Article

1

2

5

6

7

8

10

11

12

Multilingual Ranking of Wikipedia Articles with Quality and Popularity Assessment in Different Topics

Włodzimierz Lewoniewski^{1,†,‡}, Krzysztof Węcel^{1,‡} and Witold Abramowicz^{1,‡}

- Poznań University of Economics and Business; {wlodzimierz.lewoniewski,krzysztof.wecel,witold.abramowicz}@ue.poznan.pl
- * Correspondence: wlodzimierz.lewoniewski@ue.poznan.pl; Tel.: +48 (61) 639-27-93
- † Current address: al. Niepodległości 10, 61-875 Poznań, Poland
- ‡ These authors contributed equally to this work.

Abstract: In Wikipedia, articles about various topics can be created and edited independently in each language version. Therefore, quality of information about the same topic depends on language. Any interested user can improve an article and that improvement may depend on popularity of the article. The goal of this study is to show what topics are best represented in different language versions of Wikipedia using results of quality assessment for over 39 million articles in 55 languages. In this paper, we also analyze how popular are selected topics among readers and authors in various languages. We used two approaches to assign articles to various topics. First, we selected 27 main multilingual categories and analyzed all their connections with sub-categories based on information extracted from over 10 million categories in 55 language versions. To classify the articles to one of the 27 main categories we took into account over 400 million links from articles to over 10 million categories. In the second approach we used data from DBpedia and Wikidata. We also showed how the results of the study can be used to build local and

13 global rankings of the Wikipedia content.

Keywords: Wikipedia; Information quality; Popularity; Topics identification; Wikidata; DBpedia;
 WikiRank

16 1. Introduction

Nowadays, in order to make the right economic decisions, one needs to analyze and interpret 17 vast amount of information. The quantity and quality of information to a large extent determine the 18 quality of decisions in various branches of the economy. On the one hand, one must take care of access 19 to proper sources of information. On the other hand, the quality of information determined by various 20 characteristics is also important. High-quality information is essential for effective operation and 21 decision-making in organizations [1]. Inaccurate and incomplete information may have a negative 22 impact on a company's competitive edge [2]. 23 The Internet enables cooperation and exchange of information on a global scale. Useful 24

²⁴ Internier enables cooperation and exchange of information of a global scale. Useful ²⁵ information can be found both in specialized sources as well as in general online resources. Nowadays, ²⁶ everyone can also contribute to the development of common human knowledge on the Internet. One ²⁷ of the best examples of such online repositories is Wikipedia, in which content can be created from ²⁸ the level of a web browser. This online encyclopedia has been available for approximately 20 years ²⁹ as a freely available resource, and anyone willing can co-create content. Wikipedia relatively quickly ³⁰ became an important source of information around the world. It contains over 50 million articles in ³¹ over 200 different languages [2]. The English language version is the largest and contains over 50 million articles in

2 of 33

million articles. Currently, Wikipedia is placed on the fifth place in the ranking of the most visited
websites on the Internet [4], giving way only to Google, YouTube, Facebook, and Baidu.

The popularity of Wikipedia is even reflected language that scientists use in their works [5].

³⁵ Despite its popularity, Wikipedia is often criticized for the low quality of content [6]. Articles on a

- ³⁶ specific subject (a thing, a human, an event etc.) can be created and edited independently in each
- ³⁷ language version. Therefore, quality of information about the same subject often varies depending
- ³⁸ on the language [7–10]. It should also be noted that the topic described in one language version can
- ³⁹ be translated into other languages. However, a relatively small number of users with knowledge of
- two or more languages take up such an initiative by transferring content between different language
- 41 versions [11].

⁴² Even the largest English Wikipedia does not contain information about all subjects. As we can

43 see in Figure 1, there are over 15 million unique subjects described in at least one of 55 considered

language versions. This can be explained by the fact that some issues may be more common in smaller

45 geographical areas, hence the probability of finding more information on a given topic in the relevant

- ⁴⁶ language versions (other than English). Overall, we can find almost 10 million subjects that are not
- ⁴⁷ covered in English and appear in less-developed versions of Wikipedia [7,12].

Figure 1. Subjects overlaps of articles in various language versions of Wikipedia. Source: own calculation based on Wikipedia dumps in April, 2019. Over 175 thousand of interactive combinations of these Venn diagrams can be found on the Web page: http://data.lewoniewski.info/computers/vn1/

48 When a subject is not described in the analyzed language version or information about the subject

is of low quality, we can try to find information about it in other Wikipedia languages. However,
 identifying a language version best describing the subject may require significant effort from user –
 popular subjects are available in several dozen language versions.

Automatic quality assessment of Wikipedia articles is a known challenge in the scientific 52 community. Existing works have some limitations, e.g. they focus mostly on the biggest edition 53 (English) or other popular language versions of Wikipedia. Usually the measurement of quality is 54 reduced to analysis of volume of content – number of important elements that the article must contain 55 (such as references, images, sections). However, for quality assessment content must be checked by 56 other users in terms of the neutral point of view, timeliness, quality of sources and other important 57 elements that can be challenging even with current approaches. Therefore, the popularity of the article 58 may be another factor to be considered for quality assessment – the more users read the content, the 59 greater probability of introducing amendments to the article, especially when incorrect or outdated 60 information is detected. 61 62 In this paper, we present the assessment of quality and popularity of Wikipedia articles in different languages related to selected topics. This assessment was performed for articles on two levels: within 63

each considered language version (local) and for all languages combined (global).

For the purpose of this study we selected 55 language versions of Wikipedia that in 2018 and 2019 had at least 100 thousand articles and the depth indicator was at least 5. The depth (or editing depth) shows how frequently articles are updated in a specific language version [13]. Table 1 presents basic

statistics about 55 language versions of Wikipedia that were considered in the study.

3 of 33

No.	Language version	Abbr.	Articles	Authors	Total page views	Unique devices
1	English	en	5 835 946	36 031 942	7 846 676 922	866 456 515
2	Swedish	SV	3 748 546	664 601	102 423 252	12 597 043
3	German	de	2 288 148	3 158 210	975 590 897	114 380 633
4	French	fr	2 094 723	3 405 365	742 709 055	96 553 550
5	Dutch	nl	1 962 531	986 565	155 136 113	23 873 475
6	Russian	ru	1 539 411	2 500 221	896 358 323	96 537 026
7	Italian	it	1 518 702	1 803 513	544 481 445	53 459 817
8	Spanish	es	1 514 431	5 375 409	1 090 438 930	180 071 200
9	Polish	pl	1 329 622	949 766	278 226 329	29 262 659
10	Vietnamese	vi	1 205 176	660 020	68 454 735	16 396 173
11	Japanese	ja	$1\ 145\ 838$	$1\ 462\ 052$	1 043 323 322	98 636 732
12	Chinese	zh	$1\ 051\ 874$	2 709 195	412 676 457	52 328 429
13	Portuguese	pt	$1\ 007\ 942$	2 230 598	352 570 671	69 605 320
14	Ukrainian	uk	896 476	448 345	62 906 361	10 849 975
15	Arabic	ar	715 850	$1\ 643\ 146$	188 230 435	39 994 487
16	Persian	fa	671 576	812 855	142 075 761	21 993 488
17	Serbian	sr	618 230	240 802	27 054 615	4 776 849
18	Catalan	ca	610 217	319 681	21 121 481	3 439 969
19	Norwegian (Bokmål)	no	506 510	457 767	36 974 998	6 017 919
20	Indonesian	id	458 034	1 047 391	146 481 271	33 774 831
21	Finnish	fi	454 859	413 533	65 437 832	7 372 105
22	Korean	ko	450 896	559 608	83 623 819	19 933 158
23	Hungarian	hu	$448\ 744$	133 232	54 741 921	8 298 454
24	Serbo-Croatian	sh	447 790	409 910	5 900 087	2 372 396
25	Czech	CS	425 852	448 816	73 574 810	9 338 114
26	Romanian	ro	393 439	470 902	39 466 674	7 711 157
27	Basque	eu	332 997	98 920	9 067 706	446 209
28	Turkish	tr	325 627	233 118	25 389 323	3 076 606
29	Malay	ms	325 592	1 028 128	12 291 727	3 960 414
30	Esperanto	eo	256 487	156 711	1 981 767	263 084
31	Bulgarian	bg	254 272	84 451	27 272 998	4 093 761
32	Danish	da	250 890	249 638	30 667 722	5 190 512
33	Armenian	hy	248 278	349 917	6 013 622	918 474
34	Hebrew	he	240 943	507 618	58 213 949	6 344 428
35	Slovak	sk	229 146	171 238	16 854 614	3 117 661
36	Min Nan	zh-min-nan	228 102	37 919	572 773	84 788
37	Kazakh	kk	223 881	85 934	11 562 925	2 142 268
38	Croatian	hr	204 240	216 016	21 779 929	4 497 371
39	Lithuanian	lt	194 537	131 095	12 276 882	1 984 922
40	Estonian	et	189 742	125 754	11 502 319	1 187 671
41	Belarusian	be	166 775	84 971	1 711 658	253 243
42	Slovenian	sl	164 036	178 042	8 497 867	1 491 437
43	Greek	el	160 482	271 125	34 866 919	6 330 938
44	Galician	gl	155 573	96 617	2 533 863	512 368
45	Azerbaijani	az	145 060	172 093	12 826 807	1 748 834
46	Urdu	ur	144 942	93 377	2 916 140	506 414
47	Simple English	simple	144 053	823 355	19 179 047	9 071 802
48	Norwegian (Nynorsk)	nn	142 635	95 945	1 733 721	563 079
49	Uzbek	uz	130 990	44 264	3 256 673	569 355
50	Thai	th	130 723	349 695	63 983 646	14 758 190
51	Hindi	hi	130 443	444 004	56 017 398	17 087 729
52	Latin	la	130 327	117 110	1 086 052	173 591
53	Georgian	ka	127 899	109 531	8 642 199	1 147 871
54	Volapük	vo	122 757	26 048	266 020	38 888
55	Tamil	ta	121 501	152 024	8 357 708	2 295 703

Table 1. 55 language versions of Wikipedia with articles count, views from unique devices and total page views (based on dump April 2019)

4 of 33

69 2. Topic Classifications of Wikipedia Articles

70 2.1. Category Classification

⁷¹ Wikipedia has extensive category network and each article can be annotated with multiple
⁷² categories, organized into an "ontology of topics" [14]. Each language version can define own
⁷³ structure and hierarchy of categories. Moreover, in some language versions that structure is often too
⁷⁴ fine-grained to be directly analyzed [15]. All this may make it difficult to determine the number of
⁷⁵ possible topics to deal with.
⁷⁶ Category structure and alignment of articles to each category can be analyzed based on files from

⁷⁷ Wikipedia dumps. There are three files that has to be used (example for English Wikipedia):

enwiki-latest-category.sql.gz – category information; here we use category identifiers and their names;

en-latest-categorylinks.sql.gz – wiki category membership link records; here we use information
 about source page ID and destination category name;

en-latest-page.sql.gz – base per-page data; here we use pages ID, title and information about
 namespaces to identify articles (ns 0) and category (ns 14) pages.

