Low-power detection of food preservatives by a novel nanowire-based sensor array

Dario Zappa

 SENSOR Laboratory, DII, Università degli Studi di Brescia, Via Valotti 9, 25133 Brescia, Italy;
* Correspondence: dario.zappa@unibs.it; Tel.: +39-030-371-5767

Received: date; Accepted: date; Published: date

Abstract: Food preservatives are compound that are used for the treatment of food to improve the shelf life. In the food industry, is necessary to monitor all processes, for both safety and quality of the product. An electronic nose (or e-nose) is a biomimetic olfactory system that could find numerous industrial applications, including food quality control. Commercial electronic noses are based on sensor arrays composed by a combination of different sensors, which include conductometric metal oxide devices. Metal oxide nanowires are considered among the most promising materials for the fabrication of novel sensing devices, which can enhance the overall performances of e-noses in food applications. In the present work, is reported the fabrication of a novel sensor array based on SnO2, CuO and WO3 nanowires deposited on top of commercial µHPs, provided by ams Sensor Solutions Germany GmbH. The array was tested for the discrimination of four typical compounds added to food products or used for their treatment to increase the shelf life: ethanol, acetone, nitrogen dioxide and ozone. Results are very promising; the sensors array was able to operate for long time consuming less than 50mW for each single sensor, and PCA analysis confirms that the device was able to discriminate between different compounds.

Keywords: Metal-oxides nanowires; chemical sensing; sensor array; electronic noses, food preservation;

1. Introduction

We all agree that nowadays we are living in the era of images, in which vision is considered the most important of the human senses. Nevertheless, sometime we forget that vision is only one of the five human senses (vision, hearing, olfaction, taste, and touch), and it cannot be always trusted alone. Our interaction with the surrounding environment, and even our own survival, depend on the combined information that we receive from all of them. Among these senses, olfaction is for sure the most mysterious and complex one, even if historically has been considered of a lower status in relation to the other senses [1]. Apparently, olfaction has lost in humans the importance that has in animals, as it is often involved during prey hunting and feeding [2]. However, it is one of our innate warning systems in case of danger, for example in case of fire. To give an idea on the importance of the olfactory systems, almost the 4% of the genomes of many higher eukaryotes is devoted to encode the proteins that are responsible of smell [3]. Olfaction is related also to cognition, as confirmed by many studies [4]: a particular smell can trigger a series of memories in people. Human beings possess an excellent ability to detect and discriminate odors, but they typically have great difficulty in identifying particular odorants.

Artificial olfaction (also called an electronic nose or e-nose) is a biomimetic olfactory system [5–7] that could find numerous industrial applications, such as indoor air & environmental monitoring [8–10], hazardous gas detection & customs security [11,12], medical care [13–15] and food quality control [16–18]. If we exclude the first prototype of a mechanical-based artificial olfaction system [19], the concept of an electronic nose was developed in 1964 by Wilkens and Hatman [20], and then taken up by Persaud in 1982 [21].
Among the large number of application of electronic noses, food quality and safety deserve a special mention. We can identify at least two main area in the food industry that benefit from the use of an artificial olfaction system. The first one is the detection of contaminants during food processing chains [22–24]. The preemptive assessment of the source of contaminants during all the steps required for food product preparation and handling is not always possible. Contaminating microorganisms may enter and reach the end-product through many parallel routes: though raw materials, air in the processing plant area, process surfaces, or even inadvertent personnel. Risk assessment tools like Hazard Analysis Critical Control Points (HACCP) are almost the standard approaches to detect processes prone to contamination risks [25–27]. However, built-in mechanisms on the food chain for in-process sampling and contamination screening are necessary, because would allow the food company to preventively stop the production, thus limiting the damage to just a part of the entire batch, without compromising it completely.

The second application of e-noses in the food industry is the quality control of raw materials and end-products, and in particular authenticity [28–30], food freshness [31], the presence of allergens and shelf life [32]. The increased demand for the long-term storage and preservation originate the need to develop methods that can easily track and assess food freshness. Moreover, authenticity of food is a rising issue in many countries, even market leaders. As an example, it is estimated that the rate of fraud of Parmigiano Reggiano cheese, a well-known Italian product, is between 20% and 40% worldwide, reaching a dramatic 95% in the United States [30,33].

