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Abstract: Cognitive deterioration caused by illness or aging often occurs before symptoms arise, 10 
and their timely diagnosis is crucial to reducing its medical, personal, and societal impacts. Brain-11 
Computer Interfaces (BCIs) stimulate and analyze key cerebral rhythms, enabling reliable cognitive 12 
assessment that can accelerate diagnosis. The BCI system presented analyzes Steady-State Visually 13 
Evoked Potentials (SSVEPs) elicited in subjects of varying age to detect cognitive aging, predict its 14 
magnitude, and identify its relationship with SSVEP features (band power and frequency detection 15 
accuracy), which were hypothesized to indicate cognitive decline due to aging. The BCI system was 16 
tested with subjects of varying age to assess its ability to detect aging-induced cognitive 17 
deterioration. Rectangular stimuli flickering at theta, alpha, and beta frequencies were presented to 18 
subjects, and frontal and occipital EEG responses were recorded. These were processed to calculate 19 
detection accuracy for each subject and calculate SSVEP band power. A neural network was trained 20 
using the features to predict cognitive age. The results showed potential cognitive deterioration 21 
through age-related variations in SSVEP features. Frequency detection accuracy declined after age 22 
group 20-40 and band power, throughout all age groups. SSVEPs generated at theta and alpha 23 
frequencies, especially 7.5 Hz, were the best indicators of cognitive deterioration. Here, frequency 24 
detection accuracy consistently declined after age group 20-40 from an average of 96.64% to 69.23%.  25 
The presented system can be used as an effective diagnosis tool for age related cognitive decline.  26 

Keywords: brain-computer Interface; cognitive aging; steady-state visual evoked potential, neural 27 
network; detection accuracy; band power  28 

 29 

1. Introduction 30 

Cognitive decline via deterioration of key neural networks can be caused by normal aging 31 
and/or illness (i.e. Alzheimer’s Disease), and often occurs before symptoms can be noted. It is well 32 
known that age significantly increases one’s risk of acquiring Alzheimer’s Disease (AD), a severe 33 
neurodegenerative illness affecting 46.8 million people worldwide[1].  34 

Cognitive deterioration has been explored through EEG signaling, which enables monitoring 35 
of electrical activity in the brain with a high temporal resolution[2] . For example, Taillard et al 36 
indicates that aging is associated with characteristic changes in EEG waveforms collected during 37 
Non-REM sleep[3]. Furthermore, McBride et al uses regional spectral and complexity features in EEG 38 
signals to discriminate between Amnestic Mild Cognitive Impairment (aMCI) and Alzheimer’s 39 
Disease (AD)[4]. Ishii et al shows that aging is characterized by significant changes in resting state 40 
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oscillatory activity, Event-Related Potentials (ERPs) elicited by cognitive tasks, functional 41 
connectivity between cerebral regions, and signal complexity[5]. Miraglia et al discusses the use of 42 
EEG functional network studies in order to build network topology models that could help better 43 
understand changes in brain architecture throughout an individual’s lifespan[6]. Additionally, 44 
Horvath et al examines EEG and ERP bioindicators of Alzheimer’s Disease[7] and Pagano et al 45 
examines EEG subitization in healthy elderly subjects during working memory and attention-related 46 
tasks[8]. 47 

Steady-state visually evoked potentials (SSVEPs) are elicited by steadily oscillating visual 48 
stimuli are commonly employed in studies of visual perception due to their high Signal to Noise 49 
Ratio (SNR) and analytical simplicity[9]. Most importantly, studies[10] have shown that SSVEP features 50 
have strong correlation with the topology of the networks they elicit. SSVEP amplitude and SNR has 51 
strong positive correlation with efficiency and connectivity of their corresponding networks and 52 
strong negative correlation with their length, making them accurate standards of neural efficacy[11]. 53 
Such parameters affect the size of the SSVEP response generated because more efficient topological 54 
organizations of neural networks are associated with larger responses. However, few studies have 55 
focused on the effects of aging on SSVEP features; one study employs LED lights to extract Fourier 56 
Amplitude and feature detection accuracy using an SSVEP-based Brain-Computer Interface (BCI) in 57 
ALS patients and subjects of varying age[16]. SSVEPs, which primarily entrain visual pathways 58 
throughout the brain, are a promising source of biomarkers of cognitive aging because the pathways 59 
stimulated by them extend throughout the entire brain. Studies examining a plethora of visual 60 
biomarkers have shown promising levels of correlation with age[13]; one prominent example is critical 61 
flicker fusion, examined by Mewborn et al; which is the frequency (flicker speed) at which the flicker 62 
of light can no longer be perceived. Critical flicker fusion, which provides insights into visual 63 
processing mechanisms, showed strong negative correlation with age[12]. 64 

