

1 Article

2 **Low-power detection of food preservatives by a novel**
3 **nanowire-based sensor array**4 **Dario Zappa** ^{1,*}5 ¹ SENSOR Laboratory, DII, Università degli Studi di Brescia, Via Valotti 9, 25133 Brescia, Italy;

6 * Correspondence: dario.zappa@unibs.it; Tel.: +39-030-371-5767

7 Received: date; Accepted: date; Published: date

8 **Abstract:** Food preservatives are compound that are used for the treatment of food to improve the
9 shelf life. In the food industry, is necessary to monitor all processes, for both safety and quality of
10 the product. An electronic nose (or e-nose) is a biomimetic olfactory system that could find
11 numerous industrial applications, including food quality control. Commercial electronic noses are
12 based on sensor arrays composed by a combination of different sensors, which include
13 conductometric metal oxide devices. Metal oxide nanowires are considered among the most
14 promising materials for the fabrication of novel sensing devices, which can enhance the overall
15 performances of e-noses in food applications. In the present work, is reported the fabrication of a
16 novel sensor array based on SnO₂, CuO and WO₃ nanowires deposited on top of commercial μHPs,
17 provided by ams Sensor Solutions Germany GmbH. The array was tested for the discrimination of
18 four typical compounds added to food products or used for their treatment to increase the shelf life:
19 ethanol, acetone, nitrogen dioxide and ozone. Results are very promising: the sensors array was able
20 to operate for long time consuming less than 50mW for each single sensor, and PCA analysis
21 confirms that the device was able to discriminate between different compounds.

22 **Keywords:** Metal-oxides nanowires; chemical sensing; sensor array; electronic noses, food
23 preservation;

24

25 **1. Introduction**

26 We all agree that nowadays we are living in the era of images, in which vision is considered the
27 most important of the human senses. Nevertheless, sometime we forget that vision is only one of the
28 five human senses (vision, hearing, olfaction, taste, and touch), and it cannot be always trusted alone.
29 Our interaction with the surrounding environment, and even our own survival, depend on the
30 combined information that we receive from all of them. Among these senses, olfaction is for sure the
31 most mysterious and complex one, even if historically has been considered of a lower status in
32 relation to the other senses [1]. Apparently, olfaction has lost in humans the importance that has in
33 animals, as it is often involved during prey hunting and feeding [2]. However, it is one of our innate
34 warning systems in case of danger, for example in case of fire. To give an idea on the importance of
35 the olfactory systems, almost the 4% of the genomes of many higher eukaryotes is devoted to encode
36 the proteins that are responsible of smell [3]. Olfaction is related also to cognition, as confirmed by
37 many studies [4]: a particular smell can trigger a series of memories in people. Human beings possess
38 an excellent ability to detect and discriminate odors, but they typically have great difficulty in
39 identifying particular odorants.

40 Artificial olfaction (also called an electronic nose or e-nose) is a biomimetic olfactory system [5–
41 7] that could find numerous industrial applications, such as indoor air & environmental monitoring
42 [8–10], hazardous gas detection & customs security [11,12], medical care [13–15] and food quality
43 control [16–18]. If we exclude the first prototype of a mechanical-based artificial olfaction system [19],
44 the concept of an electronic nose was developed in 1964 by Wilkens and Hatman [20], and then taken
45 up by Persaud in 1982 [21].

46 Among the large number of application of electronic noses, food quality and safety deserve a
47 special mention. We can identify at least two main area in the food industry that benefit from the use
48 of an artificial olfaction system. The first one is the detection of contaminants during food processing
49 chains [22–24]. The preemptive assessment of the source of contaminants during all the steps required
50 for food product preparation and handling is not always possible. Contaminating microorganisms
51 may enter and reach the end-product through many parallel routes: though raw materials, air in the
52 processing plant area, process surfaces, or even inadvertent personnel. Risk assessment tools like
53 Hazard Analysis Critical Control Points (HACCP) are almost the standard approaches to detect
54 processes prone to contamination risks [25–27]. However, built-in mechanisms on the food chain for
55 in-process sampling and contamination screening are necessary, because would allow the food
56 company to preventively stop the production, thus limiting the damage to just a part of the entire
57 batch, without compromising it completely.

58 The second application of e-noses in the food industry is the quality control of raw materials and
59 end-products, and in particular authenticity [28–30], food freshness [31], the presence of allergens
60 and shelf life [32]. The increased demand for the long-term storage and preservation originate the
61 need to develop methods that can easily track and assess food freshness. Moreover, authenticity of
62 food is a rising issue in many countries, even market leaders. As an example, it is estimated that the
63 rate of fraud of Parmigiano Reggiano cheese, a well-known Italian product, is between 20% and 40%
64 worldwide, reaching a dramatic 95% in the United States [30,33].

65 Commercial electronic noses are based on sensor arrays composed by a combination of different
66 sensors, which include conductometric [34][35], piezoelectric [36][37], field effect transistors [38],
67 optical sensors [39] and many more [40], based on different materials and working principles. Among
68 these, metal oxide (MOX) materials represent the current state of the art in the chemical sensing
69 technology, and have been investigated largely due to their abundance, cheap and easy fabrication
70 and high performances. In 1991, Yamazoe demonstrated that reducing the size of metal oxide
71 materials to nanoscale could lead to a substantial enhancement of their sensing properties [41].
72 Therefore, the research focused on the development of these novel nanostructures, constantly
73 improving the performances of the devices [42]. Among this novel generation of nanostructured
74 materials, metal oxide nanowires are considered among the most promising for the fabrication of
75 chemical sensing devices, due to their extremely high surface-to-volume ratio and their unique
76 electrical and chemical properties [43–45]. These features allow quasi-1D structures like nanowires to
77 outperform drastically their bulk counterparts.

78 As all other materials, however, metal oxides have some limitations that have inhibited an even
79 larger diffusion as sensitive materials [46]. One of the critical requirements of these materials is that
80 they are activated thermally, because chemical reactions that take place on their surface are promoted
81 by temperature (usually 200–400°C). Therefore, a substantial part of the energy consumption of an
82 electronic nose is related to its sensors heating. While this is not a big issue in food industries, where
83 devices are always connected to the power line, it is a strong key factor limiting the design of portable
84 equipment.

85 Thanks to the advances in the silicon semiconductor industry, there are now available on the
86 market different micro-machined (MEMS) silicon micro hotplates (μHPs), which consist in a very
87 thin membrane integrating both interdigitized electrodes and a heating element able to reach more
88 than 400°C with ease [47]. These substrates allow reducing drastically the energy consumption of a
89 single sensor, moving from hundreds of mW to few tens during continuous operation, and are ideal
90 candidates to be integrated into a portable e-nose. Moreover, due to the reduced thickness of the
91 membrane, these hotplates exhibit a very small thermal inertia which enables the possibility of using
92 smarter sampling techniques and further power saving operating modes, like fast temperature
93 modulation and discontinuous operation [48–50]. Finally, the process steps required for the
94 fabrication of these devices are compatible with the standard planar silicon technology. Therefore, it
95 is possible to scale the fabrication to the mass production, breaking down the price of each unit [51].

96 The aim of the present work is to demonstrate the effective detection of different food
97 preservatives, which are compound that are used for the treatment of food to improve the shelf life.

98 For this reason, a novel low-power sensor array was fabricated, which is intended as the heart of a
99 more efficient electronic nose instrument. This portable device could find application as personal
100 safety equipment for food industry workers or for monitoring the quality and the food preservation
101 processes. The proposed array integrates three different types of metal oxide nanowires (SnO_2 , CuO
102 and WO_3) on top of commercial μHPs , provided by ams Sensor Solutions Germany GmbH (72770
103 Reutlingen, Germany). These nanowires were directly synthetized on top of the hotplates using
104 different synthesis techniques, without any transfer of the nanostructures, demonstrating the
105 compatibility of the process with mass production. The morphology and the structure of the sensing
106 materials were investigated briefly, and it was tested the ability of the array to discriminate among
107 different food preservatives: ethanol, acetone, nitrogen dioxide and ozone.

108 Ethanol is a compound largely found in the food industry, like in food fermentation processes
109 and in alcoholic beverage production [52]. However, is strongly used as preservative to increase shelf
110 life also, as deliberate addition of low concentrations of ethanol inhibits the proliferation of many
111 microorganism, increasing the shelf life of packaged food [53,54]. For example, the addition of ethanol
112 at levels between 0.5% - 3.5% to loaf leads to a substantial extension of the shelf life of bread (more
113 than 1000%) [55].

114 Acetone, instead, is traditionally used as a solvent in many industrial processes, including
115 Acetone-butanol-ethanol (ABE) fermentation of soluble and hydrolyzed sugars [56], and is one
116 ketones that is present as aroma compound in many foods [57,58]. However, is a well-known
117 interfering compound in the detection of ethanol, as is present in many food processes and is quite
118 different to discriminate from ethanol at low concentrations by artificial olfaction systems.