For further research we extracted information about over 10 million articles in 55 language versions and analyzed about 400 million links from articles to categories and over 26 million links between categories. General statistics about categories are presented in Table 2. Category ratio shows the number of unique categories per number of articles in a particular language version. The highest value of this indicator has Urdu Wikipedia - 1.23. The largest English Wikipedia is in the middle in the

⁸⁹ ranking regarding the value of this indicator.

5 of 33

Wikipedia Number of categor			Category	Number	of links	Average number		
language	.11	without	ratio	from articles	between	of categories		
	all	page		to categories	categories	per article		
Urdu (ur)	178271	8836	1.230	1048967	775590	7.237		
Arabic (ar)	576872	6368	0.806	21548319	1982157	30.102		
Persian (fa)	499231	37	0.743	9748824	1568018	14.516		
Turkish (tr)	226145	10383	0.694	2322792	542366	7.133		
Belarusian (be)	115205	33807	0.691	1182398	193168	7.090		
Norwegian (Nynorsk) (nn)	88804	18156	0.623	789450	158280	5.535		
Korean (ko)	268761	20773	0.596	4462341	652764	9.897		
Thai (th)	73106	25130	0.559	922356	118369	7.056		
Georgian (ka)	65047	15317	0.509	435646	103973	3.406		
Slovenian (sl)	77146	21649	0.470	1078180	119567	6.573		
Azerbaijani (az)	65627	2104	0.452	906108	127144	6.246		
Indenosian (id)	34763 186077	102406	0.420	5270004	185266	4.550		
Calician (d)	62109	102406	0.408	5279994 689762	100200	11.526		
Chinese (zh)	395448	101111	0.399	12793208	716798	12 162		
Greek (el)	60056	3826	0.374	1218241	156199	7 591		
Armenian (hy)	87522	25729	0.353	1601227	136013	6 449		
Czech (cs)	140757	665	0.331	2730698	333870	6.412		
Esperanto (eo)	83331	15727	0.325	1136030	184428	4.429		
Portuguese (pt)	316318	11293	0.314	9346482	751718	9.273		
Slovak (sk)	70586	76	0.308	919689	199717	4.014		
Russian (ru)	469180	53068	0.305	17351449	929165	11.271		
Hebrew (he)	71150	25	0.295	2310076	170736	9.588		
Norwegian (Bokmål) (no)	148816	6509	0.294	4182237	340251	8.257		
English (en)	1711545	97	0.293	127118195	5545938	21.782		
Latin (la)	38187	89	0.293	628280	76726	4.821		
Romanian (ro)	115325	26231	0.293	3398779	274858	8.639		
Malay (ms)	91578	62870	0.281	1393588	59264	4.280 5.402		
Simple English (simple)	40052	4//	0.278	7/8386	101112	5.403		
Bulgarian (uk)	240014 68808	40101	0.277	1201278	556457 150452	7.010		
Spanish (es)	398828	2024	0.271	9103226	903999	6.011		
Tamil (ta)	30477	23074 7661	0.203	483546	41080	3 980		
Danish (da)	62490	5005	0.231	1861533	156608	7 420		
Vietnamese (vi)	276936	101173	0.230	7745566	476364	6.427		
Italian (it)	348216	32	0.229	14715516	847583	9.690		
Basque (eu)	73827	19206	0.222	1497904	170504	4.498		
French (fr)	425707	76	0.203	38654880	2583394	18.453		
Japanese (ja)	232881	20231	0.203	8060212	551980	7.034		
Kazakh (kk)	45512	23083	0.203	1660294	41958	7.416		
Estonian (et)	29889	441	0.158	553027	53933	2.915		
Finnish (fi)	72006	280	0.158	2707673	157913	5.953		
German (de)	354701	29	0.155	12255563	886269	5.356		
Polish (pl)	205391	206	0.154	5310093	399299	3.994		
Min Nan (zh-min-nan)	32592	14516	0.143	608969	46280	2.670		
Hungarian (hu)	60203	30	0.134	2895750	111067	6.453		
Lithuanian (It)	24/21	316	0.127	541911	45874	2.786		
Catalan (ca)	75951	168	0.124	2672097	1/9463	4.3/9		
Serbo-Croatian (SII)	43327	10800	0.102	1320947	101313	5.397 7.045		
Swedich (sr)	354075	10079	0.090		630050	7.040		
Croatian (br)	19065	10	0.094	20002023 503920	22002	0.000 0.467		
Uzbek (117)	12026	4001	0.093	837371	12758	2.407 6 354		
Dutch (nl)	114899	10	0.059	10060345	320354	5.126		
Volapük (vo)	2440	269	0.020	353343	2878	2.878		
volapuk (VO)	∠ 11 0	209	0.020	555545	20/0	2.078		

Table 2. Number of categories, number of links from articles to categories and between categories in 55 language versions of Wikipedia (sorted by category density). Source: own calculations in April, 2019

Another measure that can be useful to analyze how often Wikipedia users assign different categories to describe each article is the average number of categories per article. Based on data from Table 2 we can define top three leaders: Arabic with 30, English with 21, and French with 18 categories

⁹³ per article.

We can also notice that in some language versions of Wikipedia there is a large number of

categories that do not have own page that describes these categories and point to the parent category.
The highest values has Vietnamese, Chinese and Indonesian Wikipedia - about 100 thousand categories

without pages. For first two languages with about 1 million articles this is one fourth and one third of all

categories respectively. In Indonesian with about 460 thousand articles it is about half of all categories.

⁹⁹ For comparison, the largest English version with over 5 million articles has only 97 categories without

100 a page.

The so called main categories are present in majority of considered languages. This applies mainly to those categories that are at highest levels in the polyhierarchy. One of the main categories

are presented at special page "Category:Main topic classifications" [16]. Based on this page, we can

identify 38 categories on specific topics in the English Wikipedia. Table 3 shows names of these
 categories with number of the considered language versions. As we can see, some topics may be not

¹⁰⁶ available in all languages.

7 of 33

No.	Category name	Number of considered language versions
1	Education	55
2	Geography	55
3	History	55
4	Mathematics	55
5	Music	55
6	Philosophy	55
7	Religion	55
8	Science	55
9	Society	55
10	Sports	55
11	Arts	54
12	Organizations	54
13	People	54
14	Politics	54
15	Culture	53
16	Law	53
17	Technology	53
18	Health	52
19	Military	52
20	Entertainment	51
21	Events	51
22	Food and drink	51
23	Government	49
24	Nature	49
25	Crime	48
26	Business	47
27	Life	47
28	Academic disciplines	45
29	Human behavior	44
30	Knowledge	44
31	Concepts	43
32	Language	39
33	Objects	37
34	Mind	28
35	Humanities	27
36	World	27
37	Economy	17
38	Universe	5

Table 3. List of the categories in "Category:Main topic classifications" in English Wikipedia with number of the considered language versions (April 2019)

As mentioned before, the category structure is a complex and ever-changing, as it can be edited by 107 any person – users can add or change a category assignment to other category. The resulting category 108 structure is noisy [14], sparse and it contains duplications and oversights [15]. So, we can also face the 1 09 situation that categories are repeated at different levels of the tree, in which the root can be another 110 main category (one of the 27 considered). In order to avoid such situations, we cut off those branches 111 that were found at higher levels. Figure 2 shows an example of such procedure, when subcategory 112 "Food and Drink" is found at different levels of the tree and only one remains, which is at the highest 113 level. 114

8 of 33

Figure 2. Occurrence of similar sub-categories in the English Wikipedia category polyhierarchy. Source: own work based on Wikipedia dumps from April 2019.

¹¹⁵ By counting articles in English Wikipedia in each of considered main categories we discovered

that almost 15% of them are about people. Pie chart in Figure 3 shows shares of articles in English

117 Wikipedia in 27 considered categories.

Figure 3. Shares of articles in each category in English Wikipedia. Source: own calculation based on Wikipedia dumps in April, 2019.

Figure 4 shows distribution of articles by category within each considered language version of Wikipedia. Darker colors in the heatmap represent higher share of articles in particular main category within the selected Wikipedia languages.

9 of 33

Figure 4. Share of articles in main categories within each of 55 language versions of Wikipedia. Source: own calculation based on Wikipedia dumps in April, 2019. More detailed and interactive chart can be found on the Web page: http://data.lewoniewski.info/computers/heatmap-cat-art

After combining articles from all considered language versions to particular category we 121 concluded that the largest number of articles are in one of two categories: Geography (12.68%) 1 2 2 and People (11.48%). Pie chart in Figure 5 presents how articles in all considered Wikipedia languages 123

Figure 5. Shares of articles in each category in 55 language versions of Wikipedia. Source: own calculation based on Wikipedia dumps in April, 2019.

As we mentioned before, in some language versions there is a relatively high average number of 125 categories assigned to each article. This may increase the possibility of an article falling into more than 126 one main category. We studied this issue for the leading language versions (Arabic, English, French) 127 with regard to the number of categories per article. Results are presented in Figure 6. 128

10 of 33

Figure 6. Overlap of articles between selected main categories in Arabic, English and French Wikipedia. Source: own calculation based on Wikipedia dumps in April, 2019. Over million of interactive combinations of these Venn diagrams (each main categories and language versions) can be found on the Web page: http://data.lewoniewski.info/computers/vn2/.

129 2.2. Semantic Classification

The second approach to category assignment to Wikipedia articles is based on Wikidata and DBpedia. Wikidata is a collaboratively edited knowledge base [17]. DBpedia is the semantic database resulting from extraction of structured, multilingual knowledge from Wikipedia [18,19]. The data from this open databases are widely used in a number of domains: web search, life sciences, maritime domain, art market, digital libraries, business networks and others [20–23].

DBpedia uses its own ontology with defined properties and classes organized into a hierarchy. DBpedia provides English names to each class, such as "Place", "Species", "Person" etc. Wikidata gives unique identifier to each class, for example class "city" is marked as Q515, "human" as Q5, "Organization" as Q43229. Another difference between these databases lies in the number of classes and placing these classes in an ontology. Wikidata has over 300 thousand classes [24], while DBpedia ontology consist of about 800 classes [25].

A significantly larger number of classes in Wikidata can lead to difficulties in finding a list of objects on a particular topic. For example, if we want to find all cities, it is not enough to take into account only one class Q515 (city), because city can also be described by Q1637706 (city with millions of inhabitants), Q5119 (capital), Q2264924 (port city), Q58339717 (city of India), Q174844 (megacity) and other identifiers. This variety of classes leads to significantly fewer instances in each class in Wikidata than in DBpedia [24].

We should consider also way of assigning a class to objects in these semantic databases. DBpedia extracts information from Wikipedia infoboxes and identifies classes based on name of the infobox and values of some special parameters. Thus, articles with the same infobox name often go to the same class. In Wikidata, items can be edited by everyone, therefore different classes can be assigned to similar objects.

There are some papers that study differences between DBpedia and Wikidata [24,26,27]. Each has own advantages, so we decided to use combined data to divide articles into separate classes: actor, automobile, business, city, film, football player, human, programming, university, videogame, and website. One of the advantages of such a classification approach by topic is that we are dealing here with more explicit assignment of articles to specific classes and each language version has at least several representatives of each class.