SSVEP signals have a frequency range of 3.5-75 Hz; they can be categorized into particular 65 
bands, depending on their frequency. The Theta, Alpha, and Beta bands, which are easiest to detect, 66 
are comprised of frequencies 4-8 Hz, 8-13 Hz, and 14-30 Hz, respectively. The Theta band is generated 67 
in the frontal midline during deep relaxation and can be activated by rational thinking. It is also 68 
correlated with visualization or dreaming, memory, and cognitive control. The Alpha band is 69 
generated in a state of relaxed alertness; their power is diminished by open eyes or increased attention 70 
levels. This rhythm, which often dominates EEG recordings, increases in prevalence and amplitude 71 
at age 7-20 and undergoes an overall decrease with age. The Beta band, prevalent in the frontal lobe, 72 
is generated during a state of active concentration and is associated with problem solving, judgement, 73 
and decision-making. This band is not usually clear in EEG recordings of healthy subjects[14].  74 

SSVEPs are commonly employed in Brain-Computer Interfaces (BCIs), which allow direct 75 
interaction between an enhanced human brain and computerized device without the necessity of 76 
conventional output pathways. BCIs typically translate signals into meaningful commands for 77 
external devices, by restoring, at least partially, motor and communicative capabilities to individuals 78 
with compromised neural tracts. It can also facilitate interactions between humans and speech 79 
synthesizers, neural prostheses, and other assistive appliances[15].  They are also used to study 80 
different types of brain activity while the user induces a particular mental state or performs a 81 
particular task. BCIs analyze different types of EEG signals, such as P300, Event Related 82 
Synchronization or Desynchronization (ERS/ERD), Slow Cortical Potentials (SCPs), Sensorimotor 83 
Rhythms (SMR), and Steady-State Evoked Potentials (SSEPs)[9]. 84 

The objective of this study is to develop an SSVEP-based Brain-Computer Interface System that 85 
employs flickering light of 10 different frequencies (4, 6.6, 7.5, 8.57, 10, 12, 15, 20, 25, 30 Hz) to collect 86 
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SSVEP responses from 16 subjects spanning from age group 10-20 to >60. These responses were then 87 
epoched and analyzed to identify trends between SSVEP features and age. A predictive neural 88 
network was trained to identify level of cognitive age using these features.  Section 2 presents 89 
materials and methods, Section 3 presents the results, and Section 4 presents the discussion and 90 
conclusions. 91 

2. Materials and Methods 92 
The setup consisted of 5 electrodes (4 frontal and 1 occipital), positioned on a headband that the 93 

subject wears. The stimuli were presented on a laptop. Data was collected from the Cyton Biosensing 94 
board, which received the signals from the electrodes placed on the subject’s scalp in the EEG 95 
headband and wirelessly transmitted it to a USB dongle placed in a laptop computer.  96 

I. Visual Stimulus Presentation  97 

In this study, a single rectangular flickering stimulus (12.7 X 17.78 cm) was implemented to 98 
evoke SSVEPs in the frontal and occipital regions. This stimulus, which flickers at 4, 6.6, 7.5, 8.57, 10, 99 
12, 15, 20, 25, and 30 Hz was programmed using MATLAB’s Psychophysics toolbox and presented 100 
on a laptop. The flickering was produced by flipping between a black screen display and the texture 101 
drawing routine of PsychToolbox, which produced the white rectangle. The amount of flips is 102 
determined by the stimulus frequency; for example, a stimulus frequency of 4 Hz will result in 4 flips 103 
between the background screen and rectangle. Each frequency was encoded with a distinct binary 104 
matrix, in which ‘0’ encoded the black screen display and ‘1’ encoded the white rectangle. Each 105 
stimulus frequency was presented once per subject, for 26 seconds. An intermission of 2 minutes was 106 
provided between each presentation, to minimize visual fatigue. EEG data collection was stopped 1 107 
second after stimulus presentation.  108 
 109 