Commercial electronic noses are based on sensor arrays composed by a combination of different sensors, which include conductometric [34],[35], piezoelectric [36],[37], field effect transistors [38], optical sensors [39] and many more [40], based on different materials and working principles. Among these, metal oxide (MOX) materials represent the current state of the art in the chemical sensing technology, and have been investigated largely due to their abundance, cheap and easy fabrication and high performances. In 1991, Yamazoe demonstrated that reducing the size of metal oxide materials to nanoscale could lead to a substantial enhancement of their sensing properties [41]. Therefore, the research focused on the development of these novel nanostructures, constantly improving the performances of the devices [42]. Among this novel generation of nanostructured materials, metal oxide nanowires are considered among the most promising for the fabrication of chemical sensing devices, due to their extremely high surface-to-volume ratio and their unique electrical and chemical properties [43–45]. These features allow quasi-1D structures like nanowires to outperform drastically their bulk counterparts.

As all other materials, however, metal oxides have some limitations that have inhibited an even larger diffusion as sensitive materials [46]. One of the critical requirements of these materials is that they are activated thermally, because chemical reactions that take place on their surface are promoted by temperature (usually 200–400°C). Therefore, a substantial part of the energy consumption of an electronic nose is related to its sensors heating. While this is not a big issue in food industries, where devices are always connected to the power line, it is a strong key factor limiting the design of portable equipment.

Thanks to the advances in the silicon semiconductor industry, there are now available on the market different micro-machined (MEMS) silicon micro hotplates (µHPs), which consist in a very thin membrane integrating both interdigitated electrodes and a heating element able to reach more than 400°C with ease [47]. These substrates allow reducing drastically the energy consumption of a single sensor, moving from hundreds of mW to few tens during continuous operation, and are ideal candidates to be integrated into a portable e-nose. Moreover, due to the reduced thickness of the membrane, these hotplates exhibit a very small thermal inertia which enables the possibility of using smarter sampling techniques and further power saving operating modes, like fast temperature modulation and discontinuous operation [48–50]. Finally, the process steps required for the fabrication of these devices are compatible with the standard planar silicon technology. Therefore, it is possible to scale the fabrication to the mass production, breaking down the price of each unit [51].

The aim of the present work is to demonstrate the effective detection of different food preservatives, which are compound that are used for the treatment of food to improve the shelf life.
For this reason, a novel low-power sensor array was fabricated, which is intended as the heart of a more efficient electronic nose instrument. This portable device could find application as personal safety equipment for food industry workers or for monitoring the quality and the food preservation processes. The proposed array integrates three different types of metal oxide nanowires (SnO₂, CuO and WO₃) on top of commercial µHPs, provided by ams Sensor Solutions Germany GmbH (72770 Reutlingen, Germany). These nanowires were directly synthesized on top of the hotplates using different synthesis techniques, without any transfer of the nanostructures, demonstrating the compatibility of the process with mass production. The morphology and the structure of the sensing materials were investigated briefly, and it was tested the ability of the array to discriminate among different food preservatives: ethanol, acetone, nitrogen dioxide and ozone.

Ethanol is a compound largely found in the food industry, like in food fermentation processes and in alcoholic beverage production [52]. However, ethanol is strongly used as preservative to increase shelf life also, as deliberate addition of low concentrations of ethanol inhibits the proliferation of many microorganisms, increasing the shelf life of packaged food [53,54]. For example, the addition of ethanol at levels between 0.5% - 3.5% to loaf leads to a substantial extension of the shelf life of bread (more than 1000%) [55].

Acetone, instead, is traditionally used as a solvent in many industrial processes, including Acetone-butanol-ethanol (ABE) fermentation of soluble and hydrolyzed sugars [56], and is one ketones that is present as aroma compound in many foods [57,58]. However, is a well-known interfering compound in the detection of ethanol, as is present in many food processes and is quite different to discriminate from ethanol at low concentrations by artificial olfaction systems.