3. Quality Measures

In order to discern the quality of content, the Wikipedia community created a grading system for articles. However, each language version can use its own standards and grading scale [28,29]. For example, in English Wikipedia, articles can get one of 7 grades (from highest to lowest): Featured

11 of 33

Articles (FA), Good Article (GA), A-class, B-class, C-class, Start, Stub. Russian Wikipedia has also 7
quality grades but with other names and criteria: Izbrannaja Stat'ja (similar to FA), Horoshaja Stat'ja
(similar to GA), Dobrotnaja Stat'ja, I, II, III, IV (similar to Stub). German Wikipedia uses only two
quality grades (Exzellente Artikel and Lesenswerte Artikel) which has similar criteria to FA and GA
grades respectively. Polish Wikipedia defined 5 quality grades: Artykuł na Medal (similar to FA),
Dobry Artykuł (similar to GA), Czwórka (A-Class), Start, and Zalążek (similar to Stub).

Even though the grading system is available, still the big challenge is a large number of unassessed articles. For example, German and Polish Wikipedia has less than 1% of articles with quality grades. Moreover, articles about the same topic in different languages can also be graded using different criteria. The above facts not only pose problems for comparing the quality of articles in the same language but also for evaluating and comparing different language versions of articles on the same topic.

Using machine learning techniques it is possible to solve the problem of quality assessment of
Wikipedia articles as a classification task. In order to build such models, various features can be taken
into the account, for example length of an article, number of references, number of images or sections
[30–35].

One of the universal approaches for quality assessment of multilingual articles is Objective Revision Evaluation Service (ORES) [36]. This service automates tasks like detection of vandalism and removal of edits made in bad faith [37]. Additionally the service can evaluate articles on a scale between 0 and 1 in some language versions. However, automatic quality assessment of an article by the ORES is currently limited to nine language version of the Wikipedia and it does not include such developed language chapters as German, Spanish, Italian, Polish, Japanese, or Chinese.

In our previous studies [28,38] we defined the synthetic measure to combine several features of articles to allow ranking of Wikipedia articles on a scale between 0 and 100. It is based on the most universal features inferred from machine learning models built for several languages. In the paper we present conclusions from an assessment of over 39 million articles. Additional focus of this work is analysis of demand for information about various topics in different languages from the point of view of readers, as well as from the authors of Wikipedia content. The intersection of those two dimensions is also considered.

Our previous study [39] showed that popularity of the Wikipedia articles can be measured by different SEO metrics from other websites. Such indicators as social signals from Facebook, Twitter, Pinterest, Youtube and others can help to determine also the quality the content in multilingual encyclopedia from the external sources. In this work we decided to use internal popularity measures from the point of view of readers and writers of the Wikipedia articles. Additionally we decided to provide cumulative (global) values of these measures over the language versions about various subjects.

Diverse approaches to defining information by researchers lead also to inconsistencies in defining the notion of its quality. According to the most popular definition, quality of information can be defined as fitness for use [40,41].

In order to define the quality dimensions in Wikipedia, one should take into account the similarity 201 of this website with traditional encyclopedias and Web 2.0 services. On the one hand, content in 202 Wikipedia is created to be a reference point, in an encyclopedic style. According to various studies it has 203 comparable accuracy to other traditional encyclopedias [42,43]. The quality of an article in a traditional 204 encyclopedia can be defined by 7 dimensions: authority, completeness, format, objectivity, style, 205 timeliness, uniqueness [44,45]. On the other hand, Wikipedia is built in a way to allow collaboration 206 between users. It it therefore based on Web 2.0 technologies, which have the following quality 207 dimensions: accessibility, completeness, credibility, involvement, objectivity, readability, relevance, 208 reputation, style, timeliness, uniqueness, usefulness [45,46]. 209

Considering the quality criteria adopted by the Wikipedia community and previously described
 characteristics of traditional encyclopedia and Web 2.0 documents, we can choose the following quality

12 of 33

dimensions for the Wikipedia articles: completeness, credibility, objectivity, readability, relevance,

²¹³ style, timeliness. Figure 7 shows coverage between quality dimensions of the Web 2.0, traditional

214 encyclopedia and Wikipedia.

Figure 7. Quality dimensions of Web 2.0 portals, encyclopedias and Wikipedia. Source: own work based on [45]

Each quality dimension contains a specific set of features (measures). Some features can be related to multiple quality dimensions. There are different ways to define and extract features of the Wikipedia articles. Based on the literature and own experiments, we focused on one of the important features, which can show quality of Wikipedia article from different dimensions.

Length of text can be measured in various ways – most often it is represented by the length in bytes, the number of letters or words [28,38,47–58]. Length of an article is related to completeness and may indicate the presence of relevant facts and details in its articles.

High-quality articles are expected to use reliable sources [59]. Readers of encyclopedias must be able to check where the information comes from [60]. Therefore, one of the most commonly used reliability measures is the number of references in a Wikipedia article [28,34,38,48–50,56,58,61– 64]. References are related to credibility of the article. Our previous research has shown that it is advantageous to analyze not only the quantity but also the quality of the references [39].

Length of text can be positively correlated with the number of references but it is important that all relevant facts in Wikipedia should be supported by reliable sources. For this purpose, the reference density can be calculated as the number of references divided by the length of text.

Wikipedia articles must provide information in a fair and impartial manner. In this case, we can take into account information presented graphically – images [28,34,38,47,50,55–57,61,62,65,66]. On the one hand, pictures can help to assess the objectivity of the presented material. On the other hand we can also measure completeness (because articles on a specific topic should contain images) and style (because the authors decided to add more photos instead of writing long text).

High-quality content must be prepared in accordance with the guidelines of Wikipedia regarding
the style that applies to, among others, organization and structure of the article. Therefore, one of
the simplest and most popular measures of this dimension is the number of sections in the article
[28,32,34,50,52,56,58,61–63].

Quality measures mentioned before can be combined to build a synthetic measure for evaluation
of Wikipedia articles. Unlike most methods in this domain, the synthetic measure can assess the quality
of Wikipedia articles on a scale from 0 to 100 [38]. Thus, we can compare quality of articles between
different language versions, which can have own quality grading scheme.

Synthetic measure encompasses normalized values of the following five features: length, number of references, reference density, number of images, and number of sections. Every considered language

13 of 33

of Wikipedia has a special distinction for articles of the highest quality – equivalents to FA and GA
grades in English version. Normalization of the 5 selected features depends on language chapter of
Wikipedia, since it uses thresholds, which depend on the best articles in the considered language

²⁴⁸ version [38].

Normalization of each feature was conducted according to the following rule: if value of a given feature in a given language exceeded the threshold of median value of the best articles in the same language version, it was set to 100 points; otherwise its value was linearly scaled to reflect the relation of the value to the median value. For example, if the median for the number of references in Polish Wikipedia was 97, any article with a larger number of references would score 100 for this feature; an article with 59 references would score proportionally 60.82 (59/97) points after normalizing. Changing the value of any metric in a particular Wikipedia language version would have a different effect on the normalized value.

For each language version of Wikipedia, each feature could play an important role in assessing the quality; therefore we first counted the normalized metrics average (NMA) by the following formula:

$$NMA = \frac{1}{c} \sum_{i=1}^{c} \hat{m}_i, \tag{1}$$

where \hat{m}_i is a normalized measure m_i and c is the number of measures.

Next we took into account the number of quality flaw templates (*QFT*) in the considered article (if they existed) and our final formula for the quality measure reads as follows:

$$QualityScore = NMA \cdot (1 - 0.05 \cdot QFT)$$
⁽²⁾

Previous research [29] revealed that the synthetic measure was one of the most significant among
 100 variables used in quality model of Wikipedia.

4. Popularity Measures

Popularity of an article can be determined with measures reflecting the demand for information contained in it by the readers and Wikipedia authors. Popularity can play an important role in quality estimation in specific language versions of Wikipedia [29,34]. Larger number of users reading an article can contribute to faster identification and correction of errors, therefore amendments can be made more often (including update of the information).

Popularity of an article can be measured based on the number of visits [34,38]. For example, one
of the studies compared reptiles species' page view numbers across languages and in their spatial
distribution along with various biological attributes [67].

For assessment of popularity we decided to use features available in Wikipedia database – page views and number of unique authors of an article. We also provided local and global measurements characterizing articles, which took into account semantic links between language versions.

For each page of Wikipedia, daily page views statistics are available in a dedicated online service
[68] and Wikimedia dumps [69]. We used dumps to analyze popularity of over 39 million articles in
considered language versions of Wikipedia.

Popularity measure in this study were calculated as a median of number of page visits per day,
as it was proposed in the previous study [38]. If the measurement concerns only selected language
version, then we call it **local** popularity. We can also calculate the **global** popularity, which takes into
account popularity of articles about the same topic in different languages (the so called *interwiki* links
are considered). The global popularity of an article is calculated according to the following formula:

$$PopGlobal(article) = \sum_{lang=1}^{n} PopLocal_{lang}(article),$$
(3)

14 of 33

where *PopLocal* means local popularity of the article, *lang* is the index of specific language version and *n* is number of the language versions of the selected *article*.

For quality improvement even more important than the number of page views is the number of real edits. Authors' interest (AI) can be measured as the number of unique authors of the Wikipedia 287 articles. Each user editing articles on Wikipedia has own experience, level of knowledge and can 288 adhere to a certain world view. In this regard, it can be assumed that larger number of authors can 289 positively influence the objectivity of the article, since it may contain different points of view on 290 a particular question. At the same time, the number of authors of an article can also indicate the 2 91 relevance of the article to the Wikipedia community. To sum up, articles created by a larger number of 292 people may be more objective, hence one of the measures leveraged in our research is the number of 293 unique authors [28,34,47,55–58,63–65,70–75]. 294

The number of authors can be extracted from article history. Figure 8 shows part of the article history about Game of Thrones (season 8) in English and German Wikipedia with highlighted authors.

Figure 8. Part of the article history about Game of Thrones (season 8) in English (en) and German (de) Wikipedia with highlighted authors. Source: [76,77]

Similarly to measuring popularity, AI can also be calculated for a specific language version (local
AI) and as a cumulative value for all languages (global AI). Authors are identified by names or IP
addresses. So, if the same user edited the article in different language versions, in the global AI it will
be counted as one author. Calculation of this measure can be carried out using the flowing formula:

$$GlobalAI(article) = \left| \bigcup_{lang=1}^{n} Authors_{lang}(article) \right|, \tag{4}$$

where *Authors* means a set of authors' names, *lang* is the index of specific language version and n is the number of language versions of the *article*.

5. Quality and Popularity Assessment

Following the procedures described in previous sections, we extracted over 100 million values of features characterizing articles in all analyzed languages. These values were then used to calculate the synthetic measure that assesses quality of the content. We next grouped articles by 27 main categories and 55 languages. Within each of obtained groups (almost 1500) we calculated sum of all synthetic measure values and divided it by the number of articles. The resulting average quality of articles is presented in Figure 9. Darker colors in the heatmap represent higher values of average quality of articles in specific category and language version.

15 of 33

The highest average quality have articles in category Crime in Slovak Wikipedia (sk) - 63.92 points. This is due to the fact that in this language version only a few articles fall into this category and they are generally well written according to studied features. Articles about crime also have relatively higher quality scores in English (en) and Chinese (zh) Wikipedia.