II. Data Acquisition 110 

EEG responses to the flickering visual stimuli was collected using OpenBCI software, via 4 111 
frontal electrodes (Fp1, FpZ, Fp2, F4, and Oz), situated on a wearable headband, and 1 occipital 112 
electrode (Oz), arranged according to the International 10/20 System, which is one of the electrode 113 
placement systems . After the headband was fastened around the head of the subject, the occipital 114 
electrode (dry comb type) was taped (masking tape) to the back of the head and fastened under the 115 
headband. A measuring tape and marker was used to locate the electrode positions on the scalp. 2 116 
auricular electrodes, which served as ground and reference locations, were fastened onto the subjects’ 117 
ears. Conductive gel was applied to the electrodes when necessary, in order to reduce signal 118 
impedance (<100 µV). The electrode pins from the 7 electrodes were connected to a Cyton Biosensing 119 
Board, which relayed the EEG signals to a USB dongle connected to a laptop computer. The USB 120 
dongle enables the signals to be viewed and adjusted in the OpenBCI graphical user interface. The 121 
experimental setup is shown in Figure 1. Bandpass filters were applied to EEG data to filter out 122 
artifacts and noise caused by eye blinks, the presence of skin and hair, and equipment errors, among 123 
others. These filters only allowed EEG data in the range 1-50 Hz to be transmitted. The sampling rate 124 
for EEG signals collected was 250 Hz.  125 

EEG data was collected from human subjects pertaining to age groups 10-20, 20-40, 40-60, and 126 
>60, each age group comprising 4 subjects, totaling 16 subjects. All subjects possessed normal or 127 
corrected-to-normal vision and if subjects had major treatments or medical issues regarding their eye 128 
health, they did not participate in this study. These subjects were covered by the Institutional Review 129 
Boards (IRB) of the University of Puerto Rico, and adequate consent and approval was obtained from 130 
all subjects. In order to control sources of variation in the data, the experiments were conducted at 131 
roughly the same time of day in a darkened room where the subjects were comfortably seated about 132 
30.48 cm. away from the computer monitor.  133 
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 134 
Figure 1. BCI equipment setup and experimentation. 135 

III. Signal Processing and Feature Extraction 136 
The EEG data, which is contained in ASCII files, was converted to a MATLAB-readable format, 137 

where it is represented by a 5-column matrix (5 data channels) with 6,540 samples or rows of points 138 
(signal amplitudes) on the EEG time-series plot (amplitude vs. time). The ‘.mat’ file was then saved 139 
under a MATLAB variable.  140 

Canonical correlation analysis (CCA) was used to compute a correlation coefficient between the 141 
SSVEP signals recorded at stimulus frequencies and reference signals generated at the same 142 
frequencies[3]. Reference sinusoidal signals were generated for each stimulus frequency; each signal 143 
comprised 2 harmonics and was generated using the same sampling rate (250 points/sec) and number 144 
of points as the EEG signal. CCA was used to determine the reference signal that had the greatest 145 
correlation with the EEG signal; this in turn, was used to determine which frequencies were elicited 146 
in the SSVEP. The EEG signal was processed using differing averaging intervals (2, 3, 4, and 5 s), in 147 
order to divide it into differing amounts of epochs (10, 7, 5, and 4 epochs, respectively), or trials (4160 148 
in total). CCA was performed to determine which stimulus frequency had the greatest level of 149 
correspondence with the SSVEP in each epoch. This was used to determine intra-group detection 150 
accuracies of all 10 stimulus frequencies for each subject. This process was repeated for both the 151 
occipital (Oz) region and the frontal region, which comprised the average signal from the four frontal 152 
electrodes. This algorithm was written as a MATLAB function; each stimulus frequency is denoted 153 
by its position in a vector, and the function outputs the maximum frequency index, which is a vector 154 
displaying the frequency detected in each epoch. This information was then used to calculate the 155 
detection accuracy of theta, alpha, and beta stimulus frequencies, as the percentage of epochs where 156 
the stimulus frequency was detected correctly, in the SSVEPs.  157 