119 Nitrogen dioxide is a hazardous compound that has to be monitored in many environmental
120 applications. In the food industry, it is the main source of nitrite, which is a very popular and diffuse
121 compound, for example in aquaculture [59]. In small quantities, it is often added to alcoholic
122 beverages and perishable food like salami, ham and meat [60]. In fact, it is a strong antimicrobial
123 agent, but it can have noxious effects on the human body at concentrations higher than safety
124 standards, binding with haemoglobin and therefore reducing the capability of blood to transport
125 oxygen [61,62]. For drinking water, the US Environmental Protection Agency and the World Health
126 Organization have set a standard of about 3 mg nitrite/L for short-term exposures [61].

127 Finally, ozone is a compound that attracted a significant interest in the last 30 years due to its
128 role in the atmosphere. However, ozone is used in many industrial fields, including as an alternative
129 to conventional fermentation processes [63] and as a powerful antimicrobial agent [64]. The
130 application of low amounts of ozone (5-10 mg/L) has been tested as an intervention for eliminating
131 pathogens (*Salmonella*, *E. coli*) from the surface of different seeds and sprouts [65,66], as disinfectant
132 of fruit juices [67] and fresh carrots [68], for example, without leaving residues on food products.
133

134 2. Materials and Methods

135 Commercial state-of-the art μHPs were provided by ams Sensor Solutions Germany GmbH, a
136 leading semiconductor company that recently entered the market of chemical sensors. Micro
137 hotplates are fabricated using planar silicon technology, allowing the preparation of wafers
138 (thickness 450 μm) of pre-etched substrates that has to be diced if required (Figure 1, left). Each micro
139 hotplate is 2mm x 2mm size, while the membrane area is 1mm x 1mm with a thickness of only 1 μm .
140 Electrodes are deposited on top of the silicon nitride membrane in E120:20 configuration (120 μm x
141 20 μm), and the heating element is integrated in the membrane itself. According to the specs, these
142 μHPs can work at up to 450°C for long-term normal operation, and up to 500°C for short bursts if the
143 integrated heating element is used. However, the hotplates were stressed at much higher temperature
144 (up to 870°C) inside the furnace during the synthesis of the nanostructures, and they were able to
145 sustain it without any critical breakdown. This is an excellent result considering the very low
146 thickness and the apparent fragility of the membranes. Figure 1 (right) reports the power versus
147 temperature curve of the integrated heater. For reaching a temperature of 400°C, only 60mW are

148 required. As a comparison, sensors prepared by using 2mm x 2mm alumina substrates, integrated in
 149 commercial electronic noses, consume ten times more energy [69].

150
 151 **Figure 1:** (Left) Optical image of a wafer of ams E120:20 μHPs. (Right) Power consumption versus
 152 temperature calibration.

153 2.1. *Synthesis of tungsten trioxide (WO₃) nanowires*

154 Thermal oxidation techniques was used to synthetize tungsten oxide (WO₃) nanowires on ams
 155 E120:20 micro hotplates (μHPs). The synthesis process mainly consists in three steps: deposition of
 156 metal layer, oxidation and thermal annealing [70].

157 A thin layer (100nm) of metallic tungsten was deposited on the hotplates by RF magnetron
 158 sputtering (100 W argon plasma, 5.5x10⁻³ mbar, room temperature). Afterwards, samples were
 159 oxidized in a tubular furnace (custom design based on Lenton furnaces, UK) at 600°C for one hour,
 160 in order to grow the nanowires. The pressure inside the alumina tube was set at 0.8 mbar, inletting
 161 an argon flow of 10 SCCM by using MKS (Germany) massflow controllers.

162 After the growing process, samples underwent a thermal annealing to oxidize completely the
 163 material [70]. Samples were heated at 400°C for 12 hours in air at atmospheric pressure, in the same
 164 tubular furnace.

165 2.2. *Synthesis of copper oxide (CuO) nanowires*

166 The same thermal oxidation technique was used to synthetize copper oxide (CuO) nanowires on
 167 μHPs [71], but this time nanowires were synthetized at atmospheric pressure instead of in a vacuum
 168 environment.

169 Firstly, 500nm of metallic copper were deposited on the pre-fabricated electrodes by using RF
 170 magnetron sputtering (50 W argon plasma, 5.5x10⁻³ mbar, room temperature). Afterwards, the
 171 samples underwent to a forced oxidation in a tubular furnace (Carbolite, UK). Samples were placed
 172 in a quartz holder inside the alumina tube at chosen temperature (300°C), gas flow, atmosphere
 173 composition and duration. Gas flow was set at 300 SCCM and oxidation time was fixed at 12 hours,
 174 in order to obtain a dense mat of nanowires on the surface. The atmosphere inside the furnace
 175 consisted in a mixture of argon and oxygen (80% – 20% Ar). The combination of temperature and
 176 oxidation time was enough to complete oxidize the material, removing any trace of metallic copper
 177 [71].

178 2.3. *Synthesis of tin oxide (SnO₂) nanowires*

179 For the synthesis of tin oxide (SnO₂) nanowires, a custom physical vapor deposition process
 180 (PVD) was used. It mainly consists in an evaporation-condensation process based on vapor liquid
 181 solid (VLS) mechanism [72–75].

182 Platinum nanoparticles were deposited on top of the μHPs by DC magnetron sputtering (70 W
 183 argon plasma, 5.5x10⁻³ mbar, room temperature), acting as catalyst seeds for the nucleation of the
 184 nanowires. Tin oxide powder (Sigma-Aldrich, 99.9% purity) was dispersed on an alumina holder and
 185 put in the middle of the tubular furnace (custom design based on Lenton furnaces, UK), where the
 186

187

188 temperature is high enough to evaporate the material (1370°C). Substrates were placed in a colder
189 region of the furnace (870°C). At this temperature, the catalytic Pt nanoparticles form droplets that
190 are in liquid form, promoting the condensation of the evaporated material on top of the substrates
191 due to the lower energy required by the process. An argon carrier flow (100sccm, MKS massflow)
192 was used to move the cloud of evaporated material towards the substrates. The pressure inside the
193 furnace was kept at 100mbar and the deposition time was 5 minutes [76].
194

195 2.4. Morphological and structural characterization

196 The morphology of prepared nanowires was investigated by using a field emission scanning
197 electron microscope (FE-SEM model LEO 1525, ZEISS), operated at 3-10 keV energy beam. The
198 microscope was coupled with an Oxford energy dispersive x-ray analysis (EDX), to confirm the
199 elemental composition and the rough stoichiometry of the material. Samples were attached with
200 carbon glue to metallic stubs, to reduce charging effects due to the electron beam.

201 Raman spectra were measured by using a fiber coupled confocal HORIBA optical microscope at
202 100x magnification. An iHR320 monochromator was configured with a grating of 1800 g/mm, and
203 was connected to a Peltier-cooled Synapse CCD. A He-Cd blue laser (442 nm) was focused on the
204 samples, to excite the material and promote the Raman scattering. Spectra were recorded in the
205 wavelength range 200-1000 cm⁻¹.
206

207 2.5. Device fabrication and functional characterization

208 The schematic workflow used for the preparation of the sensing devices is reported in Figure 2.
209 In this experimental work, micro-hotplates were diced individually, for greater ease in preparing
210 samples at the prototype level. However, due to the high scalability of the process, all operations
211 could be performed at wafer level, which is a fundamental requirement of a mass-scale production
212 of the devices. After the μHPs dicing, a metal/catalyst layer was deposited by magnetron sputtering,
213 according to the specific metal oxide nanowires, and finally samples were oxidized/underwent VLS
214 process to synthesize the nanowires directly on the hotplates. Functional sensors require a capped
215 hosting case, to interface with the external electronics and to protect the sensing element. Therefore,
216 μHPs were mounted on TO4 package. Pads were connected to TO pins by electro-soldering 50 μm
217 gold wires.
218

219 Different devices of the same batches were prepared, and repeated measurements were
220 performed on nominally identical sensors under the same experimental conditions, to evaluate the
221 reproducibility and the yield of the process. The lifetime of the present sensors can be estimated to
222 be > 1 year, over which the samples are still working without any evident deterioration of the surface,
223 exhibiting a small drift (<20%) which is typical of metal oxide materials [77]. It is important to stress
224 that the first cause of device failure is the wrong manipulation: suspended MEMS membrane is very
225 fragile, and could break easily if directly touched. Therefore, samples should be handled with
226 extreme care during wire bonding and during the placing of the protective cap. However, after
227 mounting, sensors are very robust to mechanical stresses, and they are vulnerable mainly only to the
228 thermal shocks if working out of specs, which could result in the breakdown of the membrane or in
229 a permanent damage of the electrodes [47,78,79].
230

231 **Figure 2:** Flow-chart of the integration of MOX nanowires on ams μHPs to fabricate chemical sensors.