Second place in the ranking are taken by articles about events in Uzbek Wikipedia (uz) - 43.96 points. Again, this main category does not contain much content – there are only 31 articles. If we take into account the development of the Uzbek Wikipedia (about 130 thousand articles), we can conclude that this category is rather important for local community of editors. Articles about events also have relatively higher quality scores in Hungarian (hu), Slovak (sk), Hebrew (he), and Chinese (zh) Wikipedia.

Third place regarding the quality is taken by articles about mathematics in Volapük Wikipedia -39.63 points. However, in this language chapter the category contains only 2 articles. Latin Wikipedia (la) has the fourth place with average quality of articles about religion - 37.77.

If we take into account the most developed English Wikipedia, the highest average quality of articles can be found in categories: Philosophy, Crime, Military, and History. Generally, we can conclude that English Wikipedia articles usually have high value of average quality measure in different topics.

Figure 10 shows average number of page views per article in year 2018 for each category and language version of Wikipedia. Darker colors in the heatmap represent higher average number of page views of articles in specific category and language version.

Figure 10. Average page views per article in year 2018 for each main category and language version of Wikipedia. Source: own calculation based on Wikipedia dumps. More detailed and interactive chart can be found on the Web page: http://data.lewoniewski.info/computers/heatmap-cat-views

16 of 33

Generally, page views values are higher for the most popular languages. This led to the fact that the first 11 positions in the rank are occupied by English (en) Wikipedia. The most popular topic in this language is Philosophy. One of the highest average popularity in this language characterizes also articles about crime, technology, entertainment, mathematics, culture, and health. All these categories had at least 20 thousand page views in year 2018.

Second most popular language version is Spanish (es). Similarly to English, the most visited
category is Philosophy. It is also worth to mention two other popular categories in this language:
Mathematics and Health. Articles in three mentioned main categories of Spanish Wikipedia have at
least 14 thousand page views per year.

Third place is taken by Russian (ru) Wikipedia and category Entertainment, with about 16 thousand page views per year. Entertainment is also the most popular topic in Chinese (zh) Wikipedia. Finally, Figure 11 shows average number of authors (authors' interest) per article in 2018 in each category and language version of Wikipedia. Darker colors in the heatmap represent higher values of average number of authors of articles in specific category and language version.

Average number of authors per article during 2018 in each category and language version of Wikipedia

Figure 11. Average number of authors per article during 2018 in each main category and language version of Wikipedia. Source: own calculation based on Wikipedia dumps. More detailed and interactive chart can be found on the Web page: http://data.lewoniewski.info/computers/heatmapcat-authors

As in the case of the popularity of page views, in the ranking of authors' interests categories in English Wikipedia topped the ranking. Here we have such popular categories as Crime, Philosophy, Entertainment. Articles about topics were edited at least by 8 authors during the 2018 year.

Second language version that has most active authors is Hebrew (he) Wikipedia with articles about
entertainment. During a year at least 6 authors have edited each article in this topic. Entertainment is
also popular among authors in Italian (it), Spanish (es) and Chinese (zh) Wikipedia. At the same time
Italian Wikipedia we can met as the third language in the authors' interest ranking.

Table 4 presents main categories that have the highest value of average quality, average popularity and authors' interest in each language version of Wikipedia.

17 of 33

Language version	Quality	Popularity	Authors' interest
Arabic (ar)	Religion	Religion	Religion
Azerbaijani (az)	Government	Government	Government
Belarusian (be)	Government	Business	Events
Bulgarian (bg)	Events	Food and drink	Life
Catalan (ca)	Events	Law	Events
Czech (cs)	Organizations	Health	Crime
Danish (da)	Philosophy	Philosophy	Crime
German (de)	Entertainment	Entertainment	Events
Greek (el)	Entertainment	Health	Food and drink
English (en)	Crime	Philosophy	Philosophy
Esperanto (eo)	Philosophy	Events	Life
Spanish (es)	Philosophy	Philosophy	Crime
Estonian (et)	Crime	Food and drink	Crime
Basque (eu)	Education	Education	Education
Persian (fa)	Religion	Philosophy	Religion
Finnish (fi)	Government	Government	Government
French (fr)	Crime	Crime	Crime
Galician (gl)	Education	Events	Food and drink
Hebrew (he)	Entertainment	Events	Events
Hindi (hi)	Law	Law	Business
Croatian (hr)	Organizations	Mathematics	Military
Hungarian (hu)	Events	Events	Events
Armenian (hy)	Government	Government	Crime
Indonesian (id)	Arts	Business	Philosophy
Italian (it)	Entertainment	Education	Military
Japanese (ja)	Organizations	Events	Events
Georgian (ka)	Government	Crime	Music
Kazakh (kk)	Sports	Philosophy	Health
Korean (ko)	People	Business	Military
Latin (la)	Religion	Religion	Religion
Lithuanian (lt)	Education	Mathematics	Sports
Malay (ms)	People	Law	Business
Dutch (nl)	Education	Philosophy	Events
Norwegian (Nynorsk) (nn)	History	History	Music
Norwegian (Bokmål) (no)	Crime	Mathematics	Sports
Polish (pl)	Crime	Crime	Entertainment
Portuguese (pt)	Business	Health	Crime
Romanian (ro)	Government	Government	Food and drink
Russian (ru)	Entertainment	Entertainment	Events
Serbo-Croatian (sh)	Music	Mathematics	Science
Simple English (simple)	Organizations	Organizations	Organizations
Slovak (sk)	Crime	Crime	Crime
Slovenian (sl)	Government	Government	Government
Serbian (sr)	Crime	Crime	Life
Swedish (sv)	Events	Health	Geography
Tamil (ta)	Entertainment	Philosophy	Technology
Thai (th)	Arts	Military	Events
Turkish (tr)	Events	Politics	Nature
Ukrainian (uk)	Crime	Philosophy	Crime
Urdu (ur)	Education	Military	Organizations
Uzbek (uz)	Events	Philosophy	Events
Vietnamese (vi)	Organizations	Law	Sports
Volapük (vo)	Sports	Philosophy	Mathematics
Chinese (zh)	Entertainment	Entertainment	Crime
Min Nan (zh-min-nan)	Health	Technology	Politics

Table 4. Main category of articles with the highest value of average quality, average popularity and authors' interest in each language version of Wikipedia. Source: own calculations.

Depending on Wikipedia language version, we observed different categories with the highest 354 average quality, popularity and AI. For example in English Wikipedia articles in category "Crime" 355 have the highest average quality, but articles from category "Philosophy" has the highest average 356 popularity and AI. Another example: Arabic Wikipedia has the articles from Religion category as the 357 best for these three measures. Similar applies to Latin Wikipedia. In Persian Wikipedia there is also a 358 similar situation, with exception to popularity – here category "Philosophy" has the highest values. 359 Articles in Russian Wikipedia from category "Entertainment" are the most popular and has the highest 360 average quality, at the same time from authors point of view is most popular "Events" category. Similar 361 applies to German Wikipedia. Category "Government" Azerbaijan, Finnish, Slovenian Wikipedia 362 occupies a leading position. 363

Finally, we do the similar calculations for articles in semantic classes: actor, automobile, business, city, film, football player, human, programming, university, videogame, website. Figure 12 shows average quality, authors interest and page views in 2018 per article in each semantic class and language version of Wikipedia. Darker colors in heatmaps represent higher values of the selected measures.

Average quality per article in each class and language version of Wikipedia

Figure 12. Average quality, authors interest and page views during 2018 per article in each class and language version of Wikipedia. More detailed and interactive chart can be found on the Web page: http://data.lewoniewski.info/computers/heatmap-classes

The leader in terms of the value of average quality is Tamil (ta) Wikipedia with articles that describe cars (automobiles) - 43.22 points. The second place in this ranking occupy articles about football players in Hindi (hi) Wikipedia - 40.35 points for quality per article. The third place in quality took English (en) Wikipedia with articles about cars - 37.39 points. Articles about cars have also relative high quality un Hebrew (he), Hindi (hi) and Chinese (zh) Wikipedia - over 31 points. In this quality ranking most often we can met articles about cities in English (en), Latin (la), German (de), Slovenian (sl), Serbo-Croatian (sh), Greek (el) Wikipedia - over 30 points per article.

As for page views, we have similar situation as it was in the case of main category classifications -English Wikipedia has here the highest values. The most popular class in this language versions is

19 of 33

programming, which has over 40 thousand page visits per article during 2018. Next the most popular
classes with over 23 thousand visits per articles during a year are related to video games, cities, cars,
actors, and web sites. Second language version that we can met in the top of the popularity ranking Russian (ru) Wikipedia with articles about web sites and video games. Next is German (de) version
with articles about web sites.

Authors' interest ranking of the classes also shows a leading position of English (en) Wikipedia. 382 Here the highest number of authors per article in 2018 have articles about cities - over 10 authors edited 383 each article during a year. Popular among authors are also articles about cars, actors, video games and programming languages - over 8 authors per article during a year. Following are articles from 385 Hebrew (he) Wikipedia describing actors - over 7 authors per article during past year. Relatively high 386 interest among authors we can observe also in Chinese (zh), Thai (th), Italian (it), Spanish and Japanese 387 (ja) Wikipedia - over 4 authors per article about an actor during 2018. Articles about universities has 388 similar values of average authors' interest in English (en), Urdu (ur), Japanese (ja) and Korean (ko) 389 Wikipedia. 390

Table 4 presents classes that have the highest value of average quality, average popularity and authors' interest in each language version of Wikipedia.

20 of 33

Language version Quality Authors' interest Popularity Arabic (ar) website website website Azerbaijani (az) website website university programming Belarusian (be) footballplayer automobile Bulgarian (bg) actor website city Catalan (ca) actor website website Czech (cs) city website city Danish (da) website automobile actor German (de) website city city Greek (el) actor website city automobile English (en) city programming Esperanto (eo) footballplayer website city Spanish (es) city website city Estonian (et) website website programming Basque (eu) website website city Persian (fa) university website university Finnish (fi) website website city French (fr) website website actor website Galician (gl) business city Hebrew (he) website automobile actor Hindi (hi) city website footballplayer Croatian (hr) actor website city university Hungarian (hu) university website footballplayer Armenian (hv) videogame website programming Indonesian (id) website actor Italian (it) actor website footballplayer automobile Japanese (ja) university actor videogame Georgian (ka) footballplayer website Kazakh (kk) footballplayer website website Korean (ko) website automobile university city Latin (la) programming website Lithuanian (lt) footballplayer website website Malay (ms) actor university business Dutch (nl) website website website Norwegian (Nynorsk) (nn) automobile website city Norwegian (Bokmål) (no) website website videogame Polish (pl) city website city Portuguese (pt) actor programming website Romanian (ro) website website business Russian (ru) videogame website videogame Serbo-Croatian (sh) website website city Simple English (simple) website actor programming Slovak (sk) website automobile website Slovenian (sl) website website city Serbian (sr) actor actor website Swedish (sv) website website city Tamil (ta) website automobile actor Thai (th) actor university university Turkish (tr) actor website city Ukrainian (uk) actor website videogame Urdu (ur) university programming programming Uzbek (uz) film website film Vietnamese (vi) university website videogame Volapük (vo) film website film Chinese (zh) actor actor automobile Min Nan (zh-min-nan) videogame website city

Table 5. Classes of articles with the highest value of average quality, average popularity and authors' interest in each language version of Wikipedia. Source: own calculations.

doi:10.20944/preprints201905.0144.v2

Peer-reviewed version available a<u>t *Computers* 2019, 8, 60; doi:10.3390/computers803006(</u>

393 6. Local and Global Rankings of Wikipedia Articles

Based on assessment of over 39 million articles we built rankings of articles in each language version of Wikipedia separately and also leveraged knowledge about links between languages to build multilingual global rankings. Page views and authors' interest can change in time, therefore we also conducted calculations for individual months – from January 2018 till March 2019. This allows interesting analyses of changes of preferences of Wikipedia authors and readers.