The EEG signals were analyzed using the Fourier Transform (Eq. 1), which was used to generate 158 
Power Spectral Density (Eq.2) plots.  159 

0

1( ) ( )
T

i tX x t e dt
T

ωω −= 
           (1) 

160 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 13 May 2019                   

Peer-reviewed version available at Big Data Cogn. Comput. 2019, 3, 29; doi:10.3390/bdcc3020029Peer-reviewed version available at Big Data Cogn. Comput. 2019, 3, 29; doi:10.3390/bdcc3020029

https://doi.org/10.3390/bdcc3020029
https://doi.org/10.3390/bdcc3020029


 5 of 13 

  2( ) ( )xxS Xω ω=          (2) 161 

IV. Statistical analysis  162 
After the procedures described above were completed, statistical procedures were applied to 163 

analyze and synthesize the study’s data. Polynomial and linear regressions were used to delineate 164 
the relationship between cognitive aging and detection accuracy of stimulus frequencies in SSVEPs, 165 
as well as SSVEP band power. Accuracy of general trends identified in this study were evaluated 166 
using Analyses of Variance (ANOVAs) and measures of spread, such as coefficients of variation and 167 
standard deviations.  168 

A neural network was constructed using MATLAB’s neural fitting app, in order to predict 169 
cognitive age based on frequency detection accuracy and SSVEP band power. This network consisted 170 
of 10 neurons and the input layer (training data for the model) consisted of 2 variables (Fourier 171 
Amplitude and Frequency Detection Accuracy), and was trained using the features extracted after 172 
epoching the data into intervals of 2, 3, 4, and 5 seconds. In this manner, there was 78 samples per 173 
subject, for 16 subjects in total. 70% of the data (12 samples) were used for training, 15% (2 samples) 174 
for validation, and 15% for testing. The network was then trained using the Bayesian Regularization 175 
Algorithm, which adjusts an initial weight vector, which is used to generate predictions based on 176 
existing data, according to the input data used using training, in order to generate predictions of 177 
optimal accuracy. In this method, back-propagation occurs often to reduce prediction error.  This 178 
experiment was repeated 10 times for 10-fold cross-validation and the data was randomly divided 179 
for training, validation, and testing. 180 

3. Results 181 

 Stimulus frequency detection accuracy and SSVEP Fourier amplitude as a function of age are 182 
presented below. The best cerebral regions and stimulus frequencies that were optimal in delineating 183 
cognitive aging are presented.  184 

3.1.1. Detection accuracy of stimulus frequencies 185 
Detection accuracy of theta, alpha, and beta stimulus frequencies increased between age groups 186 

10-20 and 20-40 and decreased continuously from age groups 20-40 to >60. This trend is shown in 187 
Figure 2 in further detail.  Frequency detection accuracy is thus representative of cognitive decline 188 
only in age range 20-40 and above, because of higher levels of cognitive development. These results 189 
are shown in Table 1.  190 

Table 1. Theta, alpha, and beta frequency detection accuracy in varying age groups and 191 
corresponding statistics. 192 

 Mean Standard Error Standard Deviation Coefficient of Variation 
SSVEP Band (Hz) Age Group F O F O F O F O 

Theta (4-8) 

10-20 90.25 77.75 2.21 3.57 5.07 6.24 6.70 8.60 
20-40 93 92.75 1.22 3.59 2.22 5.45 2.40 6.00 
40-60 88 78.5 3.37 1.50 3.95 8.42 4.50 10.6 
>60 73.75 76.5 1.89 3.28 9.75 7.85 12.7 10.7 

Alpha (8-13) 