Nitrogen dioxide is a hazardous compound that has to be monitored in many environmental applications. In the food industry, it is the main source of nitrite, which is a very popular and diffuse compound, for example in aquaculture [59]. In small quantities, it is often added to alcoholic beverages and perishable food like salami, ham and meat [60]. In fact, it is a strong antimicrobial agent, but it can have noxious effects on the human body at concentrations higher than safety standards, binding with haemoglobin and therefore reducing the capability of blood to transport oxygen [61,62]. For drinking water, the US Environmental Protection Agency and the World Health Organization have set a standard of about 3 mg nitrite/L for short-term exposures [61].

Finally, ozone is a compound that attracted a significant interest in the last 30 years due to its role in the atmosphere. However, ozone is used in many industrial fields, including as an alternative to conventional fermentation processes [63] and as a powerful antimicrobial agent [64]. The application of low amounts of ozone (5-10 mg/L) has been tested as an intervention for eliminating pathogens (Salmonella, E. coli) from the surface of different seeds and sprouts [65,66], as disinfectant of fruit juices [67] and fresh carrots [68], for example, without leaving residues on food products.

2. Materials and Methods

Commercial state-of-the-art µHPs were provided by ams Sensor Solutions Germany GmbH, a leading semiconductor company that recently entered the market of chemical sensors. Micro hotplates are fabricated using planar silicon technology, allowing the preparation of wafers (thickness 450µm) of pre-etched substrates that has to be diced if required (Figure 1, left). Each micro hotplate is 2mm x 2mm size, while the membrane area is 1mm x 1mm with a thickness of only 1µm. Electrodes are deposited on top of the silicon nitride membrane in E120:20 configuration (120µm x 20µm), and the heating element is integrated in the membrane itself. According to the specs, these µHPs can work at up to 450°C for long-term normal operation, and up to 500°C for short bursts if the integrated heating element is used. However, the hotplates were stressed at much higher temperature (up to 870°C) inside the furnace during the synthesis of the nanostructures, and they were able to sustain it without any critical breakdown. This is an excellent result considering the very low thickness and the apparent fragility of the membranes. Figure 1 (right) reports the power versus temperature curve of the integrated heater. For reaching a temperature of 400°C, only 60mW are
required. As a comparison, sensors prepared by using 2mm x 2mm alumina substrates, integrated in commercial electronic noses, consume ten times more energy [69].

![Image](https://example.com/image1.png)

Figure 1: (Left) Optical image of a wafer of ams E120:20 µHPs. (Right) Power consumption versus temperature calibration.

2.1. Synthesis of tungsten trioxide (WO₃) nanowires

Thermal oxidation techniques was used to synthetize tungsten oxide (WO₃) nanowires on ams E120:20 micro hotplates (µHPs). The synthesis process mainly consists in three steps: deposition of metal layer, oxidation and thermal annealing [70].

A thin layer (100nm) of metallic tungsten was deposited on the hotplates by RF magnetron sputtering (100 W argon plasma, 5.5x10⁻³ mbar, room temperature). Afterwards, samples were oxidized in a tubular furnace (custom design based on Lenton furnaces, UK) at 600°C for one hour, in order to grow the nanowires. The pressure inside the alumina tube was set at 0.8 mbar, inletting an argon flow of 10 SCCM by using MKS (Germany) massflow controllers.

After the growing process, samples underwent a thermal annealing to oxidize completely the material [70]. Samples were heated at 400°C for 12 hours in air at atmospheric pressure, in the same tubular furnace.

2.2. Synthesis of copper oxide (CuO) nanowires

The same thermal oxidation technique was used to synthetize copper oxide (CuO) nanowires on µHPs [71], but this time nanowires were synthetized at atmospheric pressure instead of in a vacuum environment.

Firstly, 500nm of metallic copper were deposited on the pre-fabricated electrodes by using RF magnetron sputtering (50 W argon plasma, 5.5x10⁻³ mbar, room temperature). Afterwards, the samples underwent to a forced oxidation in a tubular furnace (Carbolite, UK). Samples were placed in a quartz holder inside the alumina tube at chosen temperature (300°C), gas flow, atmosphere composition and duration. Gas flow was set at 300 SCCM and oxidation time was fixed at 12 hours, in order to obtain a dense mat of nanowires on the surface. The atmosphere inside the furnace consisted in a mixture of argon and oxygen (80% – 20% Ar). The combination of temperature and oxidation time was enough to complete oxidize the material, removing any trace of metallic copper [71].