Measurement of popularity can be carried out for specific language version of article. In this case results are used to create local ranking of the article in selected Wikipedia language, while combining popularity measurements from all the surveyed language versions of the same article was used to create a global ranking. As it was mentioned before, popularity was measured based on median value of the daily visits in selected month. For the purpose of ranking, if median is not sufficient to sort articles we use additional criterion – total number of visits in selected month is considered.

Another measure – authors' interest – is calculated as a number of unique authors who provided changes to an article during selected period (e.g. month). If the number of authors for selected articles is the same, we further sort based on total number of the page visits.

Popularity and AI measures can be used to build ranking on various topics and for a specific
periods. Thus, we can examine which articles are popular from the point of view of their authors and
readers in each selected month. Global measures can show these results, taking into account several
different language versions.

Tables 6, 7 and 8 present top three articles about cars, films, and video games respectively with the

highest values of page views and authors' interest in each period in all considered language versions.

22 of 33

Month	Page views	Authors' interest		
	Volkswagen Golf	Honda Accord		
January 2018	BMW 3 Series	Honda Ridgeline		
-	Audi A4	Toyota Avalon		
	BMW 3 Series	Honda Civic Type R		
February 2018	Volkswagen Golf	Tesla Model X		
	Audi A4	Nissan GT-R		
	BMW 3 Series	Honda Civic Type R		
March 2018	Ford Mustang	Subaru Impreza		
	Volkswagen Golf	Tesla Model X		
	Ford Mustang	Honda Civic Type R		
April 2018	BMW 3 Series	Subaru Impreza		
-	Volkswagen Golf	BMW M5		
	Ford Mustang	DMC DeLorean		
May 2018	BMW 3 Series	Subaru Impreza		
-	Volkswagen Golf	McLaren P1		
	Ford Mustang	Acura RDX		
June 2018	BMW 3 Series	LaFerrari		
	Volkswagen Golf	Ford Model T		
	BMW 3 Series	Honda Accord		
July 2018	Ford Mustang	Volvo 850		
	Volkswagen Golf	Chevrolet Impala		
	BMW 3 Series	Pontiac GTO		
August 2018	Ford Mustang	Honda Accord		
Ũ	Volkswagen Golf	BMW M3		
	BMW 3 Series	Porsche 997		
September 2018	Ford Mustang	Opel Combo		
•	Volkswagen Golf	Ford Falcon (AU)		
	BMW 3 Series	Toyota Land Cruiser		
October 2018	BMW 3 Series (F30)	Lamborghini Aventador		
	Volkswagen Golf	Lincoln Continental		
	BMW 3 Series	Toyota Land Cruiser		
November 2018	Tesla Model S	Honda Accord		
	Volkswagen Golf	Mitsubishi Triton		
	BMW 3 Series	Honda Civic Type R		
December 2018	Volkswagen Golf	Toyota Land Cruiser		
	Tesla Model S	Šubaru Impreza		
	BMW 3 Series	Toyota Prius		
January 2019	Toyota Supra	Toyota Corolla		
-	Volkswagen Golf	Ford F-Series		
	BMW 3 Series	BMW 3 Series (E36)		
February 2019	Volkswagen Golf	Lincoln Continental		
	Ford Mustang	Honda Accord		
	BMW 3 Series	Toyota Prius		
March 2019	Tesla Model S	Tesla Model X		
	Ford Mustang	BMW 3 Series (E36)		

Table 6. Top 3 articles about cars with highest number of page views and authors' interest in multilingual ranking, monthly. Source: own calculations.

Monthly multilingual ranking of Wikipedia articles about cars shows that depending on the period under consideration, various car models may be at the forefront. From readers' point of view, in the period of 2018-2019 the most interesting automobiles were: BMW 3 Series, Volkswagen Golf, Ford Mustang, Tesla Model S, Audi A4, BMW 3 Series (F30), and Toyota Supra. However, if we look from authors' point of view, there are other Wikipedia articles about cars in the lead: Honda Accord,

Honda Civic Type R, Subaru Impreza, Toyota Land Cruiser, Tesla Model X, BMW 3 Series (E36), and

420 Lincoln Continental.

doi:10.20944/preprints201905.0144.v2

Peer-reviewed version available at *Computers* **2019**, *8*, 60; <u>doi:10.3390/computers803006</u>

23 of 33

Month	Page views	Authors' interest
	Black Mirror	Pokkiri
January 2018	The End of the F***ing World	Dhoom 3
Junuary 2010	Star Wars: The Last Jedi	Street Lights
	Black Panther (film)	The Ghost of Hui Family
February 2018	Altered Carbon (TV series)	Children of Men
,, j	Money Heist	Bairavaa
	Black Panther (film)	Bairavaa
March 2018	The Shape of Water	A Night to Remember (1958 film)
	Avengers: Infinity War	Acrimony (film)
	Avengers: Infinity War	Jason X
April 2018	A Quiet Place (film)	Traffik (2018 film)
1	Money Heist	Crazy Rich Asians (film)
	Avengers: Infinity War	Bairavaa
May 2018	Deadpool 2	War for the Planet of the Apes
<i>y</i>	Black Panther (film)	Masterpiece (2017 film)
	Jurassic World: Fallen Kingdom	Bairavaa
June 2018	Avengers: Infinity War	Hello (2017 film)
	Westworld (TV series)	Crazy Rich Asians (film)
	Ant-Man and the Wasp	Bairavaa
July 2018	Avengers: Infinity War	Antenna (film)
-	The Handmaid's Tale (TV series)	Bean (film)
	Story of Yanxi Palace	Rangasthalam
August 2018	Avengers: Infinity War	White Boy Rick
	Crazy Rich Asians (film)	Happy Death Day
	Story of Yanxi Palace	Jaws 2
September 2018	The Nun (2018 film)	Bean (film)
	The Matrix	Instant Family
	Venom (2018 film)	Doctor Sleep (2019 film)
October 2018	A Star Is Born (2018 film)	Escape Room (film)
	The Haunting (TV series)	Jawani Phir Nahi Ani 2
	Bohemian Rhapsody (film)	Doctor Sleep (2019 film)
November 2018	Fantastic Beasts: The Crimes of Grindelwald	Enai Noki Paayum Thota
	Fantastic Beasts and Where to Find Them (film)	Scooby-Doo! and the Curse of the 13th Ghost
	Aquaman (film)	Unda (film)
December 2018	Spider-Man: Into the Spider-Verse	Escape Room (film)
	Bohemian Rhapsody (film)	Bairavaa
	Glass (2019 film)	Bairavaa
January 2019	You (TV series)	Vaagai Sooda Vaa
	Aquaman (film)	Bros: After the Screaming Stops
	Alita: Battle Angel	Doctor Sleep (2019 film)
February 2019	The Umbrella Academy (TV series)	Kanne Kalaimaane
	Green Book (film)	8 Mile (film)
	Captain Marvel (film)	Kanne Kalaimaane
March 2019	Us (2019 film)	Son of Kashmir: Burhan
	Game of Thrones	8 Mile (film)

Table 7. Top 3 articles about films with highest number of page views and authors' interest in multilingual ranking, monthly. Source: own calculations.

In the multilingual ranking of Wikipedia articles related to films, we can also observe fluctuations 421 among leaders in each considered month. Readers of this encyclopedia preferred such movies as 422 Avengers: Infinity War, Black Panther, Bohemian Rhapsody, Story of Yanxi Palace, Money Heist, 423 4 24 Aquaman, The Umbrella Academy, You, The Haunting, The Matrix, Venom, Game of Thrones, Green Book. It was not overlapping with authors' preferences who contributed mostly to films: Bairavaa, 425 Doctor Sleep, Escape Room, Kanne Kalaimaane, 8 Mile, Bean, Crazy Rich Asians, Jaws 2, War for the 426 Planet of the Apes, The Ghost of Hui Family, Traffik. Only one title appeared in both rankings - Crazy 427 Rich Asians. 428

24 of 33

Month	Page views	Authors' interest
	Assassin's Creed	Celeste (video game)
January 2018	Devilman	Unreal Tournament
	PlayerUnknown's Battlegrounds	Lego Marvel Super Heroes 2
	Assassin's Creed	Celeste (video game)
February 2018	Kingdom Come: Deliverance	Little Witch Academia: Chamber of Time
,	Fortnite	Fire Emblem: The Binding Blade
	Fortnite	Ace Combat 7: Skies Unknown
March 2018	Assassin's Creed	The Crew 2
	Call of Duty	Detective Pikachu
	God of War (2018 video game)	FortniteAce Combat 7: Skies Unknown
April 2018	Fortnite	H1Z1
1	Far Cry 5	Skynet (video game)
	Fortnite	Spider-Man 3 (video game)
May 2018	God of War (2018 video game)	AirAttack
5	Assassin's Creed	Imperator: Rome
	Detroit: Become Human	Ace Combat 7: Skies
June 2018	Fortnite	Rules of Survival
	Assassin's Creed	Totally Accurate Battlegrounds
	Fortnite	Ace Combat 7: Skies
July 2018	Detroit: Become Human	MicroVolts
	Assassin's Creed	Aliens: Colonial Marines
	Fortnite	Spider-Man 3 (video game)
August 2018	Assassin's Creed	H1Z1
0	World of Warcraft	Shovel Knight
	Borderlands: The Pre-Sequel	Rules of Survival
September 2018	Spider-Man (2018 video game)	Nickelodeon Kart Racers
	Fortnite	H1Z1
	Borderlands: The Pre-Sequel	RuneScape
October 2018	Assassin's Creed	H1Z1
	Red Dead Redemption 2	Starlink: Battle for Atlas
	Borderlands: The Pre-Sequel	Call of Duty: Black Ops III
November 2018	Red Dead Redemption 2	Spider-Man 3 (video game)
	Fallout 76	Dragon Ball Xenoverse 2
	Borderlands: The Pre-Sequel	Marvel: Ultimate Alliance
December 2018	Fortnite	PewDiePie: Legend of the Brofist
	Red Dead Redemption 2	Yo-kai Watch
	Borderlands: The Pre-Sequel	Portal 2
January 2019	Fortnite	Dick Vitale's "Awesome Baby" College Hoops
	Minecraft	Fire Emblem Warriors
	Borderlands: The Pre-Sequel	Dick Vitale's "Awesome Baby" College Hoops
February 2019	Apex Legends	Wargroove
	Fortnite	Fire Emblem Warriors
	Borderlands: The Pre-Sequel	Assassin's Creed II
March 2019	Fortnite	Dance Dance Revolution A20
	Sekiro: Shadows Die Twice	Subnautica

Table 8. Top 3 articles about video games with the highest number of page views and authors' interest in multilingual ranking, monthly. Source: own calculations.