10-20 18.5 56 3.20 1.55 10.25 7.26 55.4 13.0 
20-40 54.25 94.5 1.50 0.71 18.46 5.26 34.0 5.60 
40-60 44.5 83 1.93 1.25 9.292 16.0 20.9 19.3 
>60 16.5 49.75 8.75 9.08 3.873 5.74 23.5 11.5 

Beta (14-30) 

10-20 16.49 38.45 0.75 1.58 10.65 24.0 64.6 62.4 
20-40 27.25 52 1.32 7.94 6.292 13.8 25.4 26.5 
40-60 32 50.75 1.08 2.61 6.976 29.1 21.8 57.3 
>60 13.22 32.5 4.82 7.40 14.78 16.4 112 50.3 

 193 
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 194 

 195 

 196 

Figure 2. Graphical and mathematical relationship between age and detection accuracy of stimulus 197 
frequency bands in SSVEP signals: (a.1) Detection accuracy of theta frequency band in occipital region 198 
(a.2) Detection accuracy of theta frequency band in frontal region (b.1) Detection accuracy of alpha 199 
frequency band in occipital region (b.2) Detection accuracy of alpha frequency band in frontal region 200 
(c.1) Detection accuracy of beta frequency band in occipital region (c.2) Detection accuracy of beta 201 
frequency band in frontal region. 202 

 203 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 13 May 2019                   

Peer-reviewed version available at Big Data Cogn. Comput. 2019, 3, 29; doi:10.3390/bdcc3020029Peer-reviewed version available at Big Data Cogn. Comput. 2019, 3, 29; doi:10.3390/bdcc3020029

https://doi.org/10.3390/bdcc3020029
https://doi.org/10.3390/bdcc3020029


 7 of 13 

3.1.2. SSVEP Fourier Amplitude 204 
As demonstrated by the results, the relationship between age and SSVEP Fourier amplitude is 205 

inversely proportional, and like frequency detection accuracy, it has a tendency to peak at age group 206 
20-40. SSVEP Fourier amplitude as a function of age is illustrated in Table 2. Moreover, according to 207 
the data spread presented in Table 3, Fourier Amplitude is the most reliable indicator of cognitive 208 
deterioration in theta and alpha SSVEPs; band power at these frequency bands as a function of age 209 
are shown in Figure 3.  210 

Table 2. Band Power (dB/Hz) of SSVEPs evoked by theta, alpha and beta frequencies. 211 
  Age Group (years) 

SSVEP Band Harmonic 10-20 20-40 40-60 >60 

Theta (4-8 Hz) 

1 20.55 25.42 18.01 12.333 
2 19.3 28.717 17.47 14.174 
3 12.39 13.55 9.137 13.04 
4 12.18 16.313 8.369 9.6 

Mean 16.105 21 13.2465 12.28675 

Alpha (8-13 Hz) 

1 22.5 27.72 15.773 12.583 
2 14.225 26.71 18.367 10.816 
3 13.075 15.538 10.725 6.1018 
4 10.347 13.818 10.786 5.2189 

Mean 15.03675 20.9465 13.91275 8.679925 

Beta (14-30 Hz) 

1 20.953 23.1 16.835 13.473 
2 18.08 19.4 17.868 14.53 
3 10.505 12.123 9.2393 8.168 
4 9.842 8.386 6.7793 6.2207 

Mean 14.845 15.75225 12.6804 10.597925 

 212 

Table 3. Statistics of spread (standard deviation and coefficient of variation) for band power of first 4 213 
SSVEP harmonics evoked by theta, alpha, and beta frequencies. 214 

  Harmonic 
  1st Harmonic 2nd Harmonic 3rd Harmonic 4th Harmonic 

SSVEP Band Age Group Std. Dev. Coeff. Var. Std. Dev. Coeff. Var. Std. Dev. Coeff. Var. Std. Dev. Coeff. Var. 