232 To investigate the conductometric response of the sensors, flow-through technique was used.
233 The sensing devices were mounted in a homemade stainless steel test chamber, able to measure up
234 to ten sensors simultaneously [80]. The chamber was set at 20 °C, to avoid the influence of the external

235 temperature. Humidified air was produced by flowing the dry air through a Drechsel bottle, held in
236 a thermostatic bath at 25 °C, and then in a condensation vessel in order to favour the condensation of
237 saturated vapour. The humidified air was mixed with dry air in order to obtain the desired relative
238 humidity (RH) content, in these measurements fixed at 50% @ 20 °C (chamber temperature). Sensor
239 temperatures were controlled by modulating the electric power applied to heaters by Thurlbly-
240 Thandar PL330DP power supplies. A 1 V voltage was applied to the sensors, measuring at the same
241 time the conductance of each sensor using Keithley 6485 picoammeters.

242 Prior to measurements, samples were thermally stabilized at the optimal working temperature
243 for each chemical compound for 12 hours. Selected gas concentration was let in the chamber for 30
244 minutes, followed by a restore with synthetic air flow for 90 minutes, to allow the recovery of the
245 baseline. The response of n-type semiconductor sensors is determined by the variation of the
246 conductance, using, for a reducing gas, the following formula:
247

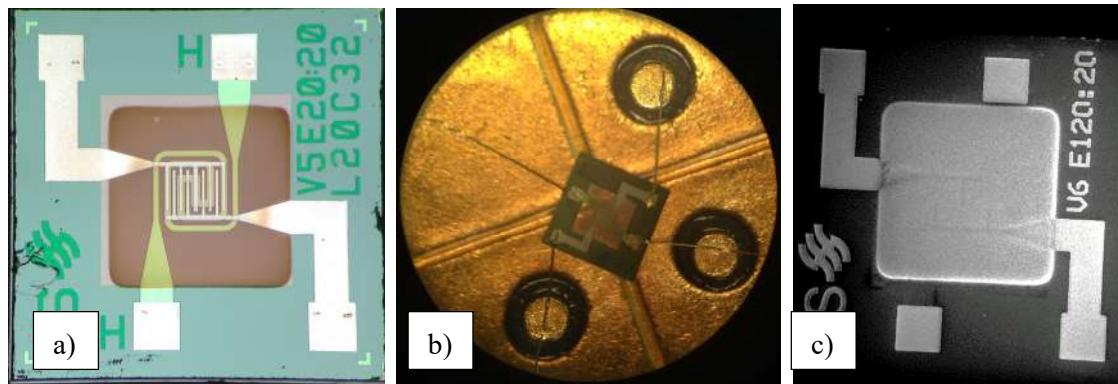
$$248 \quad Response = \frac{R_{Gas} - R_{Air}}{R_{Air}} = \frac{G_{Air} - G_{Gas}}{G_{Gas}} \quad (1)$$

249
250 and for an oxidizing gas:
251

$$252 \quad Response = \frac{G_{Gas} - G_{Air}}{G_{Air}} \quad (2)$$

253 Where R_{Gas} and G_{Gas} are respectively the resistance and the conductance of the sensor in gas,
254 and R_{Air} and G_{Air} the resistance and the conductance in purified air. For p-type material, the two
255 formulas are swapped.

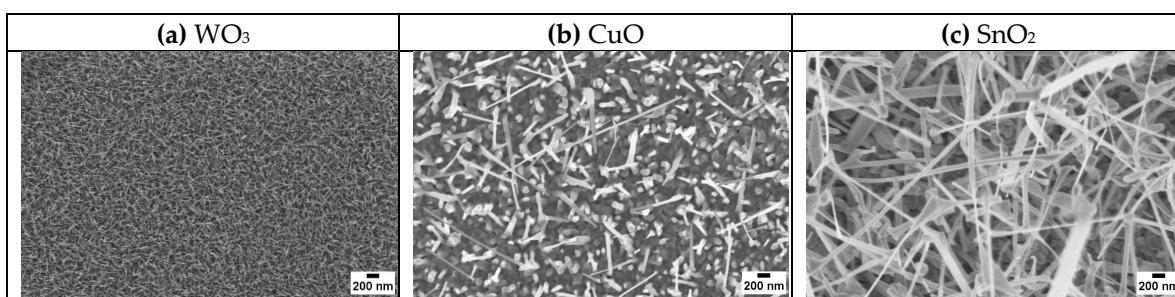
256 As specified in the Introduction section, the chemical sensing performance of the fabricated
257 array of sensors were evaluated towards four different chemical compounds which are among the
258 most used food preservers: nitrogen dioxide (NO₂), ethanol (CH₃CH₂OH), acetone ((CH₃)₂CO) and
259 ozone (O₃). This allows to highlight the sensing performance and the differences between the
260 materials in the screening of some compounds commonly found in the food industry, demonstrating
261 the capability of the low power array to discriminate among different food preservers. Test gases
262 with a certified composition, supplied by SIAD SpA, (Italy) were mixed in a carrier of dry synthetic
263 air by MKS Instrument mass flow controllers. An UV lamp was used to generate ozone right close to
264 the test chamber, with a maximum concentration of 700 ppb. Ozone was then mixed with synthetic
265 air to select the required gas concentration. The total flow inside the chamber was set at 200 SCCM.
266 Short-term reproducibility was taken into account and evaluated for all chemical species and
267 materials. Consecutive measurements were performed at the same concentration and on the same
268 sensor. Results confirm the very good repeatability of the measure, leading to an error less the 10%
269 over four gas injections. All test compound concentrations were selected at much lower values than
270 safety standards, to stress the sensing performances of the portable array.
271


272 3. Results and discussion

273 3.1. Morphological and structural characterization of NWs

274 Prior to the wire bonding of the micro-hotplates on TO packages, devices were characterized
275 morphologically by optical and FE-SEM microscopy, to confirm the presence of the nanowires, their
276 shape and aspect ratio. In Figure 3 (a) and (b) are reported two optical images of a WO₃ device. Due
277 to the thermal oxidation technique used, nanowires can be patterned easily by simple shadow
278 masking, and they are visible on top of the membrane and on the interdigitated electrodes (dark area).
279 Instead, is not possible to control precisely the synthesis of SnO₂ nanowires on the μHPs (Figure 3
280 (c)), as the VLS mechanism is a random condensation process that cannot be confined properly. The
281 Pt catalyst promotes the growth of the nanowires in some specific regions but, due to the presence of
282 noble metals on the soldering pads, a minor growth happens on pads also. Most of the nanowires are

283 located on the membrane, but this secondary growth on the soldering pads could lead to some issues
 284 during the soldering process.


285
 286

287

288 **Figure 3:** Optical images of WO_3 device as-fabricated (a) and mounted with gold wires on TO package
 289 (b). Electrodes and heating element are visible through the thin membrane. (c) SEM image of SnO_2
 290 device at low magnification (100x).

291 Figure 4 reports some SEM images of WO_3 , CuO and SnO_2 nanowires, at the same magnification
 292 level. The density and the dimensions of nanowires are strongly dependant on the material and on
 293 the synthesis technique used. Tungsten oxide nanowires are very small and dense, with an average
 294 diameter of about 20-30 nm [70]. The mat of copper oxide nanowires is less dense than WO_3 , and the
 295 average diameter is in the range of 70-100 nm [71]. In case of tin oxide, instead, a dense mat is
 296 obtained, but the nanowires are irregular and very long (few μm). It is more difficult to control the
 297 geometry of the wires, and thus their diameters are spread over a wide range (100-250 nm).
 298

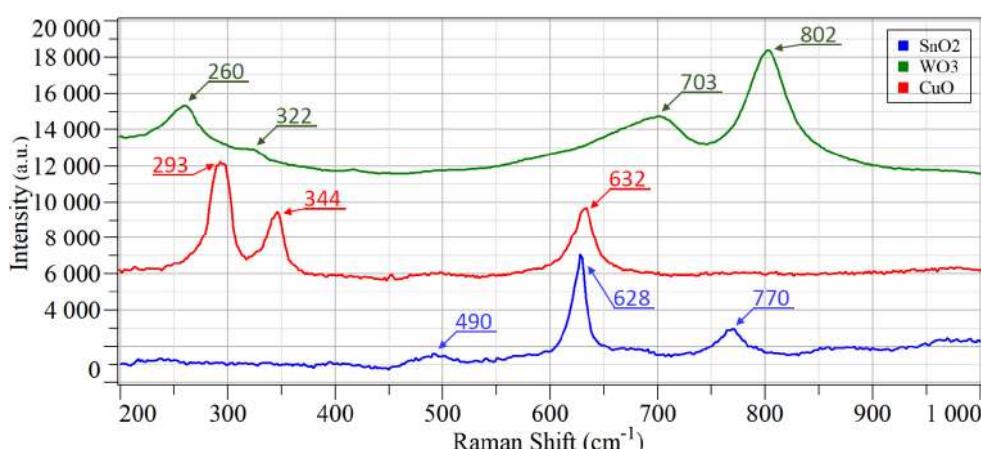
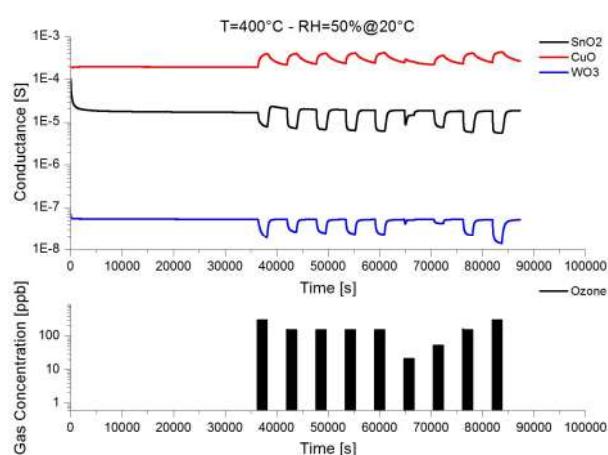

299
 300

Figure 4: SEM pictures of WO_3 (a), CuO (b) and SnO_2 (c) nanowires directly synthetized on ams
 hotplates.