2.3. Synthesis of tin oxide (SnO₂) nanowires

For the synthesis of tin oxide (SnO₂) nanowires, a custom physical vapor deposition process (PVD) was used. It mainly consists in an evaporation-condensation process based on vapor liquid solid (VLS) mechanism [72–75].

Platinum nanoparticles were deposited on top of the µHPs by DC magnetron sputtering (70 W argon plasma, 5.5x10⁻³ mbar, room temperature), acting as catalyst seeds for the nucleation of the nanowires. Tin oxide powder (Sigma-Aldrich, 99.9% purity) was dispersed on an alumina holder and put in the middle of the tubular furnace (custom design based on Lenton furnaces, UK), where the
temperature is high enough to evaporate the material (1370°C). Substrates were placed in a colder region of the furnace (870°C). At this temperature, the catalytic Pt nanoparticles form droplets that are in liquid form, promoting the condensation of the evaporated material on top of the substrates due to the lower energy required by the process. An argon carrier flow (100sccm, MKS massflow) was used to move the cloud of evaporated material towards the substrates. The pressure inside the furnace was kept at 100mbar and the deposition time was 5 minutes [76].

2.4. Morphological and structural characterization

The morphology of prepared nanowires was investigated by using a field emission scanning electron microscope (FE-SEM model LEO 1525, ZEISS), operated at 3-10 keV energy beam. The microscope was coupled with an Oxford energy dispersive x-ray analysis (EDX), to confirm the elemental composition and the rough stoichiometry of the material. Samples were attached with carbon glue to metallic stubs, to reduce charging effects due to the electron beam.

Raman spectra were measured by using a fiber coupled confocal HORIBA optical microscope at 100x magnification. An iHR320 monochromator was configured with a grating of 1800 g/mm, and was connected to a Peltier-cooled Synapse CCD. A He-Cd blue laser (442 nm) was focused on the samples, to excite the material and promote the Raman scattering. Spectra were recorded in the wavelength range 200-1000 cm⁻¹.

2.5. Device fabrication and functional characterization

The schematic workflow used for the preparation of the sensing devices is reported in Figure 2. In this experimental work, micro-hotplates were diced individually, for greater ease in preparing samples at the prototype level. However, due to the high scalability of the process, all operations could be performed at wafer level, which is a fundamental requirement of a mass-scale production of the devices. After the µHPs dicing, a metal/catalyst layer was deposited by magnetron sputtering, according to the specific metal oxide nanowires, and finally samples were oxidized/underwent VLS process to synthesize the nanowires directly on the hotplates. Functional sensors require a capped hosting case, to interface with the external electronics and to protect the sensing element. Therefore, µHPs were mounted on TO4 package. Pads were connected to TO pins by electro-soldering 50 µm gold wires.

Different devices of the same batches were prepared, and repeated measurements were performed on nominally identical sensors under the same experimental conditions, to evaluate the reproducibility and the yield of the process. The lifetime of the present sensors can be estimated to be > 1 year, over which the samples are still working without any evident deterioration of the surface, exhibiting a small drift (<20%) which is typical of metal oxide materials [77]. It is important to stress that the first cause of device failure is the wrong manipulation: suspended MEMS membrane is very fragile, and could break easily if directly touched. Therefore, samples should be handled with extreme care during wire bonding and during the placing of the protective cap. However, after mounting, sensors are very robust to mechanical stresses, and they are vulnerable mainly only to the thermal shocks if working out of specs, which could result in the breakdown of the membrane or in a permanent damage of the electrodes [47,78,79].

![Flow-chart of the integration of MOX nanowires on ams μHPs to fabricate chemical sensors.](image)

To investigate the conductometric response of the sensors, flow-through technique was used. The sensing devices were mounted in a homemade stainless steel test chamber, able to measure up to ten sensors simultaneously [80]. The chamber was set at 20 °C, to avoid the influence of the external
temperature. Humidified air was produced by flowing the dry air through a Drechsel bottle, held in a thermostatic bath at 25 °C, and then in a condensation vessel in order to favour the condensation of saturated vapour. The humidified air was mixed with dry air in order to obtain the desired relative humidity (RH) content, in these measurements fixed at 50% @ 20 °C (chamber temperature). Sensor temperatures were controlled by modulating the electric power applied to heaters by Thurlby-Thanedar PL330DP power supplies. A 1 V voltage was applied to the sensors, measuring at the same time the conductance of each sensor using Keithley 6485 picoammetres.

