH₄ emissions. *Environ Res Lett.* **2015**, *10*(9),
455 094011. DOI: 10.1088/1748-9326/10/9/094011.

456 29. Abbott, B.W.; Larouche, J.R.; Jones, J.B.; Bowden, W.B.; Balser, A.W. Elevated dissolved organic carbon
457 biodegradability from thawing and collapsing permafrost. *J Geophys Res: Biogeosci.* **2014**, *119*, 2049–2063.
458 DOI: 10.1002/2014JG002678.

459 30. Hugelius, G.; Strauss, J.; Zubrzycki, S.; Harden, J.W.; Schuur, E.A.G.; Ping, C.-L.; Schirrmeister, L.;
460 Grosse, G.; Michaelson, G.J.; Koven, C.D.; O'Donnell, J.A.; Elberling, B.; Mishra, U.; Camill P.; Yu, Z.;

461 Palmtag, J.; Kuhry, P. Estimated stocks of circumpolar permafrost carbon with quantified uncertainty
462 ranges and identified data gaps. *Biogeosci.* **2014**, *11*, 6573–6593. DOI: 10.5194/bg-11-6573-2014.

463 31. Cory, R.M.; Ward, C.P.; Crumb, B.C.; Kling, G.W. Sunlight controls water column processing of carbon in
464 arctic fresh waters. *Science*. **2014**, *345*(6199), 925–928. DOI: 10.1126/science.1253119.

465 32. Lessels, J.S.; Tetzlaff, D.; Carey, S.K.; Smith, P.; Soulsby, C. A coupled hydrology–biogeochemistry model
466 to simulate dissolved organic carbon exports from a permafrost–influenced catchment. *Hydro Process.*
467 **2015**, *29*, 5383–5396. DOI: 10.1002/hyp.10566.

468 33. Woo, M.-K.; Marsh, P.; Pomeroy, J.W. Snow, frozen soils and permafrost hydrology in Canada, 1995–1998.
469 *Hydro Process.* **2000**, *14*, 1591–1611.

470 34. Hinzman, L.D.; Kane, D.L.; Woo, M.-K. Permafrost Hydrology. In *Encyclopedia of Hydrological Sciences*;
471 Anderson, M., Ed. Wiley: West Sussex, U.K., 2005; Volume 4, pp. 2679–2693.

472 35. Walvoord, M.A.; Kurylyk, B.L. Hydrologic impacts of thawing permafrost – A review. *Vadose Zone J.* **2016**,
473 *15*(6). DOI: 10.2136/vzj2016.01.0010.

474 36. Ford, A.; Peat, F.D. The role of language in science. *Foundations of Physics* **1988**, *18*(12), 1233–1242. DOI:
475 10.1007/BF01889434.

476 37. Einstein, A. The common language of science. *Out of my later years*, 1941; 111–113.

477 38. Whorf, B.L. Science and linguistics. *Technology Review* **1940**, *42*(6), 229–231, 247–248.

478 39. French, H. The development of periglacial geomorphology: 1 – up to 1965. *Permafr Periglac Process.* **2003**,
479 *14*, 29–60. DOI: 10.1002/ppp.438.

480 40. Müller, S.W. Permafrost of perennially frozen ground and related engineering problems, *U.S. Geological*
481 *Survey Special Report, Strategic Engineering Study* 62. Washinton, D.C., U.S. Government Printing Office;
482 1945.

483 41. Romanovsky, V.; Smith, S.E.; Christiansen, H.H. Permafrost thermal state in the polar Northern
484 Hemisphere during the International Polar Year 2007–2009: a synthesis. *Permafr Periglac Process.* **2010**, *21*(2),
485 106–116. DOI: 10.1002/ppp.689.

486 42. Dobiński, W. Permafrost. *Earth–Science Reviews* **2011**, *108*, 158–169. DOI: 10.1016/j.earscirev.2011.06.007.

487 43. ACIA. *Arctic Climate Impact Assessment*. Symon C, Arris L, Heal B. (eds), Cambridge: Cambridge
488 University Press; 2005.

489 44. Sokolov, B.L. Hydrology of rivers of the cryolithic zone in the U.S.S.R. *Nordic Hydrol.* **1991**, *22*(4), 211–226.

490 45. Ottesen, D.; Stokes, C.R.; Bøe, R.; Rise, L.; Longwa, O.; Thorsnes, T.; Olesen, O.; Bugge, T.; Lepland, A.;
491 Hestvik, O.B. Landform assemblages and sedimentary processes along the Norwegian Channel Ice
492 Stream. *Sediment Geol.* **2016**, *338*, 115–137. DOI: 10.1016/j.sedgeo.2016.01.024.