Theta (4-8 Hz) 

10-20 1.56978 7.64 0.91099 0.392 1.41 16.12 1.6217 7.38 
20-40 0.6149 2.42 2.215 7.71 4.59 33.86 3.17 19.44 
40-60 3.66 20.33 3.99 22.82 2.57 28.11 3.054 36.49 
>60 2.57 20.81 5.33 37.58 3.7 28.37 N/A N/A 

Alpha (8-13 Hz) 

10-20 N/A N/A 2.14 15.06 1.62 12.39 4.47 43.23 
20-40 1.76 6.37 1.82 6.82 1.92 12.37 3.32 24.02 
40-60 3.24 20.56 5.43 29.54 6.66 62.09 2.08 19.27 
>60 1.54 12.28 4.81 44.5 2.73 44.7 2.52 48.2 

Beta (14-30 Hz) 

10-20 4.03 19.25 6.58 36.41 3.25 30.95 4.07 41.37 
20-40 8.68 37.57 6.47 33.34 5.62 46.37 6.01 71.66 
40-60 3.96 23.51 3.37 18.85 4.72 51.07 2.54 37.51 
>60 0.6025 4.47 6.12 42.09 1.38 16.83 3.07 49.43 

 215 

  216 
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 217 

                     (a) 218 

 219 

 220 

 221 

 222 

 223 

 224 

                        (b) 225 
Figure 3. Band Power (dB/Hz) of SSVEPs evoked by (a) theta and (b) alpha frequencies. 226 

3.2. Cognitive function, development, and deterioration 227 
As mentioned before, SSVEP frequency detection accuracy and band power/Fourier amplitude 228 

peak between ages 20-40 (approximately 30) and decrease thereafter. Furthermore, Table 4 shows 229 
that the Pearson correlation coefficients between age, frequency detection accuracy, and SSVEP band 230 
power, which exhibit inverse variation between the two factors, are significantly stronger when 231 
excluding age group 10-20 than when including it, suggesting that the method is feasible only for the 232 
age groups above 20.  233 

Table 4. Coefficients of correlation with age for SSVEP band power and stimulus frequency detection 234 
accuracy including (light beige) and excluding (light blue) age group 10-20. 235 

 Stimulus Frequency Band (Hz) 
 Theta (4-8) Alpha (9-13) Beta (14-30) 

SSVEP Feature F O F O F O 

Frequency Detection Accuracy 
-0.62 -0.29 -0.27 -0.34 -0.09 -0.21 
-0.73 -0.804 -0.81 -0.87 -0.37 -0.45 

Band Power 
-0.80 -0.82 -0.54 
-0.87 -0.91 -0.55 

3.3. Optimal Frequency Range and Cerebral Region for Cognitive Assessment 236 
Results showed that the alpha frequency band was the best indicator of cognitive decline. Figure 237 

4 shows a clear correlation between frequency detection accuracy and age; as shown, the alpha 238 
stimulus frequencies elicited the greatest change in detection accuracy as function of age. Moreover, 239 
as shown in Table 1, the variation obtained for theta and alpha frequency stay within an acceptable 240 
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range (<30%), whereas spread in beta frequency detection accuracy often exceeds standards of 241 
reliability. Furthermore, although frontal responses demonstrated feasibility as indicators of 242 
cognitive aging, trends pertinent to occipital responses were significantly stronger, as demonstrated 243 
by Figure 5. Thus, as demonstrated by R2 values in Figures 2 and 3, occipital responses to alpha 244 
frequencies are the best indicators of cognitive deterioration.  245 

Analysis of Variance (ANOVA) with p<0.05 showed that age group, frequency band, and 246 
electrode region have substantial effect on frequency detection accuracy and SSVEP band power. 247 
Furthermore, EEG signals elicited by 7.5 Hz (p = 0.00037) and 12 Hz (p = 0.0008) were most impacted 248 
by age. The alpha stimulus frequencies were, on average, the strongest indicators of cognitive aging. 249 
This finding, however, was not present in the effect of age group on detection accuracy of beta 250 
stimulus frequencies, suggesting that the variation in beta frequency detection accuracies is too high 251 
for the data to be considered reliable.  252 
 253 

 254 

 255 
Figure 4. Mean detection accuracy of Theta, Alpha, and Beta stimulus frequencies in SSVEP signals 256 
pertaining to varying age groups. 257 