301 Raman spectroscopy is a non-destructive investigation technique that was used already for the
 302 characterization of the thermal properties of μHPs [81]. In this specific case, this powerful technique
 303 allows determining the crystalline structure of the sensing material at micrometer size, directly
 304 synthetized on top of the hotplate. Indeed, thanks to the focalized laser source is possible to excite
 305 only the small area of the metal oxide, confirming that the synthetized nanostructures on the μHPs
 306 are crystalline for real. Raman spectra collected from the three different batches of samples are shown
 307 in Figure 5.

308 As reported previously, on tungsten oxide samples the Raman shifts at 260, 322, 703, and 802
 309 cm^{-1} can be attributed mainly to the monoclinic phase of WO_3 (Figure 5, green line) [70,82,83]. The
 310 bending vibration of the O-W-O bonds generate the first two shifts. The peaks at 703 and 802 cm^{-1} ,
 311 instead, correspond to W-O-W stretching vibrations of the bridging oxygen. Raman measurements
 312 performed on CuO samples confirm the monoclinic crystalline phase of CuO , commonly found in
 313 tenorite rocks (Figure 5, red line). The three predicted Raman active lattice modes are detected at
 314 293 cm^{-1} (A_g), 344 cm^{-1} (B_g) and 632 cm^{-1} (B_g), in line with literature values [84]. Also for the last

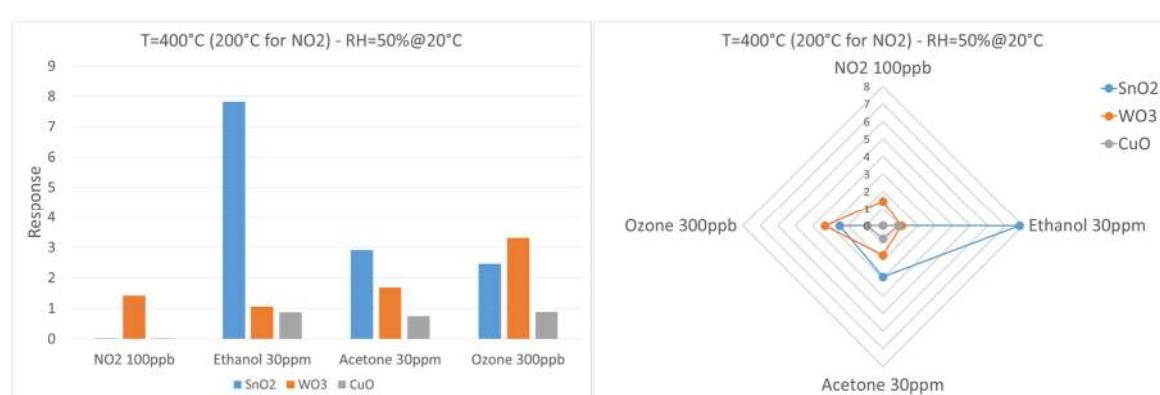

315 observed batch of samples, Raman investigations identify shifts that match the one reported in
 316 literature for the tetragonal phase of SnO_2 (Cassiterite, Figure 5, blue line) [85]. The three detectable
 317 Raman active modes of tin oxide that have been observed are E_g (490 cm^{-1}), A_{1g} (628 cm^{-1}), and B_{2g} (770
 318 cm^{-1}).
 319

320
 321 **Figure 5:** Raman spectra of SnO_2 , WO_3 and CuO nanowires deposited on μHPs .

322 *3.1. Chemical sensing performances*

323 As discussed already, the most common working principle of devices integrated in electronic
 324 noses is the change of the electrical conductance, due to the interaction of the chemical species in the
 325 atmosphere with the surface of the sensing material [86]. Essentially, conductometric chemical
 326 sensors works as resistors, in which the electrical resistance of the sensing layer is modulated by the
 327 adsorption or interaction of chemical species with the surface. In Figure 6 are shown the electrical
 328 conductance of three different devices in presence of ozone, a typical oxidizing gas. The effect of
 329 adsorbed species on the surface of the metal oxide depends on the nature of the semiconducting
 330 material. In case of n-type materials, such as SnO_2 and WO_3 , the presence of a oxidizing gas, like
 331 ozone, lead to a reduction of free electrical charge on surface, and thus decreasing the overall
 332 electrical conductance. In p-type material like CuO , instead, the presence of oxidizing gas lead to an
 333 increase of the conductance [87].
 334

335
 336 **Figure 6:** Dynamic response of SnO_2 , CuO and WO_3 nanowires in presence of different concentration
 337 of Ozone (300-150-150-150-150-20-50-150-300 ppb, respectively). Operating temperature for all
 338 sensing devices was 400°C . Relative humidity was $50\%@20^\circ\text{C}$.


339 From the dynamic measure is possible to observe the excellent stability of the baseline of all three
 340 different devices at constant power mode, even during long-time operation. This is a fundamental

341 requirement for the integration of reliable sensors into electronic noses: a frequent sensors calibration
 342 is undesired because it requires personnel attendance, cannot be automated and force the instrument
 343 to stop [46]. Figure 6 shows also an example of the very good reproducibility of the measure. The
 344 response profile of four consecutive ozone injections is almost identical in all samples, exhibiting an
 345 error less than 10% in short term investigations. Moreover, all devices completely recover the
 346 baseline, with no sign of surface contaminations or damaging even in presence of a reactive gas like
 347 ozone, which is known to be a very strong oxidizer.

348 In electronic noses, each sensor of the array can be powered at the desired temperature,
 349 according to the specific compounds fingerprints to detect. According to micro hotplate
 350 specifications, investigations were limited to 400°C to avoid any damage during long-time operation,
 351 like for example membrane breakdown caused by thermal stress. In this specific case, a temperature
 352 of 400°C was selected as the optimal one for the detection of ethanol, acetone and ozone, while for
 353 nitrogen dioxide 200°C is chosen. These values are in line with previous investigations [70,71,76].

354 Each metal oxides deposited on the μ HPs have different physical and electrical properties,
 355 related to the surface chemistry and the defects in the crystalline structure [88]. Therefore, different
 356 sensor responses in presence of a specific concentration of the target compounds are expected. To
 357 understand which is the most sensitive material towards each compound, the performances of the
 358 devices were compared directly at the same concentrations, as reported in Figure 7. The interest is to
 359 measure very low NO₂ concentrations, which are quite difficult to detect with these kind of devices
 360 [89]. Among the three metal oxide devices investigated, only WO₃ was able to produce an appreciable
 361 response towards 100ppb of NO₂, a concentration much lower than the safety standard requirements.
 362 This result is not unexpected, tungsten trioxide is well known in literature to have good sensing
 363 performance in detecting nitrogen dioxide [90]. Tin and copper oxide responses, instead, were
 364 negligible. The asymmetry of the response between different materials is the key feature of electronic
 365 noses, because helps pattern recognition methods in the discrimination between different compounds.
 366

367 Tin oxide is mostly suited, in these tests, to detect VOCs such as ethanol and acetone.
 368 Interestingly, SnO₂ is more sensitive to ethanol than acetone at the same concentration of 30ppm. On
 369 the contrary, WO₃ is more sensitive to acetone, even if its overall response is lower than SnO₂. CuO
 370 was not able to compete with the other two materials in term of response, but does not seem to prefer
 371 neither ethanol nor acetone. Again, the different behaviour of the metal oxides in VOCs sensing allow
 372 a more efficient discrimination. About ozone, tungsten trioxide is the most sensitive material toward
 373 a concentration of 300ppb, followed by tin oxide. On the other hand, copper oxide response is
 374 significantly lower.

375
 376 **Figure 7:** Comparison of different sensing materials towards specific concentrations of target chemical
 377 compounds. Operating temperature for all sensing devices was 400°C towards ethanol, acetone and
 378 ozone, while it was 200°C for nitrogen dioxide. Relative humidity was 50%@20°C.