493 46. Slaymaker, O. Criteria to discriminate between proglacial and paraglacial environments. *Landf Analys.*
494 **2007**, *5*, 72–74.

495 47. Bartsch, A. Monitoring of terrestrial hydrology at high latitudes with scatterometer data. In *Geoscience and*
496 *remote sensing: New achievements*; Imperatore, P., Riccio, D., Eds.; Intech: 2010, pp. 247–262.

497 48. French, H.; Thorne, C.E. The changing nature of periglacial geomorphology. *Géomorphologie: relief,*
498 *processus, environnement* **2006**, *3*, 165–174. DOI: 10.4000/geomorphologie.119.

499 49. Fotiev, S.M. Underground waters of cryogenic area of Russia. *Earth Cryosphere* **2013**, *XVII*(2), 41–59 [in
500 Russian, with English abstract].

501 50. Konrad, J.M.; Duquennoi, C. A model for water transport and ice lensing in freezing soils. *Water Resour*
502 *Res.* **1993**, *29*(9), 3109–3124.

503 51. Boytsov A.V. *Usloviya formirovaniya i rezhim podzemnykh vod nadmerzlotnogo i mezhmerzlotnogo stoka v*
504 *Tsentr'noy Yakutii* (Formation conditions and groundwater regime of supra-permafrost and permafrost
505 runoff in Central Yakutia). PhD Thesis, P.I. Melnikov Permafrost Institute, Yakutsk. 2002 (in Russian).

506 52. Fel'dman G.M. *Peredvizheniye vlagi v talykh i promerzayushchikh gruntakh* (Water migration in thawed and
507 freezing soils). Nauka: Novosibirsk, U.S.S.R., 1988 (in Russian).

508 53. Quinton, W.L.; Shirazi, T.; Carey, S.K.; Pomeroy, J.W. Soil water storage and active layer development in a
509 sub-alpine tundra hillslope, Southern Yukon Territory, Canada. *Permafr Periglac Process.* **2005**, *16*, 369–382.
510 DOI: 10.1002/ppp.543.

511 54. O'Neill, A.D.J.; Gray, D.M. Solar radiation penetration through snow. In *IAHS Publ.* **107**, 1973, pp. 227–241.

512 55. Shur, Yu.; Hinkel, K.M.; Nelson, F.E. The transient layer: Implications for geocryology and climate–change
513 science. *Permafr Periglac Process.* **2005**, *16*, 5–17. DOI: 10.1002/ppp.518.

514 56. Streletsky, D.; Tananaev, N.; Opel, T.; Shiklomanov, N.I.; Nyland, K.E.; Streletskaia, I.D.; Tokarev, I.;
515 Shiklomanov, A.I. Permafrost hydrology in changing climatic conditions: seasonal variability of stable
516 isotope composition in rivers in discontinuous permafrost. *Environ Res Lett.* **2015**, *10*, 095003. DOI:
517 10.1088/1748-9326/10/9/095003.

518 57. Iwata, K. Driving force for water migration in frozen clayey soil. *Soil Sci Plant Nutrition* **1980**, *26*(2),
519 215–227. DOI: 10.1080/00380768.1980.10431205.

520 58. Nagare, R.M.; Schincariol, R.A.; Quinton, W.L.; Hayashi, M. Effects of freezing on soil temperature,
521 freezing front propagation and moisture redistribution in peat: laboratory investigations. *Hydrol Earth Syst
522 Sci.* **2012**, *16*, 501–515. DOI: 10.5194/hess-16-501-2012.

523 59. Kalyuzhny, I.L.; Lavrov, S.A. *Hydrophysical processes in drainage basins: experimental studies and modeling*;
524 Nestor-Istoriya: St. Petersburg, Russia, 2012.

525 60. Chamberlain, E.J.; Gow, A.J. Effect of freezing and thawing on the permeability and structure of soils. *Eng
526 Geol.* **1979**, *13*, 73–92.

527 61. Sterpi, D. Effect of freeze–thaw cycles on the hydraulic conductivity of a compacted clayey silt and
528 influence of the compaction energy. *Soils Found.* **2015**, *55*(5), 1326–1332. DOI: 10.1016/j.sandf.2015.09.030.

529 62. Bantzekina, T.V. Ice content variations in coarse talus during spring snow melting. *Kolyma* **2001**, *2*, 28–31.