Analysis of leading articles about video games in multilingual ranking shows similar tendencies. 429 Readers preferred Wikipedia articles about such games as Fortnite, Assassin's Creed, Borderlands: The 4 30 Pre-Sequel, Red Dead Redemption 2, Detroit: Become Human, God of War, Sekiro: Shadows Die Twice, 4 31 4 3 2 Fallout 76, Spider-Man (2018 video game), Minecraft, PlayerUnknown's Battlegrounds, Devilman, Kingdom Come: Deliverance, Call of Duty, Far Cry 5, World of Warcraft, Apex Legends. Wikipedia 4 3 3 authors have other priorities of games in the same period: H1Z1, Spider-Man 3 (video game), Ace 4 34 Combat 7: Skies, Celeste (video game), Rules of Survival, Dick Vitale's "Awesome Baby" College 4 35 Hoops, Fire Emblem Warriors, Ace Combat 7: Skies Unknown, MicroVolts, Call of Duty: Black Ops III, 436

25 of 33

RuneScape, Aliens: Colonial Marines, Unreal Tournament, Portal 2. There is no overlap between top
titles from readers' and authors' point of view.

These ranking show that the most popular articles from readers' point of view usually do not match with the priorities of the community of Wikipedia authors. This may be due to the fact that popular articles are sufficiently developed and do not require significant revisions. Nevertheless, we also found examples when popular articles are blocked for editing by anonymous users or users with low experience.

Such global quality rankings can show how specific product is popular worldwide. Tables 6, 7 and 8 show limited number of leading titles of the Wikipedia articles in some of the categories. Therefore, we implemented various multilingual rankings in WikiRank service [78], where it is possible to analyze how the position of a particular article has changed in rankings in comparison with the previous period, what is the most popular language version, what is the quality of the popular language version article

etc. Figure 13 presents example of the ranking of the articles about films with different parameters.

WikiRank	🚺 En	iglish [.]	~		Article name in English Wikipedia.			Go!	English Wikipedia ~
QUALITY AND POPULARITY ASSESSMENT OF WIKIPEDIA	Fil	lm	s ra	ting					WikiRank.net ver. 0.96
希 Wikipedia Editions 🗸 🗸		Рор	ular artio	cles in April 2019 (1-100)				i A X
AR - Arabic Wikipedia A7 - Azerbaijani Wikipedia		#	Changes		Title in English	Languages	Top lang.	Top lang. q	uality
BE - Belarusian Wikipedia		1	+2	Game of Thrones		96.36%	English	THE P	95.16
BG - Bulgarian Wikipedia		2	+12	Game of Thrones (sea	<u>son 8)</u>	38.18%	English	THE REAL	88.6894
CS - Czech Wikipedia		3	-1	Avengers: Endgame		72.73%	English	THE P	97.033
DA - Danish Wikipedia		4	+6	Shazam! (film)		61.82%	English	TAXA T	95.1321
EL - Greek Wikipedia		5	-4	Captain Marvel (film)		67.27%	English	TAXA -	100.0
EN - English Wikipedia		6	-2	<u>Us (2019 film)</u>		34.55%	English	ALL ALL	55.3324
EO - Esperanto Wikipedia ES - Spanish Wikipedia		7		Avengers: Infinity War		76.36%	English	1111	100.0
ET - Estonian Wikipedia		8	+9	<u>Glass (2019 film)</u>		47.27%	English	Sin and a second	71.9168
EU - Basque Wikipedia FA - Persian Wikipedia		9	+105	Hellboy (2019 film)		30.91%	English		79.3783
FI - Finnish Wikipedia		10	+228	Pet Sematary (2019 file	<u>m)</u>		English	-	51.6557

Figure 13. List of the most popular articles about films in multilingual Wikipedia in WikiRank service. Source: [79]

Combination of measures from different languages makes it possible to create global rankings
of all articles. Additionally, for each language version it is possible to generate local rankings – here
measures from one language can be taken into account. Example of the local ranking with quality
distribution of all articles in English Wikipedia is shown in Figure 14.

Calculated measures can be gathered to create individual profile for each article in each language
version. For example, Figure 15 presents such a profile for article "Fortnite" in English Wikipedia on
WikiRank with information about places in local and global rankings, quality and popularity scores,
and also history of popularity rank.

Each Wikipedia article in WikiRank service can have information about local and global measurements of popularity, AI and their historical ranks for the last period (Figure 15 shows such data monthly from January 2018 to April 2019 on the right side).

If an article is written in more than one language, additional ranking of the most popular language versions as well as languages with the highest quality are displayed. Additionally, it is marked, which language versions were edited by the largest number of authors. Figure 16 shows an example of such ranking of the best language versions about Minecraft.

doi:10.20944/preprints201905.0144.v2

Peer-reviewed version available at Computers 2019, 8, 60; doi:10.3390/computers80300

26 of 33

Figure 14. Local ranking with quality distribution of all articles in English Wikipedia in WikiRank service. Source: [80]

Figure 15. Profile on WikiRank of the article about Fortnite in English Wikipedia with information about places in local and global rankings, quality and popularity scores, history of popularity rank. Source: [81]

27 of 33

Languages with t	he highest quality	i A X	The most	popular languages	i A X	Lang	juages with the	highest Al	i A X
# Language	Quality grade	Quality score	# Langu	age Relative award	Relative popularity	#	Language	Relative award	Relative AI
1 <u>Chinese</u> 我的世界	LILL	100	1 <u>English</u> Minecraft		100	1 <u>B</u>	talian Ainecraft		100
2 <u>Polish</u> Minecraft	LILL	97.6471	2 <u>Russian</u> Minecraft		40.77	2	J <u>apanese</u> /linecraft	æ	79.1667
3 <u>English</u> Minecraft	TILL A	97.0519	3 <u>Spanish</u> Minecraft		22.667	3 <u>5</u>	Simple English Vinecraft		58.3333
4 <u>Russian</u> Minecraft	With	94.1667	4 <u>Japanes</u> Minecraft	•	18.8765	4 <u>F</u>	French Ainecraft		50
5 <u>Galician</u> Minecraft	THE A	93.3333	5 <u>German</u> Minecraft	₽.	16.1529	5 <u>E</u>	English Ainecraft		50

Figure 16. The most popular language versions, languages with the highest quality and language versions with the highest AI value for article about Minecraft on WikiRank. Source: [82]

Profiles of Wikipedia articles can also be used to compare the demand for a specific product
between various language communities. For example video game Dota 2 is the most popular in English,
Russian, Chinese, German, and Spanish [83]. Based on obtained measures for the action-adventure
video game Grand Theft Auto V (GTA 5) we can see relatively large demand from English, Russian,
Arabic, Spanish, and Chinese language community [84].

470 7. Results and Discussion

During the research we encountered several restrictions, mainly related to the differences between
language versions of Wikipedia. For example, as we showed in Table 3, some main categories do not
have links to all considered language versions. This is also true for developed languages. For example,
category "Art" in English Wikipedia does not have direct equivalent in German Wikipedia, which uses
category "Kunst und Kultur" [85] ("Arts and Culture") to describe part of this topic.

Regarding categories, our experiments showed that each language version has specific ratio
between number of articles and number of categories. Additionally, some language versions can have
a lot of undefined pages for the categories. There is also a difference in the number of categories that
are assigned to each article. Some languages can use an average of 30 categories to describe one article,
while the others are limited to 2-3 categories per article.

Depending on Wikipedia language version, we observed different categories with the highest average quality, popularity, and authors' interest. For example in English Wikipedia articles in category "Crime" have the highest average quality, but articles from category "Philosophy" have the highest average popularity and AI. Another example, Arabic Wikipedia has the articles from Religion category as the best for these three measures. Articles in Russian Wikipedia from category "Entertainment" are the most popular and have the highest average quality, while from authors point of view the most popular is "Events" category.

Results for authors popularity can be sometimes biased due to temporal or permanent restrictions. 4 88 According to one of the main principles of Wikipedia anyone can edit content. However, in some 489 particular situations this right can be revoked to protect content from unwanted changes (vandalism) 490 [86]. Each language version can define own levels of page protection. For example, in English 4 91 Wikipedia there is a full protection, where only administrators can edit an article, and semi-protection, 4 92 which prevents editing by unregistered users or users that are not confirmed. Each article can be 4 93 protected for a specified period. Figure 17 shows an example of the protected Wikipedia article about 4 94 Bitcoin with a marked level of protection. As a result, some articles can have less authors' interest than 4 95 it would in the situation without protection. 496

In our work, we provided classification of articles by main categories according to structure of categories in English Wikipedia. However, each language can have own definition of main categories. In future, we plan to develop more sophisticated methods to take into account refined category structures.

28 of 33

Peer-reviewed version available at Computers 2019, 8, 60; doi:10.3390/computers8030060

Figure 17. Wikipedia article about Bitcoin with a marked level of protection. Source: [87]

⁵⁰¹ Supplementing research results are available online at WikiRank service [78]. In research we used ⁵⁰² some tools that are available on GitHub [88].

8. Conclusions and Future Work

In this paper we presented results of quality and popularity assessment of articles in multilingual Wikipedia. For this purpose we calculated over 200 million values characterizing quality and popularity of articles in 55 language versions of Wikipedia. Additionally, we analyzed over 10 million categories, over 26 million links between them, and about 400 million links from articles to categories in order to determine assignment of articles to one of the topics in main classification. In order to assign articles from different languages to various topics we also used semantic databases – Wikidata and DBpedia. We combined data from these sources to obtain more comprehensive classifications of articles.

Results of the research showed not only how quality and popularity differ for articles from various 511 topics and languages but also how the same topic is developed in different languages of Wikipedia 512 in terms of quality and popularity of content. We observed that articles from topics that are popular 513 in a given language are characterized by a relatively higher quality. For instance articles related to 514 main category 'Religion' have relatively higher quality and popularity in Arabic and Latin Wikipedia. 515 Likewise, articles from main category 'Goverment' have relatively higher quality and popularity in 516 Azerbaijani, Finnish, Armenian, Romanian, and Slovenian language version of Wikipedia. Articles 517 related to main category 'Entertainment' are more popular in Chinese, Russian, German Wikipedia. At 518 the same time, articles in those three language versions has relatively the highest quality compared to 519 other main categories. 520

Additionally to categories, we also studied semantic classes as defined by DBpedia ontology and their relation to quality and popularity. The highest average number of page views among different classes in almost all considered language versions had articles that described websites, e.g. Facebook, YouTube, Google. However, popular articles from this class rarely were assessed as articles of high quality. Articles about cities were relatively better described in English, German, Czech, Hindi, Polish, and Spanish Wikipedia. Actors were described better than other classes in Bulgarian, Catalan, Danish, Greek, French, Hebrew, Croatian, Indonesian, Italian, Malay, Portuguese, Serbian, Tamil, Thai, Turkish, Ukrainian, and Chinese language versions.