379 In Figure 8, the responses of each different sensing materials in presence of various
 380 concentrations of target compounds is reported. Dashed lines in Figure 8 refer to a power-law fitting
 381 of data points, according to the typical formula:
 382

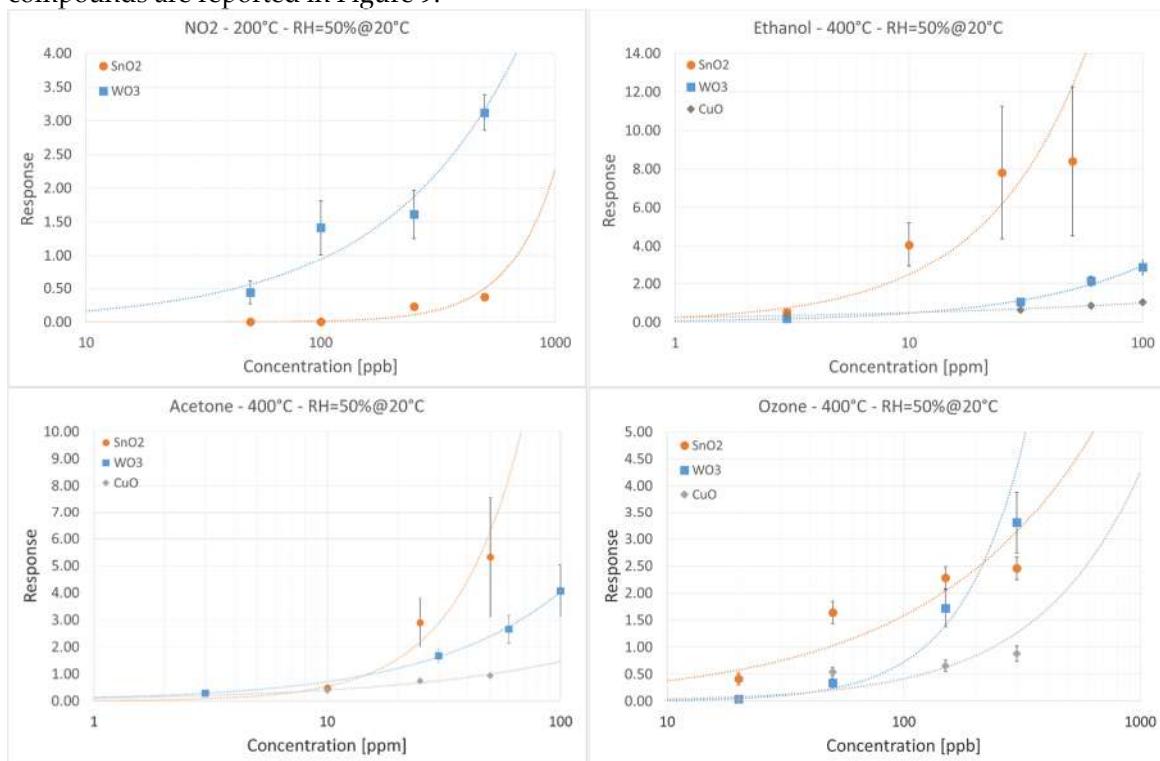
383
384

Response=A[gas concentration]^B (3)

385
386
387

Where A and B are constants depending on the material and the target chemical species. Each data point is the average response of at least three different sensors from the same batch, nominally identical. Error bars refer to intrinsic measured variability between devices.

388
389
390
391


Calibration curves confirm the better performances of WO_3 in detecting NO_2 , outperforming both tin oxide and copper oxide, which was not even reported due to very low response. Defining the detection limit of the devices as the gas concentration producing a unitary response (Response=1), $\approx 100\text{ppb}$ is identified as the limit for nitrogen dioxide.

392
393
394
395
396
397
398

Moving to VOCs, calibration curves confirm the higher responses of SnO_2 devices, especially towards ethanol. Detection limits, previously defined, are estimated as $\approx 5\text{ppm}$ for ethanol and $\approx 15\text{ppm}$ for acetone. However, an increased variability in the response of different tin oxide device is reported. This could be related to the synthesis process: it is more difficult to control the morphology and dimensions of the nanowires, and this is reflected in sensor response. Tungsten and copper oxide devices perform worse, but responses from different devices of the same batch are more consistent.

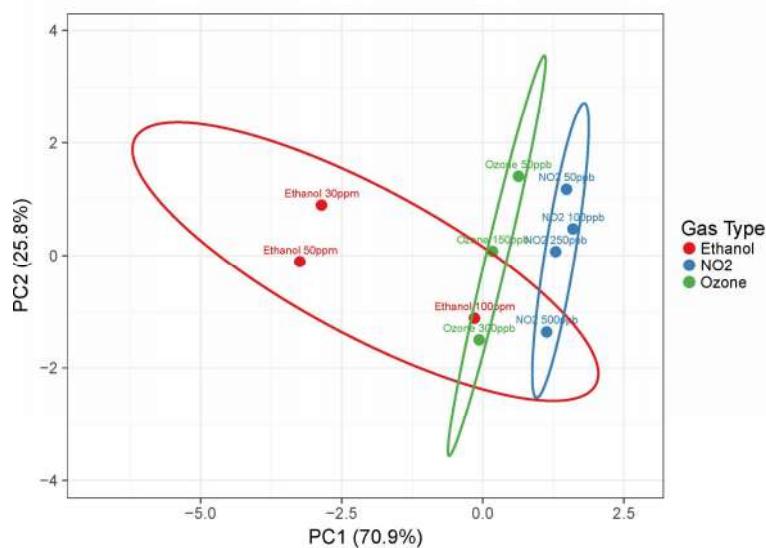
399
400
401
402
403
404

Ozone sensing shows mixed results. For high ozone concentration ($>200\text{ppb}$) tungsten oxide devices exhibit better performance compared to tin and copper oxides. At moderate and low ozone concentrations ($<200\text{ppb}$) instead, tin oxide outperform tungsten oxide devices. Copper oxide response is always less than other two type of sensing devices. Detection limit for tin oxide devices is estimated at $\approx 40\text{ppb}$. Detection limits of the three different materials toward specific target compounds are reported in Figure 9.

405

406
407
408

Figure 8: Calibration curves in presence of different chemical species: NO_2 , Ethanol, Acetone and Ozone. Relative humidity was 50%@20°C.


409

	NO2	Ethanol	Acetone	Ozone
SnO ₂	>1ppm	5ppm	15ppm	40ppb
WO ₃	100ppb	25ppm	15ppm	150ppb
CuO	>1ppm	40ppm	50ppm	300ppb

410

411 **Figure 9:** Detection limits of the three different materials toward target chemical compounds

412 Principal Component Analysis (PCA) is by far the most used unsupervised data algorithm
 413 to manage the information coming from an electronic nose. It mainly consists in a linear
 414 extraction technique that reduces data dimensionality with a minimum loss of information,
 415 projecting them into lower dimensions (usually 2 or 3) [24]. Figure 10 reports a PCA analysis
 416 performed using the data previously presented. As expected, efficient discrimination between
 417 ethanol and acetone is very difficult using only the three sensors integrated in the array.
 418 Therefore, acetone has not been included in this representation. However, is it possible to add
 419 new sensors to the array when integrated in the electronic noses, increasing the number of
 420 different sensors even up to thousands, which allows more likely the discrimination of specific
 421 fingerprints [86]. Nevertheless, WO₃, SnO₂ and CuO devices were able to discriminate between
 422 ethanol, ozone and nitrogen dioxide at low concentrations, demonstrating the capability of the
 423 fabricated sensor array to distinguish the correct food preserver.

424

425

426

427

428

429

425 **Figure 10:** Pareto scaling is applied to rows; SVD with imputation is used to calculate principal components.
 426 X and Y axis show principal component 1 and principal component 2 that explain 70.9% and 25.8% of the
 427 total variance, respectively. Prediction ellipses are such that with probability 0.95, a new observation from
 428 the same group will fall inside the ellipse. N = 10 data points.

429

430

4. Conclusions

431 Electronic olfaction systems are becoming used largely in the food safety and security fields, due
 432 to high reliability, low cost, easy use and the possibility of on-line monitoring. While research is
 433 focusing on the enhancements of their performances to promote further the use of such systems in
 434 the food industry, a special attention is devoted to reduce the power consumption of each single
 435 sensor, to allow the fabrication of portable or battery operated equipment.

436

437

438

439

437 In this work, a simple sensor array based on copper, tin and tungsten oxide nanowires was
 438 prepared, and its performances in the detection of common food preservatives were evaluated. The
 439 nanowires in the sensing array were synthetized on commercial low power micro-hotplates from ams
 Sensor Solutions Germany GmbH (Germany). This novel sensor array combines the advantages of

440 conductometric metal oxides together with the increased sensing performances of nanowire
441 technology and the reduced power consumption from silicon MEMS technology. The three sensing
442 materials were characterized, to investigate the morphology and the structure of synthetized
443 nanowires, by using FE-SEM, XRD and Raman spectroscopy.