Prior to measurements, samples were thermally stabilized at the optimal working temperature for each chemical compound for 12 hours. Selected gas concentration was let in the chamber for 30 minutes, followed by a restore with synthetic air flow for 90 minutes, to allow the recovery of the baseline. The response of n-type semiconductor sensors is determined by the variation of the conductance, using, for a reducing gas, the following formula:

$$\text{Response} = \frac{R_{\text{Gas}} - R_{\text{Air}}}{R_{\text{Air}}} = \frac{g_{\text{Air}} - g_{\text{Gas}}}{g_{\text{Gas}}}$$ \hspace{1cm} (1)

and for an oxidizing gas:

$$\text{Response} = \frac{g_{\text{Gas}} - g_{\text{Air}}}{g_{\text{Air}}}$$ \hspace{1cm} (2)

Where R_{Gas} and g_{Gas} are respectively the resistance and the conductance of the sensor in gas, and R_{Air} and g_{Air} the resistance and the conductance in purified air. For p-type material, the two formulas are swapped.

As specified in the Introduction section, the chemical sensing performance of the fabricated array of sensors was evaluated towards four different chemical compounds which are among the most used food preservers: nitrogen dioxide (NO₂), ethanol (CH₃CH₂OH), acetone ((CH₃)₂CO) and ozone (O₃). This allows to highlight the sensing performance and the differences between the materials in the screening of some compounds commonly found in the food industry, demonstrating the capability of the low power array to discriminate among different food preservers. Test gases with a certified composition, supplied by SIAD SpA, (Italy) were mixed in a carrier of dry synthetic air by MKS Instrument mass flow controllers. An UV lamp was used to generate ozone right close to the test chamber, with a maximum concentration of 700ppb. Ozone was then mixed with synthetic air to select the required gas concentration. The total flow inside the chamber was set at 200 SCCM. Short-term reproducibility was taken into account and evaluated for all chemical species and materials. Consecutive measurements were performed at the same concentration and on the same sensor. Results confirm the very good repeatability of the measure, leading to an error less the 10% over four gas injections. All test compound concentrations were selected at much lower values than safety standards, to stress the sensing performances of the portable array.

3. Results and discussion

3.1. Morphological and structural characterization of NWs

Prior to the wire bonding of the micro-hotplates on TO packages, devices were characterized morphologically by optical and FE-SEM microscopy, to confirm the presence of the nanowires, their shape and aspect ratio. In Figure 3 (a) and (b) are reported two optical images of a WO₃ device. Due to the thermal oxidation technique used, nanowires can be patterned easily by simple shadow masking, and they are visible on top of the membrane and on the interdigitated electrodes (dark area). Instead, is not possible to control precisely the synthesis of SnO₂ nanowires on the µHPs (Figure 3 (c)), as the VLS mechanism is a random condensation process that cannot be confined properly. The Pt catalyst promotes the growth of the nanowires in some specific regions but, due to the presence of noble metals on the soldering pads, a minor growth happens on pads also. Most of the nanowires are
located on the membrane, but this secondary growth on the soldering pads could lead to some issues during the soldering process.

Figure 3: Optical images of WO₃ device as-fabricated (a) and mounted with gold wires on TO package (b). Electrodes and heating element are visible through the thin membrane. (c) SEM image of SnO₂ device at low magnification (100x).

Figure 4: SEM pictures of WO₃ (a), CuO (b) and SnO₂ (c) nanowires directly synthetized on ams hotplates.

Raman spectroscopy is a not-destructive investigation technique that was used already for the characterization of the thermal properties of µHPs [81]. In this specific case, this powerful technique allows determining the crystalline structure of the sensing material at micrometer size, directly synthetized on top of the hotplate. Indeed, thanks to the focalized laser source is possible to excite only the small area of the metal oxide, confirming that the synthetized nanostructures on the µHPs are crystalline for real. Raman spectra collected from the three different batches of samples are shown in Figure 5.