With regard to popularity, we proposed to pay attention not only to how often users visits certain articles but also what is authors' interest in them. The authors' interest measure can be calculated for a language version or can be combined across studied languages. Sometimes both popularity measures show similar leader in main categories and semantic classes. For example, Slovenian Wikpedia has the

29 of 33

most popular articles related to main category 'Government', while for readers and authors of English
Wikipedia articles have higher preference related to 'Philosophy'. If we consider semantic classes, we
can conclude that among analyzed languages the most popular articles for Wikipedians are related
to cities and automobiles. We also aggregated numbers for all considered languages so that global
demand for specific products, such as films, video games, cars, can be studied.

Additional analyses of popularity measures allowed to find priorities and preferences of Wikipedians and readers in relation to temporal dimension. Often the most popular subjects of the readers differed from leading subjects from authors point of view in the same periods of time. This can be explained by the fact that popular articles are protected and cannot be edited by anonymous users. Additionally, some Wikipedia authors may choose articles based on various initiatives related to improvement of specific topics at certain period of time.

Presented results can be used to build more complex models for quality assessment of information in Wikipedia in different languages and topics. In the future, they can help not only to automatically enrich less-developed language versions of Wikipedia but also can be used to build massive semantic databases with powerful inference system, creating new knowledge for humanity in a relatively short time.

The work towards more precise assessment of Wikipedia quality will be continued, especially 549 different measures and approaches for quality assessment in Wikipedia and other collaborative 550 knowledge bases will be studied. As of April 2019, based on our calculations, there were over 70 5 5 1 thousand wiki services in the Internet, which potentially can be used to enrich various knowledge bases 552 used in enterprises. Additionally, there are over 1300 linked databases [89] that use data from open 553 sources. We can also take into account dedicated web portals that allow companies and individuals 554 to share their databases for research, such as Kaggle [90]. Local and global AI measurements can be 555 improved by including different additional features. For example, it is possible to divide all users into 556 three categories: anonymous users, registered users, and bots. We can also take into account reputation 557 and experience of each author of the article. For this purpose we can use information provided by 558 services like GUC [91] or WikiTop [92]. 559

Author Contributions: K.W. and W.L. conceived the research problem; W.L. conducted state of the art analysis;
 K.W. proposed research methodology and designed the experiments, starting from hypotheses to be verified
 statistically; W.L. collected data and performed the analysis; W.L. and K.W. interpreted the results; W.A. provided
 an overall guidance.

564 Conflicts of Interest: The authors declare no conflict of interest.

565 References

- Price, R.; Shanks, G. A semiotic information quality framework: development and comparative analysis.
 In *Enacting Research Methods in Information Systems*; Springer, 2016; pp. 219–250.
- Xu, H.; Koronios, A. Understanding information quality in e-business. *Journal of Computer Information Systems* 2005, 45, 73–82.
- Wikipedia Meta-Wiki. List of Wikipedias. https://meta.wikimedia.org/wiki/List_of_Wikipedias, accessed
 on 2019-05-05.
- Alexa. wikipedia.org Traffic Statistics. https://www.alexa.com/siteinfo/wikipedia.org, accessed on
 2018-10-08.
- 5. Thompson, N.; Hanley, D. Science is shaped by wikipedia: Evidence from a randomized control trial.
 575 Social Science Research Network 2018.
- 6. Osman, K. The role of conflict in determining consensus on quality in Wikipedia articles. Proceedings of
 the 9th International Symposium on Open Collaboration. ACM, 2013, p. 12.
- Callahan, E.S.; Herring, S.C. Cultural bias in Wikipedia content on famous persons. *Journal of the American* society for information science and technology **2011**, 62, 1899–1915.
- 8. Laufer, P.; Wagner, C.; Flöck, F.; Strohmaier, M. Mining cross-cultural relations from Wikipedia: a study of
- 31 European food cultures. Proceedings of the ACM Web Science Conference. ACM, 2015, p. 3.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 5 August 2019

30 of 33

582	9.	Gieck, R.; Kinnunen, H.M.; Li, Y.; Moghaddam, M.; Pradel, F.; Gloor, P.A.; Paasivaara, M.; Zylka, M.P.
583		Cultural differences in the understanding of history on Wikipedia. In Designing Networks for Innovation and
5 84		<i>Improvisation</i> ; Springer, 2016; pp. 3–12.
585	10.	Samoilenko, A.; Karimi, F.; Edler, D.; Kunegis, J.; Strohmaier, M. Linguistic neighbourhoods: explaining
586		cultural borders on Wikipedia through multilingual co-editing activity. EPI data science 2016 , 5, 9.
5.87	11	Kim S · Park S · Hale S A · Kim S · Byun L · Oh A H Understanding editing behaviors in multilingual
		Wikipedia PlaS and 2016 11 e0155305
588	10	Bas B: Hacht B: Carton S: Quadari M: Horn M: Carala D. Omninadia: hridging the wilding
589	12.	bao, 1., Hecht, B., Carton, S., Quaden, M., Hohn, M., Gergie, D. Ohnipedia. Dhuging the wikipedia
590		2012 and 1075 1004
5 91	10	2012, pp. $10/5-1084$.
592	13.	Wikimedia Meta-Wiki. Wikipedia article depth. https://meta.wikimedia.org/wiki/Wikipedia_article_
593	4.4	depth, accessed on 2019-04-26.
5 94	14.	Kittur, A.; Chi, E.H.; Suh, B. What's in Wikipedia?: mapping topics and conflict using socially annotated
595		category structure. Proceedings of the SIGCHI conference on human factors in computing systems. ACM,
596		2009, pp. 1509–1512.
597	15.	Boldi, P.; Monti, C. Cleansing wikipedia categories using centrality. Proceedings of the 25th International
598		Conference Companion on World Wide Web. International World Wide Web Conferences Steering
599		Committee, 2016, pp. 969–974.
600	16.	English Wikipedia. Category: Main topic classifications. https://en.wikipedia.org/wiki/Category:
601		Main_topic_classifications, accessed on 2019-04-27.
602	17.	Vrandečić, D. Wikidata: A new platform for collaborative data collection. Proceedings of the 21st
603		international conference on world wide web. ACM, 2012, pp. 1063–1064.
604	18.	Auer, S.; Bizer, C.; Kobilarov, G.; Lehmann, J.; Cyganiak, R.; Ives, Z. DBpedia: A nucleus for a web of open
605		data. In <i>The semantic web</i> ; Springer, 2007; pp. 722–735.
606	19.	Lehmann, J.; Isele, R.; Jakob, M.; Jentzsch, A.; Kontokostas, D.; Mendes, P.N.; Hellmann, S.; Morsey,
607		M.; Van Kleef, P.; Auer, S.; others. DBpedia-a large-scale, multilingual knowledge base extracted from
608		Wikipedia. Semantic Web 2015, 6, 167–195.
609	20.	Abramowicz, W.; Auer, S.; Heath, T. Linked Data in Business. Business & Information Systems Engineering
610		2016 , <i>58</i> , 323–326. doi:10.1007/s12599-016-0446-0.
611	21.	Lewańska, E. Towards Automatic Business Networks Identification. International Conference on Business
612		Information Systems. Springer, 2017, pp. 389–398. doi:doi.org/10.1007/978-3-319-52464-1_36.
613	22.	Filipiak, D.; Filipowska, A. Improving the Quality of Art Market Data Using Linked Open Data and
614		Machine Learning. Business Information Systems Workshops; Abramowicz, W.; Alt, R.; Franczyk, B., Eds.;
615		Springer International Publishing: Cham, 2017; pp. 418–428.
616	23.	Stróżyna, M.; Eiden, G.; Abramowicz, W.; Filipiak, D.; Małyszko, J.; Węcel, K. A framework for the
617		quality-based selection and retrieval of open data - a use case from the maritime domain. <i>Electronic Markets</i>
618		2018 , <i>28</i> , 219–233. doi:10.1007/s12525-017-0277-y.
619	24.	Färber, M.; Bartscherer, F.; Menne, C.; Rettinger, A. Linked data quality of dbpedia, freebase, opencyc,
620		wikidata, and yago. Semantic Web 2018, 9, 77–129.
621	25.	DBpedia. Ontology Classes. http://mappings.dbpedia.org/server/ontology/classes/, accessed on
622		2019-05-05.
623	26.	Ringler, D.; Paulheim, H. One knowledge graph to rule them all? Analyzing the differences between
624		DBpedia, YAGO, Wikidata & co. Joint German/Austrian Conference on Artificial Intelligence (Künstliche
625		Intelligenz). Springer, 2017, pp. 366–372.
626	27.	Ismavilov, A.: Kontokostas, D.: Auer, S.: Lehmann, I.: Hellmann, S.: others, Wikidata through the Eves of
627		DBpedia. Semantic Web 2018 , 9, 493–503.
 628	28.	Wecel, K.: Lewoniewski, W. Modelling the Quality of Attributes in Wikipedia Infoboxes. In <i>Business</i>
629		Information Systems Workshops: Abramowicz, W., Ed. Springer International Publishing 2015: Vol. 228
630		Lecture Notes in Business Information Processing, pp. 308–320. doi:10.1007/978-3-319-26762-3.27
631	29	Lewoniewski, W. The method of comparing and enriching information in multilingual wikis based on the
632	<u> </u>	analysis of their quality. Phd. Poznań University of Economics and Business 2018
677	30	XII Y LUO T Measuring article quality in Wikipedia: Levical clue model Web Society (SWS) 2011 3rd
634	20.	Symposium on. IEEE, 2011, pp. 141–146. doi:10.1109/SWS.2011.6101286.

31 of 33

- Anderka, M.; Stein, B.; Lipka, N. Predicting quality flaws in user-generated content: the case of wikipedia.
 Proceedings of the 35th international ACM SIGIR conference on Research and development in information
 retrieval. ACM, 2012, pp. 981–990.
 Warncke-wang, M.; Cosley, D.; Riedl, J. Tell Me More : An Actionable Quality Model for Wikipedia.
 WikiSym 2013, 2013, pp. 1–10. doi:10.1145/2491055.2491063.
 Su, Q.; Liu, P. A Psycho-Lexical Approach to the Assessment of Information Quality on Wikipedia. 2015
- IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology (WI-IAT),
 2015, Vol. 3, pp. 184–187. doi:10.1109/WI-IAT.2015.23.
- Lewoniewski, W.; Węcel, K.; Abramowicz, W. Quality and Importance of Wikipedia Articles in Different
 Languages. In *Information and Software Technologies: 22nd International Conference, ICIST 2016, Druskininkai, Lithuania, October 13-15, 2016, Proceedings;* Springer International Publishing: Cham, 2016; pp. 613–624.
 doi:10.1007/978-3-319-46254-7_50.
- ⁶⁴⁷ 35. Dang, Q.V.; Ignat, C.L. Quality assessment of Wikipedia articles without feature engineering. 2016
 ⁶⁴⁸ IEEE/ACM Joint Conference on Digital Libraries (JCDL), 2016, pp. 27–30.
- Halfaker, A.; Taraborelli, D. Artificial intelligence service 'ORES' gives Wikipedians X-ray specs to see
 through bad edits. https://blog.wikimedia.org/2015/11/30/artificial-intelligence-x-ray-specs/, accessed
 on 2017-12-31.
- 652 37. Wikimedia Foundation. ORES. https://ores.wikimedia.org/, accessed on 2019-05-05.
- 4653 38. Lewoniewski, W.; Węcel, K.; Abramowicz, W. Relative Quality and Popularity Evaluation of Multilingual
 4654 Wikipedia Articles. *Informatics* 2017, 4. doi:10.3390/informatics4040043.
- Lewoniewski, W.; Härting, R.C.; Wecel, K.; Reichstein, C.; Abramowicz, W. Application of SEO Metrics to
 Determine the Quality of Wikipedia Articles and Their Sources. Information and Software Technologies;
 Damaševičius, R.; Vasiljevienė, G., Eds.; Springer International Publishing: Cham, 2018; pp. 139–152.
 doi:10.1007/978-3-319-99972-2_11.
- Kahn, B.K.; Strong, D.M.; Wang, R.Y. Information quality benchmarks: product and service performance.
 Communications of the ACM 2002, *45*, 184–192.
- 41. Tayi, G.K.; Ballou, D.P. Examining data quality. Communications of the ACM 1998, 41, 54–57.
- 42. Giles, J. Internet encyclopaedias go head to head, 2005.