444 The fabricated array was tested towards four different food preservatives commonly used in the
445 food industry, specifically nitrogen dioxide, ethanol, acetone and ozone. Tungsten oxide resulted as
446 the most sensing material to detect nitrogen dioxide, even in low concentration (100 ppb). Tin oxide,
447 instead, showed higher performance in detecting VOCs such as ethanol and acetone. The response
448 of copper oxide devices was always less than other two material, but still measurable.

449 Results confirm the ability of the sensing array to detect concentrations of food preservers that
450 are much smaller than safety standard requirements. The sensing performance of these different
451 materials resulted complementary: the combination of all sensor readouts may provide significant
452 information when integrated as in arrays or e-noses. Moreover, the use of a common technological
453 platform allows the mass production of these sensors, helping to reduce the fabrication costs. Finally,
454 the very small thermal inertia of the micro hotplates allows fancy operating modes, such as
455 discontinuous operation or pulsed temperature [48]. This is considered the frontier of sampling,
456 because not only reduces further the power consumption of the system, but enables also the use of
457 more advanced data algorithms such as advanced fuzzy and pattern recognition, which can give a
458 boost in the accuracy of the fingerprint and aroma recognition [91].
459

460 **Supplementary Materials:** No supplementary materials.

461 **Funding:** This work was supported by the European Community's 7th Framework Programme, under the grant
462 agreement n° 611887 "MSP: Multi Sensor Platform for Smart Building Management".

463 **Acknowledgments:** The author would like to thank Martin Herold (ams Sensor Solutions Germany GmbH,
464 72770 Reutlingen, Germany) for providing the micro hotplates. Moreover, the author thanks all SENSOR
465 Laboratory staff and personnel.

466 **Author Contributions:** D.Z. conceived the work, designed & performed the experiments and wrote the
467 manuscript.

468 **Conflicts of Interest:** The authors declare no conflict of interest.

469 **References**

- 470 1. Low, K.E.Y. Ruminations on Smell as a Sociocultural Phenomenon. *Curr. Sociol.* **2005**, *53*, 397–417.
- 471 2. Kelley, J.L.; Magurran, A.E. Learned predator recognition and antipredator responses in fishes. *Fish Fish.* **2003**, *4*, 216–226.
- 473 3. Firestein, S. How the olfactory system makes sense of scents. *Nature* **2001**, *413*, 211–218.
- 474 4. Richardson, J.T.E.; Zucco, G.M. Cognition and Olfaction: A Review. *Psychol. Bull.* **1989**, *105*, 352–360.
- 475 5. Röck, F.; Barsan, N.; Weimar, U. Electronic nose: Current status and future trends. *Chem. Rev.* **2008**, *108*,
476 705–725.
- 477 6. Sankaran, S.; Khot, L.R.; Panigrahi, S. Biology and applications of olfactory sensing system: A review.
478 *Sensors Actuators B Chem.* **2012**, *171–172*, 1–17.
- 479 7. Brattoli, M.; De Gennaro, G.; De Pinto, V.; Demarinis Loiotile, A.; Lovascio, S.; Penza, M. Odour
480 Detection Methods: Olfactometry and Chemical Sensors. *Sensors* **2011**, *11*, 5290–5322.
- 481 8. Zampolli, S.; Elmi, I.; Ahmed, F.; Passini, M.; Cardinali, G.C.; Nicoletti, S.; Dori, L. An electronic nose
482 based on solid state sensor arrays for low-cost indoor air quality monitoring applications. *Sensors
483 Actuators B Chem.* **2004**, *101*, 39–46.
- 484 9. Wolfrum, E.J.; Meglen, R.M.; Peterson, D.; Sluiter, J. Metal oxide sensor arrays for the detection,
485 differentiation, and quantification of volatile organic compounds at sub-parts-per-million concentration

486 levels. *Sensors Actuators B Chem.* **2006**, *115*, 322–329.

487 10. Szulczyński, B.; Wasilewski, T.; Wojnowski, W.; Majchrzak, T.; Dymerski, T.; Namieśnik, J.; Gębicki, J.

488 Different Ways to Apply a Measurement Instrument of E-Nose Type to Evaluate Ambient Air Quality

489 with Respect to Odour Nuisance in a Vicinity of Municipal Processing Plants. *Sensors* **2017**, *17*.

490 11. Wu, Y.; Liu, T.; Ling, S.H.; Szymanski, J.; Zhang, W.; Su, S.W. Air Quality Monitoring for Vulnerable

491 Groups in Residential Environments Using a Multiple Hazard Gas Detector. *Sensors* **2019**, *19*.

492 12. Haddi, Z.; Amari, A.; Alami, H.; Bari, N. El; Llobet, E.; Bouchikhi, B. A portable electronic nose system

493 for the identification of cannabis-based drugs. *Sensors Actuators B Chem.* **2011**, *155*, 456–463.

494 13. Huang, C.-H.; Zeng, C.; Wang, Y.-C.; Peng, H.-Y.; Lin, C.-S.; Chang, C.J.; Yang, H.-Y. A Study of

495 Diagnostic Accuracy Using a Chemical Sensor Array and a Machine Learning Technique to Detect Lung

496 Cancer. *Sensors* **2018**, *18*.

497 14. Scarlata, S.; Finamore, P.; Santangelo, S.; Giannunzio, G.; Pennazza, G.; Grasso, S.; Santonico, M.; Incalzi,

498 R.A. Cluster analysis on breath print of newly diagnosed {COPD} patients: effects of therapy. *J. Breath*

499 *Res.* **2018**, *12*, 36022.

500 15. Wilson, A.D.; Baietto, M. Advances in Electronic-Nose Technologies Developed for Biomedical

501 Applications. *Sensors* **2011**, *11*, 1105–1176.

502 16. Wijaya, D.R.; Sarno, R.; Zulaika, E. Electronic nose dataset for beef quality monitoring in uncontrolled

503 ambient conditions. *Data Br.* **2018**, *21*, 2414–2420.

504 17. Macías, M.M.; Manso, A.G.; Orellana, C.J.G.; Velasco, H.M.G.; Caballero, R.G.; Chamizo, J.C.P. Acetic

505 Acid Detection Threshold in Synthetic Wine Samples of a Portable Electronic Nose. *Sensors* **2013**, *13*, 208–

506 220.

507 18. Hasan, N.U.; Ejaz, N.; Ejaz, W.; Kim, H.S. Meat and Fish Freshness Inspection System Based on Odor

508 Sensing. *Sensors* **2012**, *12*, 15542–15557.

509 19. Moncrieff, R.W. An instrument for measuring and classifying odors. *J. Appl. Physiol.* **1961**, *16*, 742–749.

510 20. WILKENS, W.F.; HARTMAN, J.D. An Electronic Analog for the Olfactory Processesa. *J. Food Sci.* **1964**,

511 29, 372–378.

512 21. Persaud, K.; Dodd, G. Analysis of discrimination mechanisms in the mammalian olfactory system using

513 a model nose. *Nature* **1982**, *299*, 352–355.

514 22. Núñez Carmona, E.; Sbrevigliieri, V.; Ponzoni, A.; Galstyan, V.; Zappa, D.; Pulvirenti, A.; Comini, E.

515 Detection of food and skin pathogen microbiota by means of an electronic nose based on metal oxide

516 chemiresistors. *Sensors Actuators, B Chem.* **2017**, *238*.

517 23. Núñez-Carmona, E.; Abbatangelo, M.; Sbrevigliieri, V. Innovative Sensor Approach to Follow

518 Campylobacter jejuni Development. *Biosensors* **2019**, *9*.

519 24. Peris, M.; Escuder-Gilabert, L. A 21st century technique for food control: Electronic noses. *Anal. Chim.*

520 *Acta* **2009**, *638*, 1–15.

521 25. LaBorde, L.F. HACCP and HACCP-Based Programs for Controlling Food Safety Hazards in the

522 Vegetable Industry. In *Handbook of Vegetables and Vegetable Processing*; John Wiley & Sons, Ltd, 2018; pp.

523 969–987 ISBN 9781119098935.

524 26. Mariana, R.R.; Hidayati, L.; Soekopitojo, S. Implementing the HACCP system to the production of Bakso

525 Malang-Indonesia. *J. Culin. Sci. Technol.* **2018**, *0*, 1–22.

526 27. Feng, H.; Chen, J.; Zhou, W.; Rungsardthong, V.; Zhang, X. Modeling and evaluation on WSN-enabled

527 and knowledge-based HACCP quality control for frozen shellfish cold chain. *Food Control* **2019**, *98*, 348–

528 358.

529 28. Gliszczynska-Świgło, A.; Chmielewski, J. Electronic Nose as a Tool for Monitoring the Authenticity of
530 Food. A Review. *Food Anal. Methods* **2017**, *10*, 1800–1816.