As reported previously, on tungsten oxide samples the Raman shifts at 260, 322, 703, and 802 cm⁻¹ can be attributed mainly to the monoclinic phase of WO₃ (Figure 5, green line) [70,82,83]. The bending vibration of the O-W-O bonds generate the first two shifts. The peaks at 703 and 802 cm⁻¹, instead, correspond to W-O-W stretching vibrations of the bridging oxygen. Raman measurements performed on CuO samples confirm the monoclinic crystalline phase of CuO, commonly found in tenorite rocks (Figure 5, red line). The three predicted Raman active lattice modes are detected at 293 cm⁻¹ (Aₓ), 344 cm⁻¹ (Bₓ) and 632 cm⁻¹ (Bₓ), in line with literature values [84]. Also for the last
observed batch of samples, Raman investigations identify shifts that match the one reported in literature for the tetragonal phase of SnO$_2$ (Cassiterite, Figure 5, blue line) [85]. The three detectable Raman active modes of tin oxide that have been observed are E_g (490 cm$^{-1}$), A_{1g} (628 cm$^{-1}$), and B_{2g} (770 cm$^{-1}$).

3.1. Chemical sensing performances

As discussed already, the most common working principle of devices integrated in electronic noses is the change of the electrical conductance, due to the interaction of the chemical species in the atmosphere with the surface of the sensing material [86]. Essentially, conductometric chemical sensors works as resistors, in which the electrical resistance of the sensing layer is modulated by the adsorption or interaction of chemical species with the surface. In Figure 6 are shown the electrical conductance of three different devices in presence of ozone, a typical oxidizing gas. The effect of adsorbed species on the surface of the metal oxide depends on the nature of the semiconducting material. In case of n-type materials, such as SnO$_2$ and WO$_3$, the presence of a oxidizing gas, like ozone, lead to a reduction of free electrical charge on surface, and thus decreasing the overall electrical conductance. In p-type material like CuO, instead, the presence of oxidizing gas lead to an increase of the conductance [87].

From the dynamic measure is possible to observe the excellent stability of the baseline of all three different devices at constant power mode, even during long-time operation. This is a fundamental
requirement for the integration of reliable sensors into electronic noses: a frequent sensors calibration is undesired because it requires personnel attendance, cannot be automated and force the instrument to stop [46]. Figure 6 shows also an example of the very good reproducibility of the measure. The response profile of four consecutive ozone injections is almost identical in all samples, exhibiting an error less than 10% in short term investigations. Moreover, all devices completely recover the baseline, with no sign of surface contaminations or damaging even in presence of a reactive gas like ozone, which is known to be a very strong oxidizer.

In electronic noses, each sensor of the array can be powered at the desired temperature, according to the specific compounds fingerprints to detect. According to micro hotplate specifications, investigations were limited to 400°C to avoid any damage during long-time operation, like for example membrane breakdown caused by thermal stress. In this specific case, a temperature of 400°C was selected as the optimal one for the detection of ethanol, acetone and ozone, while for nitrogen dioxide 200°C is chosen. These values are in line with previous investigations [70,71,76].

Each metal oxides deposited on the µHPs have different physical and electrical properties, related to the surface chemistry and the defects in the crystalline structure [88]. Therefore, different sensor responses in presence of a specific concentration of the target compounds are expected. To understand which is the most sensitive material towards each compound, the performances of the devices were compared directly at the same concentrations, as reported in Figure 7. The interest is to measure very low NO₂ concentrations, which are quite difficult to detect with these kind of devices [89]. Among the three metal oxide devices investigated, only WO₃ was able to produce an appreciable response towards 100ppb of NO₂, a concentration much lower than the safety standard requirements. This result is not unexpected, tungsten trioxide is well known in literature to have good sensing performance in detecting nitrogen dioxide [90]. Tin and copper oxide responses, instead, were negligible. The asymmetry of the response between different materials is the key feature of electronic noses, because helps pattern recognition methods in the discrimination between different compounds.