 258 
Figure 5. Mean detection accuracy of Theta, Alpha, and Beta stimulus frequencies in frontal and 259 
occipital SSVEP signals. 260 
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3.4. Prediction using Neural Network 261 
A neural network was trained (Bayesian regularization) using stimulus frequency detection 262 

accuracy and band power (dB/Hz) of SSVEPs evoked by alpha stimulus frequencies in age groups 263 
20-40 and above. This neural network displays high predictive power, as the correlation coefficient 264 
between the target values and the output values is a high ~0.988. Table 5 shows the neural network 265 
outputs when tested with random inputs. The training, testing, and validation results of the neural 266 
network are shown in Figure 6 and the training performance of the neural network at varying data 267 
segments is shown in Figure 7. 268 

 269 

Table 5. Neural network predictions of cognitive age when given random frequency detection 270 
accuracies (alpha band, occipital region) and band power values as inputs. 271 

Inputs 
Output (Predicted Cognitive Age) 

Alpha Frequency Detection Accuracy (%) 
Alpha Band power (dB/Hz) 

 
94.0 28.1 22.7 
86.5 25.9 20.2 
59.0 15.8 49.0 
45.0 16.1 53.7 
57.0 12.8 68.6 
46.0 10.3 81.3 

 272 

 273 
Figure 6. Output of neural network model according to provided targets during training (blue), 274 
validation (green) and testing (red), with corresponding correlation coefficients. 275 

(a) 
(b) 

(c) 
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 276 
Figure 7. Training performance of the neural network. 277 

4. Discussion, and Conclusions 278 
The SSVEP based diagnosis BCI system was used with subjects of varying age to determine its 279 

ability to detect cognitive aging, and if possible, identify the manner in which it is manifested by 280 
features of Steady-State Visually Evoked Potentials (SSVEPs). The results of this study suggest that 281 
SSVEPs elicited by flickering stimuli may be valuable biomarkers of cognitive deterioration because 282 
SSVEP features such as band power and presence of stimulus frequencies in the signal, exhibited a 283 
sharp decline as a function of age, particularly in EEG signals elicited by alpha (8-13 Hz) flicker 284 
frequencies. These results were used to train an artificial neural network that effectively predicts 285 
cognitive age based on SSVEP band power and detection accuracy of stimulus frequencies in the 286 
signal.  287 

The results of this study suggest that detection accuracy of stimulus frequencies in SSVEP signals 288 
indicate cognitive decline in age groups 20-40 and above. As demonstrated by Figure 4, frequency 289 
detection accuracy within the SSVEP signal reaches a peak for age group 20-40 and declines 290 
continuously afterwards. Similarly, other studies report a recession in accuracy in elderly subjects[6].  291 
The increase in detection accuracy between age groups 10-20 and 20-40 can be attributed to ongoing 292 
cognitive development, which, according to recent studies may continue up to the mid-twenties; 293 
cognitive deterioration typically begins in the 30’s or 40’s [4].  For this reason, it is more practical to 294 
use this application to gauge cognitive function for this age range. This is further corroborated by 295 
Table 4, which shows that the Pearson correlation coefficients between age, frequency detection 296 
accuracy, and SSVEP band power, which exhibit inverse variation between the two factors, are 297 
significantly stronger when excluding age group 10-20 than when including it.  298 

Figure 2 demonstrates an inversely proportional relationship between age (20 and above) and 299 
detection accuracy of Theta, Alpha, and Beta stimulus frequencies in the SSVEP signal. However, 300 
while the relationship between Theta frequency detection accuracy and age seems to be linear, as 301 
shown in Figure 2(a), detection accuracy of Alpha and Beta frequencies, shown in Figures 2(b) and 302 
3(c), reaches a plateau between ages 20 and 40, and exhibits a precipitous decline afterwards. 303 
Likewise, studies indicate that larger SSVEP responses are associated with more efficient functional 304 
network topology in the human brain, suggesting that this trend could be caused by aging of these 305 
systems[13]. Additionally, while detection accuracy of theta stimulus frequencies in SSVEPs can be 306 
effectively modeled using linear regression, detection accuracies of alpha and beta frequencies are 307 
better represented by quadratic regression models. 308 