531 29. Abbatangelo, M.; Núñez-Carmona, E.; Duina, G.; Sberveglieri, V. Multidisciplinary Approach to
532 Characterizing the Fingerprint of Italian EVOO. *Molecules* **2019**, *24*.

533 30. Abbatangelo, M.; Núñez-Carmona, E.; Sberveglieri, V.; Zappa, D.; Comini, E.; Sberveglieri, G.
534 Application of a novel S3 nanowire gas sensor device in parallel with GC-MS for the identification of
535 rind percentage of grated Parmigiano Reggiano. *Sensors (Switzerland)* **2018**, *18*.

536 31. Wang, M.; Gao, F.; Wu, Q.; Zhang, J.; Xue, Y.; Wan, H.; Wang, P. Real-time assessment of food freshness
537 in refrigerators based on a miniaturized electronic nose. *Anal. Methods* **2018**, *10*, 4741–4749.

538 32. Ramírez, H.L.; Soriano, A.; Gómez, S.; Iranzo, J.U.; Briones, A.I. Evaluation of the Food Sniffer electronic
539 nose for assessing the shelf life of fresh pork meat compared to physicochemical measurements of meat
540 quality. *Eur. Food Res. Technol.* **2018**, *244*, 1047–1055.

541 33. Popping, B.; De Dominicis, E.; Dante, M.; Nocetti, M. Identification of the Geographic Origin of
542 Parmigiano Reggiano (P.D.O.) Cheeses Deploying Non-Targeted Mass Spectrometry and
543 Chemometrics. *Foods* **2017**, *6*.

544 34. Maout, P. Le; Wojkiewicz, J.-L.; Redon, N.; Lahuec, C.; Seguin, F.; Dupont, L.; Mikhaylov, S.; Noskov,
545 Y.; Ogurtsov, N.; Pud, A. Polyaniline nanocomposites based sensor array for breath ammonia analysis.
546 Portable e-nose approach to non-invasive diagnosis of chronic kidney disease. *Sensors Actuators B Chem.*
547 **2018**, *274*, 616–626.

548 35. Vergara, A.; Fonollosa, J.; Mahiques, J.; Trincavelli, M.; Rulkov, N.; Huerta, R. On the performance of
549 gas sensor arrays in open sampling systems using Inhibitory Support Vector Machines. *Sensors Actuators*
550 *B Chem.* **2013**, *185*, 462–477.

551 36. Magna, G.; Zor, S.D.; Catini, A.; Capuano, R.; Basoli, F.; Martinelli, E.; Paolesse, R.; Natale, C. Di Surface
552 arrangement dependent selectivity of porphyrins gas sensors. *Sensors Actuators B Chem.* **2017**, *251*, 524–
553 532.

554 37. Catini, A.; Kumar, R.; Capuano, R.; Martinelli, E.; Paolesse, R.; Di Natale, C. An Exploration of the Metal
555 Dependent Selectivity of a Metalloporphyrins Coated Quartz Microbalances Array. *Sensors* **2016**, *16*.

556 38. Jeong, Y.; Shin, J.; Hong, Y.; Wu, M.; Hong, S.; Kwon, K.C.; Choi, S.; Lee, T.; Jang, H.W.; Lee, J.-H. Gas
557 sensing characteristics of the FET-type gas sensor having inkjet-printed WS2 sensing layer. *Solid. State.*
558 *Electron.* **2019**, *153*, 27–32.

559 39. Natale, C. Di; Martinelli, E.; Paolesse, R.; D'Amico, A.; Filippini, D.; Lundström, I. An artificial olfaction
560 system based on the optical imaging of a large array of chemical reporters. *Sensors Actuators B Chem.*
561 **2009**, *142*, 412–417.

562 40. Tonezzer, M.; Dang, L.T.T.; Tran, H.Q.; Iannotta, S. Multiselective visual gas sensor using nickel oxide
563 nanowires as chemiresistor. *Sensors Actuators B Chem.* **2018**, *255*, 2785–2793.

564 41. Yamazoe, N. New approaches for improving semiconductor gas sensors. *Sensors Actuators B Chem.* **1991**,
565 5, 7–19.

566 42. BARSAN, N.; KOZIEJ, D.; WEIMAR, U. Metal oxide-based gas sensor research: How to? *Sensors*
567 *Actuators B Chem.* **2007**, *121*, 18–35.

568 43. Comini, E.; Sberveglieri, G. Metal oxide nanowires as chemical sensors. *Mater. Today* **2010**, *13*, 36–44.

569 44. Rakshit, T.; Santra, S.; Manna, I.; Ray, S.K. Enhanced sensitivity and selectivity of brush-like SnO₂
570 nanowire/ZnO nanorod heterostructure based sensors for volatile organic compounds. *RSC Adv.* **2014**,
571 4, 36749.

572 45. Comini, E. Metal oxide nanowire chemical sensors: innovation and quality of life. *Mater. Today* **2016**, *19*,
573 559–567.

574 46. Romain, A.C.; Nicolas, J. Long term stability of metal oxide-based gas sensors for e-nose environmental
575 applications: An overview. *Sensors Actuators B Chem.* **2010**, *146*, 502–506.

576 47. Udrea, F.; Gardner, J.W.; Setiadi, D.; Covington, J.A.; Dogaru, T.; Lu, C.C.; Milne, W.I. Design and
577 simulations of SOI CMOS micro-hotplate gas sensors. *Sensors Actuators B Chem.* **2001**, *78*, 180–190.

578 48. Vergara, A.; Ramírez, J.L.; Llobet, E. Reducing power consumption via a discontinuous operation of
579 temperature-modulated micro-hotplate gas sensors: Application to the logistics chain of fruit. *Sensors*
580 *Actuators B Chem.* **2008**, *129*, 311–318.

581 49. Vergara, A.; Llobet, E.; Brezmes, J.; Ivanov, P.; Vilanova, X.; Gracia, I.; Cané, C.; Correig, X. Optimised
582 temperature modulation of metal oxide micro-hotplate gas sensors through multilevel pseudo random
583 sequences. *Sensors Actuators B Chem.* **2005**, *111–112*, 271–280.

584 50. Kunt, T.A.; McAvoy, T.J.; Cavicchi, R.E.; Semancik, S. Optimization of temperature programmed sensing
585 for gas identification using micro-hotplate sensors. *Sensors Actuators B Chem.* **1998**, *53*, 24–43.

586 51. Viricelle, J.-P.; Pijolat, C.; Riviere, B.; Rotureau, D.; Briand, D.; de Rooij, N.F. Compatibility of screen-
587 printing technology with micro-hotplate for gas sensor and solid oxide micro fuel cell development.
588 *Sensors Actuators B Chem.* **2006**, *118*, 263–268.

589 52. Adley, C.C. Past, Present and Future of Sensors in Food Production. *Foods* **2014**, *3*, 491–510.

590 53. Katsinis, G.; Rigas, F.; Doulia, D. Synergistic effect of chemical preservatives with ethanol on the
591 microbial shelf life of bread by factorial design. *Int. J. Food Sci. Technol.* **2008**, *43*, 208–215.

592 54. Kalathenos, P.; Russell, N.J. Ethanol as a food preservative. In *Food Preservatives*; Russell, N.J., Gould,
593 G.W., Eds.; Springer US: Boston, MA, 2003; pp. 196–217 ISBN 978-0-387-30042-9.

594 55. Doulia, D.; Katsinis, G.; Mougin, B. Prolongation of the microbial shelf life of wrapped part baked
595 baguettes. *Int. J. Food Prop.* **2000**, *3*, 447–457.

596 56. Jin, Q.; Qureshi, N.; Wang, H.; Huang, H. Acetone-butanol-ethanol (ABE) fermentation of soluble and
597 hydrolyzed sugars in apple pomace by Clostridium beijerinckii P260. *Fuel* **2019**, *244*, 536–544.

598 57. Bai, J.; Baker, S.M.; Goodrich-Schneider, R.M.; Montazeri, N.; Sarnoski, P.J. Aroma Profile
599 Characterization of Mahi-Mahi and Tuna for Determining Spoilage Using Purge and Trap Gas
600 Chromatography-Mass Spectrometry. *J. Food Sci.* **2019**, *84*, 481–489.

601 58. Rashid, A.; Javed, I.; Rasco, B.; Sablani, S.; Ayaz, M.; Ali, M.A.; Abdullah, M.; Imran, M.; Gondal, T.A.;
602 Afzal, M.I.; et al. Measurement of Off-Flavoring Volatile Compounds and Microbial Load as a Probable
603 Marker for Keeping Quality of Pasteurized Milk. *Appl. Sci.* **2019**, *9*.

604 59. Silfiana; Widowati; Putro, S.P.; Udjiani, T. Modeling of nitrogen transformation in an integrated multi-
605 trophic aquaculture ({IMTA}). *J. Phys. Conf. Ser.* **2018**, *983*, 12122.