Tin oxide is mostly suited, in these tests, to detect VOCs such as ethanol and acetone. Interestingly, SnO₂ is more sensitive to ethanol than acetone at the same concentration of 30ppm. On the contrary, WO₃ is more sensitive to acetone, even if its overall response is lower than SnO₂. CuO was not able to compete with the other two materials in term of response, but does not seem to prefer neither ethanol nor acetone. Again, the different behaviour of the metal oxides in VOCs sensing allow a more efficient discrimination. About ozone, tungsten trioxide is the most sensitive material toward a concentration of 300ppb, followed by tin oxide. On the other hand, copper oxide response is significantly lower.

![Figure 7: Comparison of different sensing materials towards specific concentrations of target chemical compounds. Operating temperature for all sensing devices was 400°C towards ethanol, acetone and ozone, while it was 200°C for nitrogen dioxide. Relative humidity was 50%@20°C.](image)

In Figure 8, the responses of each different sensing materials in presence of various concentrations of target compounds is reported. Dashed lines in Figure 8 refer to a power-law fitting of data points, according to the typical formula:
Response = A[\text{gas concentration}]^B \quad (3)

Where A and B are constants depending on the material and the target chemical species. Each data point is the average response of at least three different sensors from the same batch, nominally identical. Error bars refer to intrinsic measured variability between devices.

Calibration curves confirm the better performances of WO$_3$ in detecting NO$_2$, outperforming both tin oxide and copper oxide, which was not even reported due to very low response. Defining the detection limit of the devices as the gas concentration producing a unitary response (Response=1), ≈100ppb is identified as the limit for nitrogen dioxide.

Moving to VOCs, calibration curves confirm the higher responses of SnO$_2$ devices, especially towards ethanol. Detection limits, previously defined, are estimated as ≈5ppm for ethanol and ≈15ppm for acetone. However, an increased variability in the response of different tin oxide device is reported. This could be related to the synthesis process: it is more difficult to control the morphology and dimensions of the nanowires, and this is reflected in sensor response. Tungsten and copper oxide devices perform worse, but responses from different devices of the same batch are more consistent.

Ozone sensing shows mixed results. For high ozone concentration (>200ppb) tungsten oxide devices exhibit better performance compared to tin and copper oxides. At moderate and low ozone concentrations (<200ppb) instead, tin oxide outperform tungsten oxide devices. Copper oxide response is always less than other two type of sensing devices. Detection limit for tin oxide devices is estimated at ≈40ppb. Detection limits of the three different materials toward specific target compounds are reported in Figure 9.

Figure 8: Calibration curves in presence of different chemical species: NO$_2$, Ethanol, Acetone and Ozone. Relative humidity was 50%@20°C.
Figure 9: Detection limits of the three different materials toward target chemical compounds

Principal Component Analysis (PCA) is by far the most used unsupervised data algorithm to manage the information coming from an electronic nose. It mainly consists in a linear extraction technique that reduces data dimensionality with a minimum loss of information, projecting them into lower dimensions (usually 2 or 3) [24]. Figure 10 reports a PCA analysis performed using the data previously presented. As expected, efficient discrimination between ethanol and acetone is very difficult using only the three sensors integrated in the array. Therefore, acetone has not been included in this representation. However, is it possible to add new sensors to the array when integrated in the electronic noses, increasing the number of different sensors even up to thousands, which allows more likely the discrimination of specific fingerprints [86]. Nevertheless, WO₃, SnO₂ and CuO devices were able to discriminate between ethanol, ozone and nitrogen dioxide at low concentrations, demonstrating the capability of the fabricated sensor array to distinguish the correct food preserver.

Figure 10: Pareto scaling is applied to rows; SVD with imputation is used to calculate principal components. X and Y axis show principal component 1 and principal component 2 that explain 70.9% and 25.8% of the total variance, respectively. Prediction ellipses are such that with probability 0.95, a new observation from the same group will fall inside the ellipse. N = 10 data points.

4. Conclusions

Electronic olfaction systems are becoming used largely in the food safety and security fields, due to high reliability, low cost, easy use and the possibility of on-line monitoring. While research is focusing on the enhancements of their performances to promote further the use of such systems in the food industry, a special attention is devoted to reduce the power consumption of each single sensor, to allow the fabrication of portable or battery operated equipment.