Similar trends are manifested by SSVEP band power (or Fourier amplitude) at theta, alpha, and 309 
beta frequencies, as can be seen in Figure 3 and Table 2. SSVEP band power displays an overall 310 
decrease as a function of age, in EEG responses to all three frequency bands. Like in the case of 311 
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frequency detection accuracy, its relationship with age can be delineated using quadratic regression, 312 
and it peaks at age group 20-40. Table 2 also demonstrates that SSVEP Fourier amplitude is typically 313 
highest at the first and second harmonics. Furthermore, Table 3 shows that the first harmonic of 314 
theta-evoked and alpha-evoked SSVEPs are the most reliable indicators of cognitive deterioration.  315 

The results demonstrate that although these trends can be discerned in EEG responses to all 316 
frequency bands, the alpha band was shown to be the best indicator of cognitive decline. As shown 317 
in Figure 4, the alpha band displays the most change as a function of age. In addition, as shown in 318 
Figures 2 and 3, detection accuracy of and SSVEP band power at alpha stimulus frequencies display 319 
the highest R2-values (0.80-occipital and 0.81, respectively), and thus demonstrate greatest conformity 320 
with the previously described trends. The lowest R2 values (0.3046 for frequency detection accuracy 321 
and 0.2923 for SSVEP band power) occurred for EEG responses to beta stimulus frequencies, shown 322 
in Figure 2(c), suggesting that these frequencies are least reliable indicators of cognitive decline. 323 
Furthermore, in Fig. 2(c.2), various outliers can be noted. These outliers may arise as a result of high 324 
levels of variation, which are typical of human systems, within EEG responses to beta stimuli. It is 325 
interesting to note that the highest outlier, occurring between ages 40 and 60, belongs to a subject 326 
who is a regular yoga practitioner.  327 

Another significant trend, presented in Figure 5, was established by the results, in which the 328 
mean detection accuracy of theta stimulus frequencies was detected with higher accuracy in frontal 329 
SSVEPs than in occipital SSVEPs, while alpha and beta frequencies were detected with higher 330 
accuracy in occipital SSVEPs. Furthermore, detection accuracies in occipital SSVEPs have lower 331 
variation levels, as demonstrated by fairly shorter error bars. This suggests that detection accuracy of 332 
stimulus frequencies in SSVEPs elicited in the occipital region have greater reliability. These trends 333 
can be attributed to the origin of theta and alpha SSVEP signals: while the primary source of theta 334 
waves is the frontal midline, alpha waves predominate in the occipital cortex. Thus, one can infer that 335 
the detection accuracy of frequencies pertaining to particular bands, found in specific regions in the 336 
human brain, depends on the location of the SSVEP being analyzed. 337 

An artificial neural network for predicting cognitive age was trained using detection accuracy 338 
of alpha stimulus frequencies in occipital SSVEPs and band power of alpha frequencies in the SSVEP 339 
signal, as these were the best indicators of cognitive decline in this study. As shown in Figure 6 (third 340 
graph), the correlation coefficient between the network outputs and the target outputs is relatively 341 
high, showing that the model fits the data well.  342 

The OpenBCI system which was used to collect the EEG data, had high levels of impedance 343 
when placing electrodes on the subject’s scalp; thus, conducting gel was used to lower the impedance. 344 
Furthermore, the data collected from the frontal region had many artifacts compared to data collected 345 
from the occipital region, including eye blinks. These were removed by bandpass filtering, but frontal 346 
EEG data displayed significantly more error than occipital EEG data. This study can be improved 347 
with a broader subject population and sample size; furthermore, in order to achieve a larger level of 348 
specificity with this method, it is aimed to test the method on patients with mild cognitive 349 
impairment and explore other SSVEP features that can be used as indicators of cognitive 350 
deterioration.  This study shows that SSVEP based diagnosis BCI system can be used to verify 351 
cognitive deterioration due to aging.  352 
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