43. Holman Rector, L. Comparison of Wikipedia and other encyclopedias for accuracy, breadth, and depth in
 historical articles. *Reference services review* 2008, 36, 7–22.

- 44. Crawford, H. Encyclopedias. Reference and information services: An introduction 2001, pp. 433–459.
- Lewoniewski, W. Measures for Quality Assessment of Articles and Infoboxes in Multilingual Wikipedia.
 International Conference on Business Information Systems. Workshops; Abramowicz, W.; Paschke, A., Eds.
 Springer, Springer International Publishing, 2019, pp. 619–633. doi:doi.org/10.1007/978-3-030-04849-5_53.
- 46. Dalip, D.H.; Gonçalves, M.A.; Cristo, M.; Calado, P. A general multiview framework for assessing the
- quality of collaboratively created content on web 2.0. *Journal of the Association for Information Science and Technology* 2017, *68*, 286–308.
- 47. Yaari, E.; Baruchson-Arbib, S.; Bar-Ilan, J. Information quality assessment of community generated content:
 A user study of Wikipedia. *Journal of Information Science* 2011, 37, 487–498.
- 48. Dang, Q.V.; Ignat, C.L. Measuring Quality of Collaboratively Edited Documents: The Case of Wikipedia.
 Collaboration and Internet Computing (CIC), 2016 IEEE 2nd International Conference on. IEEE, 2016, pp.
 266–275.
- 49. Shen, A.; Qi, J.; Baldwin, T. A Hybrid Model for Quality Assessment of Wikipedia Articles. Proceedings of
 the Australasian Language Technology Association Workshop 2017, 2017, pp. 43–52.
- 50. Zhang, S.; Hu, Z.; Zhang, C.; Yu, K. History-Based Article Quality Assessment on Wikipedia. Big Data and
 Smart Computing (BigComp), 2018 IEEE International Conference on. IEEE, 2018, pp. 1–8.
- ⁶⁸¹ 51. Warncke-Wang, M.; Ranjan, V.; Terveen, L.G.; Hecht, B.J. Misalignment Between Supply and Demand of
 ⁶⁸² Quality Content in Peer Production Communities. ICWSM, 2015, pp. 493–502.
- 52. Lerner, J.; Lomi, A. Knowledge categorization affects popularity and quality of Wikipedia articles. *PloS one* 2018, 13, e0190674.
- 53. Blumenstock, J.E. Automatically Assessing the Quality of Wikipedia Articles. Technical report, UC
 Berkeley, 2008. doi:10.1080/17439880802324251.

32 of 33

687	54.	Dalip, D.H.; Gonçalves, M.A.; Cristo, M.; Calado, P. Automatic Assessment of Document Quality
688		in Web Collaborative Digital Libraries. Journal of Data and Information Quality 2011, 2, 1–30.
689		doi:10.1145/2063504.2063507.
690	55.	Stvilia, B.; Twidale, M.B.; Smith, L.C.; Gasser, L. Assessing information quality of a community-based
691		encyclopedia. <i>Proc. ICIQ</i> 2005 , pp. 442–454.
692	56.	Wu, K.; Zhu, Q.; Zhao, Y.; Zheng, H. Mining the factors affecting the quality of Wikipedia articles.
693		Information Science and Management Engineering (ISME), 2010 International Conference of. IEEE, 2010,
694		Vol. 1, pp. 343–346.
695	57.	Stvilia, B.; Twidale, M.B.; Smith, L.C.; Gasser, L. Assessing information quality of a community-based
696		encyclopedia. Proc. ICIQ 2005, pp. 442-454.
697	58.	Conti, R.; Marzini, E.; Spognardi, A.; Matteucci, I.; Mori, P.; Petrocchi, M. Maturity assessment of Wikipedia
698		medical articles. Computer-Based Medical Systems (CBMS), 2014 IEEE 27th International Symposium on.
699		IEEE, 2014, pp. 281–286.
700	59.	Wikipedia. Featured article criteria. https://en.wikipedia.org/wiki/Wikipedia:Featured_article_criteria,
701		accessed on 2019-05-05.
702	60.	Wikipedia. Verifiability. https://en.wikipedia.org/wiki/Wikipedia:Verifiability, accessed on 2019-05-05.
703	61.	Blumenstock, J.E. Size matters: word count as a measure of quality on Wikipedia. WWW, 2008, pp.
704		1095–1096. doi:10.1145/1367497.1367673.
705	62.	Dalip, D.H.; Gonçalves, M.A.; Cristo, M.; Calado, P. Automatic quality assessment of content created
706		collaboratively by web communities: a case study of wikipedia. Proceedings of the 9th ACM/IEEE-CS
707		Joint Conference on Digital Libraries, 2009, pp. 295–304. doi:10.1145/1555400.1555449.
708	63.	Ferschke, O.; Gurevych, I.; Rittberger, M. FlawFinder: A Modular System for Predicting Quality Flaws in
709		Wikipedia. CLEF (Online Working Notes/Labs/Workshop), 2012, pp. 1–10.
710	64.	di Sciascio, C.; Strohmaier, D.; Errecalde, M.; Veas, E. WikiLyzer: interactive information quality assessment
711		in Wikipedia. Proceedings of the 22nd International Conference on Intelligent User Interfaces. ACM, 2017,
712		pp. 377–388.
713	65.	Liu, J.; Ram, S. Using big data and network analysis to understand Wikipedia article quality. Data &
714		Knowledge Engineering 2018.
715	66.	Shang, W. A Comparison of the Historical Entries in Wikipedia and Baidu Baike. International Conference
716		on Information. Springer, 2018, pp. 74–80.
717	67.	Roll, U.; Mittermeier, J.C.; Diaz, G.I.; Novosolov, M.; Feldman, A.; Itescu, Y.; Meiri, S.; Grenyer, R. Using
718		Wikipedia page views to explore the cultural importance of global reptiles. Biological conservation 2016,
719		204, 42–50.
720	68.	Wikimedia Toolforge. Pageviews Analysis. https://tools.wmflabs.org/pageviews/, accessed on
721		2019-05-05.
722	69.	WMF Analytics. Wikistats pageview files. https://dumps.wikimedia.org/other/pagecounts-ez/, accessed
723		on 2019-05-05.
724	70.	Lih, A. Wikipedia as Participatory Journalism: Reliable Sources? Metrics for evaluating collaborative
725		media as a news resource. 5th International Symposium on Online Journalism 2004, p. 31.
726	71.	Wilkinson, D.M.; Huberman, B.a. Cooperation and quality in wikipedia. Proceedings of the 2007 international
727		symposium on Wikis WikiSym 07 2007, pp. 157–164. doi:10.1145/1296951.1296968.
728	72.	Kittur, A.; Kraut, R.E. Harnessing the wisdom of crowds in wikipedia. Proceedings of the ACM 2008
729		conference on Computer supported cooperative work - CSCW '08 2008, p. 37. doi:10.1145/1460563.1460572.
730	73.	Wilkinson, D.M.; Huberman, B.a. Cooperation and quality in wikipedia. Proceedings of the 2007 international
731		symposium on Wikis WikiSym 07 2007, pp. 157–164. doi:10.1145/1296951.1296968.
732	74.	Kane, G.C. A multimethod study of information quality in wiki collaboration. ACM Transactions on
733		Management Information Systems (TMIS) 2011 , 2, 4.
734	75.	Flekova, L.; Ferschke, O.; Gurevych, I. What makes a good biography?: multidimensional quality analysis
735		based on wikipedia article feedback data. Proceedings of the 23rd international conference on World wide
736		web. ACM, 2014, pp. 855–866.
737	76.	German Wikipedia. "Game of Thrones/Staffel 8" – Versionsgeschichte. https://de.wikipedia.org/w/
738		index.php?title=Game_of_Thrones/Staffel_8&action=history, accessed on 2019-06-01.

33 of 33

- 739 77. English Wikipedia. Game of Thrones (season 8): Revision history. https://en.wikipedia.org/w/index.
 740 php?title=Game_of_Thrones_(season_8)&action=history, accessed on 2019-06-01.
- 741 78. WikiRank. Quality and popularity assessment of Wikipedia. https://wikirank.net/, accessed on
 742 2019-04-27.
- 743 79. WikiRank. Films multilingual ranking. https://wikirank.net/top/film, accessed on 2019-06-01.
- 80. WikiRank. English Wikipedia. https://wikirank.net/en/, accessed on 2019-06-01.
- 81. WikiRank. Fortnite. https://wikirank.net/en/Fortnite, accessed on 2019-06-01.
- 746 82. WikiRank. Minecraft. https://wikirank.net/en/Minecraft, accessed on 2019-06-01.
- 747 83. WikiRank. Dota 2. https://wikirank.net/en/Dota_2, accessed on 2019-05-05.
- 748 84. WikiRank. Grand Theft Auto V. https://wikirank.net/en/Grand_Theft_Auto_V, accessed on 2019-05-05.
- 749 85. Deutschsprachige Wikipedia. Kategorie: Kunst und Kultur. https://de.wikipedia.org/wiki/Kategorie:
 750 Kunst_und_Kultur, accessed on 2019-05-05.
- ⁷⁵¹ 86. English Wikipedia. Wikipedia:Protection policy. https://en.wikipedia.org/wiki/Wikipedia:Protection_
 ⁷⁵² policy, accessed on 2019-05-05.
- 753 87. English Wikipedia. Bitcoin. https://en.wikipedia.org/wiki/Bitcoin, accessed on 2019-06-01.
- 754 88. GitHub. Lewoniewski user profile. https://github.com/lewoniewski, accessed on 2019-05-05.
- 755 89. The Linked Open Data Cloud. Datasets. https://lod-cloud.net/datasets, accessed on 2019-05-05.
- 756 90. Kaggle. Datasets. https://www.kaggle.com/datasets, accessed on 2019-05-05.
- 91. Wikimedia Toolforge. Global user contributions. https://tools.wmflabs.org/guc/, accessed on 2019-06-01.
- 758 92. WikiTop. Wikipedians Top. http://wikitop.org/, accessed on 2019-06-01.