In this work, a simple sensor array based on copper, tin and tungsten oxide nanowires was prepared, and its performances in the detection of common food preservatives were evaluated. The nanowires in the sensing array were synthesized on commercial low power micro-hotplates from ams Sensor Solutions Germany GmbH (Germany). This novel sensor array combines the advantages of

<table>
<thead>
<tr>
<th>Material</th>
<th>NO₂</th>
<th>Ethanol</th>
<th>Acetone</th>
<th>Ozone</th>
</tr>
</thead>
<tbody>
<tr>
<td>SnO₂</td>
<td>>1ppm</td>
<td>5ppm</td>
<td>15ppm</td>
<td>40ppb</td>
</tr>
<tr>
<td>WO₃</td>
<td>100ppb</td>
<td>25ppm</td>
<td>15ppm</td>
<td>150ppb</td>
</tr>
<tr>
<td>CuO</td>
<td>>1ppm</td>
<td>40ppm</td>
<td>50ppm</td>
<td>300ppb</td>
</tr>
</tbody>
</table>
conductometric metal oxides together with the increased sensing performances of nanowire technology and the reduced power consumption from silicon MEMS technology. The three sensing materials were characterized, to investigate the morphology and the structure of synthetized nanowires, by using FE-SEM, XRD and Raman spectroscopy.

The fabricated array was tested towards four different food preservatives commonly used in the food industry, specifically nitrogen dioxide, ethanol, acetone and ozone. Tungsten oxide resulted as the most sensing material to detect nitrogen dioxide, even in low concentration (100ppb). Tin oxide, instead, showed higher performance in detecting VOCs such as ethanol and acetone. The response of copper oxide devices was always less than other two materials, but still measurable.

Results confirm the ability of the sensing array to detect concentrations of food preservatives that are much smaller than safety standard requirements. The sensing performance of these different materials resulted complementary: the combination of all sensor readouts may provide significant information when integrated as in arrays or e-noses. Moreover, the use of a common technological platform allows the mass production of these sensors, helping to reduce the fabrication costs. Finally, the very small thermal inertia of the micro hotplates allows fancy operating modes, such as discontinuous operation or pulsed temperature [48]. This is considered the frontier of sampling, because not only reduces further the power consumption of the system, but enables also the use of more advanced data algorithms such as advanced fuzzy and pattern recognition, which can give a boost in the accuracy of the fingerprint and aroma recognition [91].

Supplementary Materials: No supplementary materials.

Funding: This work was supported by the European Community’s 7th Framework Programme, under the grant agreement n° 611887 “MSP: Multi Sensor Platform for Smart Building Management”.

Acknowledgments: The author would like to thank Martin Herold (ams Sensor Solutions Germany GmbH, 72770 Reutlingen, Germany) for providing the micro hotplates. Moreover, the author thanks all SENSOR Laboratory staff and personnel.

Author Contributions: D.Z. conceived the work, designed & performed the experiments and wrote the manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

References

9. Wolfrum, E.J.; Meglen, R.M.; Peterson, D.; Sluiter, J. Metal oxide sensor arrays for the detection, differentiation, and quantification of volatile organic compounds at sub-parts-per-million concentration...

Junior, M.D.M.; Castanha, N.; dos Anjos, C.B.P.; Augusto, P.E.D.; Sarmento, S.B.S. Ozone technology as an alternative to fermentative processes to improve the oven-expansion properties of cassava starch.
Food Res. Int. 2019, 123, 56–63.
660 26, 19148–19152.
661 84. Hagemann, H.; Bill, H.; sadowski, W.; Walker, E.; François, M. Raman spectra of single crystal CuO.
663 85. Marina N. Rumyantseva, †; Alexander M. Gaskov, †; N. Rosman, ‡; T. Pagnier, † and; Juan R. Morante*,
664 § Raman Surface Vibration Modes in Nanocrystalline SnO2: Correlation with Gas Sensor Performances.
667 2013, 13, 14214–14247.
670 88. Arafat, M.M.; Dinan, B.; Akbar, S.A.; Haseeb, A.S.M.A. Gas Sensors Based on One Dimensional
672 89. Andringa, A.-M.; Smits, E.C.P.; Klootwijk, J.H.; de Leeuw, D.M. Real-time NO2 detection at ppb level
677 Wavelet transform and fuzzy ARTMAP-based pattern recognition for fast gas identification using a