606 60. Manikandan, V.S.; Liu, Z.; Chen, A. Simultaneous detection of hydrazine, sulfite, and nitrite based on a
607 nanoporous gold microelectrode. *J. Electroanal. Chem.* **2018**, *819*, 524–532.

608 61. Eytcheson, S.A.; LeBlanc, G.A. Hemoglobin Levels Modulate Nitrite Toxicity to *Daphnia magna*. *Sci.*
609 *Rep.* **2018**, *8*, 7172.

610 62. Hathazi, D.; Scurtu, F.; Bischin, C.; Mot, A.; Attia, A.A.A.; Kongsted, J.; Silaghi-Dumitrescu, R. The
611 Reaction of Oxy Hemoglobin with Nitrite: Mechanism, Antioxidant-Modulated Effect, and Implications
612 for Blood Substitute Evaluation. *Molecules* **2018**, *23*.

613 63. Junior, M.D.M.; Castanha, N.; dos Anjos, C.B.P.; Augusto, P.E.D.; Sarmento, S.B.S. Ozone technology as
614 an alternative to fermentative processes to improve the oven-expansion properties of cassava starch.

615 64. Khadre, M.A.; Yousef, A.E.; Kim, J.-G. Microbiological Aspects of Ozone Applications in Food: A
616 Review. *J. Food Sci.* **2001**, *66*, 1242–1252.
617 65. Sharma, R.R.; Demirci, A.; Puri, V.M.; Beuchat, L.R.; Fett, W.F. Modeling the inactivation of *Escherichia*
618 *coli* O157:H7 on inoculated alfalfa seeds during exposure to ozonated or electrolyzed oxidizing water.
619 *Trans. Am. Soc. Agric. Eng.* **2004**, *47*, 173–181.
620 66. Mohammad, Z.; Kalbasi-Ashtari, A.; Riskowski, G.; Castillo, A. Reduction of *Salmonella* and *Shiga* toxin-
621 producing *Escherichia coli* on alfalfa seeds and sprouts using an ozone generating system. *Int. J. Food*
622 *Microbiol.* **2019**, *289*, 57–63.
623 67. Shah, N.N.A.K.; Supian, N.A.M.; Hussein, N.A. Disinfectant of pummelo (*Citrus Grandis* L. Osbeck)
624 fruit juice using gaseous ozone. *J. Food Sci. Technol.* **2019**, *56*, 262–272.
625 68. Evrendilek, G.A.; Ozdemir, P. Effect of various forms of non-thermal treatment of the quality and safety
626 in carrots. *LWT* **2019**, *105*, 344–354.
627 69. Abbatangelo, M.; Núñez-Carmona, E.; Sberveglieri, V. Application of a novel S3 nanowire gas sensor
628 device in parallel with GC-MS for the identification of Parmigiano Reggiano from US and European
629 competitors. *J. Food Eng.* **2018**, *236*, 36–43.
630 70. Zappa, D.; Bertuna, A.; Comini, E.; Molinari, M.; Poli, N.; Sberveglieri, G. Tungsten oxide nanowires for
631 chemical detection. *Anal. Methods* **2015**, *7*, 2203–2209.
632 71. Zappa, D.; Comini, E.; Zamani, R.; Arbiol, J.; Morante, J.R.; Sberveglieri, G. Preparation of copper oxide
633 nanowire-based conductometric chemical sensors. *Sensors Actuators B Chem.* **2013**, *182*, 7–15.
634 72. Roper, S.M.; Davis, S.H.; Norris, S.A.; Golovin, A.A.; Voorhees, P.W.; Weiss, M. Steady growth of
635 nanowires via the vapor-liquid-solid method. *J. Appl. Phys.* **2007**, *102*, 034304.
636 73. Her, Y.-C.; Chiang, C.-K.; Jean, S.-T.; Huang, S.-L. Self-catalytic growth of hierarchical In_2O_3
637 nanostructures on SnO_2 nanowires and their CO sensing properties. *CrystEngComm* **2012**, *14*, 1296–1300.
638 74. Kaur, N.; Zappa, D.; Ferroni, M.; Poli, N.; Campanini, M.; Negrea, R.; Comini, E. Branch-like NiO/ZnO
639 heterostructures for VOC sensing. *Sensors Actuators, B Chem.* **2018**, *262*.
640 75. Kolasinski, K.W. Catalytic growth of nanowires: Vapor–liquid–solid, vapor–solid–solid, solution–
641 liquid–solid and solid–liquid–solid growth. *Curr. Opin. Solid State Mater. Sci.* **2006**, *10*, 182–191.
642 76. Comini, E.; Faglia, G.; Sberveglieri, G.; Pan, Z.; Wang, Z.L. Stable and highly sensitive gas sensors based
643 on semiconducting oxide nanobelts. *Appl. Phys. Lett.* **2002**, *81*, 1869–1871.
644 77. Korotcenkov, G.; Cho, B.K. Instability of metal oxide-based conductometric gas sensors and approaches
645 to stability improvement (short survey). *Sensors Actuators B Chem.* **2011**, *156*, 527–538.
646 78. Puigcorb, J.; Vogel, D.; Michel, B.; Vil, A.; Gracia, I.; Can, C.; Morante, J.R. High temperature degradation
647 of Pt/Ti electrodes in micro-hotplate gas sensors. *J. Micromechanics Microengineering* **2003**, *13*, S119–S124.
648 79. Gardner, J.W.; Pike, A.; de Rooij, N.F.; Koudelka-Hep, M.; Clerc, P.A.; Hierlemann, A.; Göpel, W.
649 Integrated array sensor for detecting organic solvents. *Sensors Actuators B Chem.* **1995**, *26*, 135–139.
650 80. Sberveglieri, G.; Faglia, G.; Perego, C.; Nelli, P.; Marks, R.N.; Virgili, T.; Taliani, C.; Zamboni, R.
651 Hydrogen and humidity sensing properties of C60 thin films. *Synth. Met.* **1996**, *77*, 273–275.
652 81. Deluca, M.; Wimmer-Teubbenbacher, R.; Mitterhuber, L.; Mader, J.; Rohracher, K.; Holzer, M.; Köck, A.
653 In-Situ Temperature Measurement on CMOS Integrated Micro-Hotplates for Gas Sensing Devices.
654 *Sensors* **2019**, *19*.
655 82. Sadek, A.Z.; Zheng, H.; Breedon, M.; Bansal, V.; Bhargava, S.K.; Latham, K.; Zhu, J.; Yu, L.; Hu, Z.;
656 Spizzirri, P.G.; et al. High-Temperature Anodized WO_3 Nanoplatelet Films for Photosensitive Devices.

658 *Langmuir* **2009**, *25*, 9545–9551.

659 83. Zheng, H.; Tachibana, Y.; Kalantar-zadeh, K. Dye-Sensitized Solar Cells Based on WO₃. *Langmuir* **2010**,
660 *26*, 19148–19152.

661 84. Hagemann, H.; Bill, H.; sadowski, W.; Walker, E.; François, M. Raman spectra of single crystal CuO.
662 *Solid State Commun.* **1990**, *73*, 447–451.

663 85. Marina N. Rumyantseva, †; Alexander M. Gaskov, †; N. Rosman, ‡; T. Pagnier, ‡ and; Juan R. Morante*,
664 § Raman Surface Vibration Modes in Nanocrystalline SnO₂: Correlation with Gas Sensor Performances.
665 **2005**.

666 86. Chiu, S.-W.; Tang, K.-T. Towards a Chemiresistive Sensor-Integrated Electronic Nose: A Review. *Sensors*
667 **2013**, *13*, 14214–14247.

668 87. Barsan, N.; Simion, C.; Heine, T.; Pokhrel, S.; Weimar, U. Modeling of sensing and transduction for p-
669 type semiconducting metal oxide based gas sensors. *J. Electroceramics* **2010**, *25*, 11–19.

670 88. Arafat, M.M.; Dinan, B.; Akbar, S.A.; Haseeb, A.S.M.A. Gas Sensors Based on One Dimensional
671 Nanostructured Metal-Oxides: A Review. *Sensors* **2012**, *12*, 7207–7258.

672 89. Andringa, A.-M.; Smits, E.C.P.; Klootwijk, J.H.; de Leeuw, D.M. Real-time NO₂ detection at ppb level
673 with ZnO field-effect transistors. *Sensors Actuators B Chem.* **2013**, *181*, 668–673.

674 90. Zeng, J.; Hu, M.; Wang, W.; Chen, H.; Qin, Y. NO₂-sensing properties of porous WO₃ gas sensor based
675 on anodized sputtered tungsten thin film. *Sensors Actuators B Chem.* **2012**, *161*, 447–452.

676 91. Llobet, E.; Brezmes, J.; Ionescu, R.; Vilanova, X.; Al-Khalifa, S.; Gardner, J.W.; Bârsan, N.; Correig, X.
677 Wavelet transform and fuzzy ARTMAP-based pattern recognition for fast gas identification using a
678 micro-hotplate gas sensor. *Sensors Actuators B Chem.* **2002**, *83*, 238–244.

679