530 63. Sokolov, B.L. Certain features in structure and mechanical break-down of naleds, their significance in
531 estimates of naled runoff. In *Siberian Naleds*; Alekseev, V.R., Ed.; U.S. Army CRREL: Hanover, N.H.,
532 U.S.A., 1973; pp. 140–154.

533 64. Alekseev, V.R. *Naledovedeniye* (Icing Studies). Siberian Branch RAS Publ.: Novosibirsk, Russia, 2007 (in
534 Russian).

535 65. Clark, I.D.; Lauriol, B. Aufeis of the Firth River basin, Northern Yukon, Canada: Insights into permafrost
536 hydrogeology and karst. *Arctic Alp Res* **1997**, *29*(2), 240–252.

537 66. Murton, J.B.; Edwards, M.E.; Lozhkin, A.V.; Anderson, P.M.; Savvinov, G.M.; Bakulina, N.; Bondarenko,
538 O.V.; Cherepanova M.V.; Danilov, P.P.; Boeskorov, V.; Goslar, T.; Grigoriev, S.; Gubin, S.V.; Korzun, J.A.;
539 Lupachev, A.V.; Tikhonov, A.; Vasilieva, G.V.; Zanina, O.G. Preliminary paleoenvironmental analysis of
540 permafrost deposits at Batagaika megaslump, Yana Uplands, northeast Siberia. *Quatern Res* **2017**, *87*(2),
541 314–330.

542 67. Opel, T.; Wetterich, S.; Meyer, H.; Dereviagin, A.Y.; Fuchs, M.C.; Schirrmeister, L. Ground-ice stable
543 isotopes and cryostratigraphy reflect late Quaternary palaeoclimate in the Northeast Siberian Arctic
544 (Oyogos Yar coast, Dmitry Laptev Strait). *Clim Past* **2017**, *13*, 587–611. DOI: 10.5194/cp-13-587-2017.

545 68. Carey, S.K.; Woo, M.K. Hydrology of two slopes in subarctic Yukon, Canada. *Hydrol Process.* **1999**, *13*(16),
546 2549–2562. DOI: 10.1002/(SICI)1099-1085(199911)13:16<2549::AID-HYP938>3.0.CO;2-H.

547 69. Heginbottom, J.A. Permafrost mapping: a review. *Progress Phys Geogr.* **2000**, *26*(4), 623–642. DOI:
548 10.1191/0309133302pp355ra.

549 70. Reggiani, P.; Rientjes, T.H.M. Flux parametrization in the representative elementary watershed approach:
550 Application to a natural basin. *Water Resour Res.* **2005**, *41*(4), W04013. DOI: 10.1029/2004WR003693.

551 71. Flügel, W.-A. Delineating hydrological response units by geographical information system analyses for
552 regional hydrological modelling using PRMS/MMS in the drainage basin of the River Bröl, Germany.
553 *Hydrol Process.* **1995**, *9*, 423–436.

554 72. Walvoord, M.A.; Voss, C.I.; Wellman, T.P. Influence of permafrost distribution on groundwater flow in the
555 context of climate-driven permafrost thaw: Example from Yukon Flats Basin, Alaska, United States. *Water
556 Resour Res.* **2012**, *48*, W07524. DOI: 10.1029/2011WR011595.

557 73. Prowse T. Northern hydrology: an overview. In *Northern Hydrology: Canadian Perspectives*; Prowse, T.,
558 Omannay, C., Eds.; NHRI Science Report No. 1., 1990; pp. 1–36.

559 74. Duguay, C.R.; Pietroniro, A. Introduction. In *Remote Sensing in Northern Hydrology: Measuring
560 Environmental Change*; Duguay, C.R., Pietroniro, A., Eds. Geophysical Monograph Series 163, 2005; pp. 1–5.
561 DOI: 10.1029/163GM02.

562 75. Tetzlaff, D.; Buttle, J.; Carey, S.K.; McGuire, K.; Laudon, H.; Soulsby, C. Tracer-based assessment of flow
563 paths, storage and runoff generation in northern catchments: a review. *Hydrol Process.* **2014**, *29*, 3475–3490.
564 DOI: 10.1002/hyp.10412.

565 76. Flowers, G.E.; Björnsson, H.; Pálsson, F. New insights into the subglacial and periglacial hydrology of
566 Vatnajökull, Iceland, from a distributed physical model. *J Glac.* **2003**, *49*(165), 257–270. DOI:
567 10.3189/172756503781830827.

568 77. Sund, M. Polar hydrology. Report 2–2008. Norwegian Water Resources and Energy Directorate: Oslo,
569 Norway; 2008.

570 78. Tetzlaff, D.; Piovano, T.; Ala-Aho, P.; Smith, A.; Carey, S.; Marsh, P.; Wookey, P.A.; Street, L.E.; Soulsby, C.
571 Using stable isotopes to estimate travel times in a data-sparse Arctic catchment: Challenges and possible
572 solutions. *Hydrol Process.* **2018**, *32*, 1936–1952. DOI: 10.1002/hyp.13146.

573 79. Bagard, M.L.; Chabaux, F.; Pokrovsky, O.S.; Viers, J.; Prokushkin, A.S.; Stille, P.; Rihs, S.; Schmitt, A.D.;
574 Dupré, B. Seasonal variability of element fluxes in two Central Siberian rivers draining high latitude
575 permafrost dominated areas. *Geochim Cosmochim Acta.* **2011**, *75*, 3335–3357. DOI: 10.1016/j.gca.2011.03.024.

576 80. Taupp, M.; Constan, L.; Hallam, S.J. The biogeochemistry of anaerobic methane oxidation. In *Handbook of*
577 *Hydrocarbon and Lipid Microbiology*; Timmis, K.N., Ed. Springer: Berlin-Heidelberg, Germany, 2010;
578 pp. 887–907. DOI: 10.1007/978-3-540-77587-4_63.

579 81. Mann, P.J.; Eglinton, T.I.; McIntyre, C.P.; Zimov, N.; Davydova, A.; Vonk, J.E.; Holmes, R.M.; Spencer,
580 R.G.M. Utilization of ancient permafrost carbon in headwaters of Arctic fluvial networks. *Nat Commun.*
581 **2015**, *6*, 7856. DOI: 10.1038/ncomms8856.

582 82. Frey, K.E.; Sobczak, W.V.; Mann, P.J.; Holmes, R.M. Optical properties and bioavailability of dissolved
583 organic matter along a flow-path continuum from soil pore waters to the Kolyma River mainstem, East
584 Siberia. *Biogeosci.* **2016**, *13*, 2279–2290. DOI: 10.5194/bg-13-2279-2016.

585 83. Karra, S.; Painter, S.L.; Lichtner, P.C. Three-phase numerical model for subsurface hydrology in
586 permafrost-affected regions (PFLOTRAN-ICE v.1.0). *The Cryosphere* **2014**, *8*, 1935–1950. DOI:
587 10.5194/tc-8-1935-2014.

588 84. McKenzie J.M.; Voss, C.I.; Siegel, D.I. Groundwater flow with energy transport and water-ice phase
589 change: Numerical simulations, benchmarks, and application to freezing in peat bogs. *Adv Water Resour.*
590 **2007**, *30*(4), 966–983. DOI: 10.1016/j.advwatres.2006.08.008.

591 85. Orgogozo, L.; Prokushkin, A.S.; Pokrovsky, O.; Grenier, C.; Quintard, M.; Viers, J.; Audry, S. Water and
592 energy transfer modeling in a permafrost-dominated, forested basin catchment of Central Siberia: The key
593 role of rooting depth. *Permaf Periglac Process.* **2019**, *30*(2), 75–89. DOI: 10.1002/ppp.1995.

594 86. Semenova, O.; Vinogradov, Yu.; Vinogradova, T.; Lebedeva, L. Simulation of soil profile heat dynamics
595 and their integration into hydrological modelling in a permafrost zone. *Permaf Periglac Process.* **2014**, *25*,
596 257–269. DOI: 10.1002/ppp.1820.

597 87. Hülsmann, L.; Geyer, T.; Schweitzer, C.; Priess, J.; Karthe, D. The effect of subarctic conditions on water
598 resources: Initial results and limitations of the SWAT model applied to the Kharaa River basin in Northern
599 Mongolia. *Environ Earth Sci.* **2015**, *73*, 581–592. DOI: 10.1007/s12665-014-3173-1.

600 88. Fabre, C.; Sauvage, S.; Tananaev, N.; Srinivasan, R.; Teisserenc, R.; Sánchez Pérez, J.M. Using modeling
601 tools to better understand permafrost hydrology. *Water* **2017**, *9*, 418. DOI: 10.3390/w9060418.

602 89. Sukhodrovsky, V.L. *Ekzogennoye rel'efoobrazovaniye v kriolitozone* (Exogenous morphogenesis in
603 permafrost). Nauka: Moscow, USSR; 1979 (in Russian).

604