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Abstract: In recent years, Parkinson's Disease (PD) as a progressive syndrome of the 

nervous system has become highly prevalent worldwide. In this study, a novel hybrid 

technique established by integrating a Multi-layer Perceptron Neural Network (MLP) with 

the Biogeography-based Optimization (BBO) to classify PD based on a series of 

biomedical voice measurements. BBO is employed to determine the optimal MLP 

parameters and boost prediction accuracy. The inputs comprised of 22 biomedical voice 

measurements. The proposed approach detects two PD statuses: 0– disease status and 1– 

reasonable control status. The performance of proposed methods compared with PSO, GA, 

ACO and ES method. The outcomes affirm that the MLP-BBO model exhibits higher 

precision and suitability for PD detection. The proposed diagnosis system as a type of 

speech algorithm detects early Parkinson’s symptoms, and consequently, it served as a 

promising new robust tool with excellent PD diagnosis performance. 

 

Keywords: Parkinson’s disease (PD); Biomedical voice measurements; Multi-layer 

Perceptron Neural Network (MLP); Biogeography-based Optimization (BBO); Medical 

diagnosis.  Bio-inspired computation 

 

1 Introduction 

Parkinson's disease (PD) is a type of neurological disorder initiating by the death of cells 

in the midbrain. There is a lack of a specific method to diagnose PD, but this disease could 

be typically diagnosed through the medical history, evaluating the signs and symptoms, 
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and neurological and physical analysis of the patient. At present, there is no specific 

treatment for this health problem, but it is feasible to alleviate the symptoms and slow down 

its progress remarkably. Investigations have proven that there is around ninety percent of 

the individuals with PD exhibit vocal impairment (Ho, Iansek et al. 1999). Subjects with 

PD frequently suffer from different vocal impairment symptoms recognized as dysphonia. 

The symphonic signs of PD are important diagnosis measures. Therefore, dysphonic 

assessments have been considered as the reliable tools for monitoring and detection of PD 

over the past years (Rahn, Chou et al. 2007, Little, McSharry et al. 2009).  

 

PD diagnosed by clinical features. However, several brain imaging methods comprising 

positron emission tomography (PET), single photon emission computed tomography 

(SPECT) and magnetic resonance imaging (MRI) are widely used for PD diagnosis 

(Pyatigorskaya, Gallea et al. 2014). Mainly, implications of MRI, which provides 

numerous applicant biomarkers and have the possibility of notifying about the disease 

process, have primarily been investigated. Zeng et al. (2017) have used an MVPA 

(Multivariate pattern analysis) method for 45 potential PD patients and 40 healthy subjects 

as the control group, to investigate the probable alterations in cerebellar gray matter. Based 

on structural MRI scans, this method combines SVM with voxel-based morphometry to 

detect morphological abnormalities in the Cerebellum. Also, Cherubini et al. (Cherubini, 

Morelli et al. 2014) utilized SVMs to distinguish 57 probable PD patients from 21 PSP 

(Progressive Supranuclear Palsy) patients based on their MRI scans.  

 

Apart from analyzing these conventional biomarkers for PD diagnosis, several studies have 

explored that speech and gait disorders associated with the PD. Besides, several algorithms 

and techniques have applied for PD detection. These techniques are mainly classified as 

gait-based and speech-based methods (Shrivastava, Shukla et al. 2017). Speech and gait 

disorders are characterized as Axial parkinsonian symptoms (Ricciardi, Ebreo et al. 2016). 

Gait is signaled as a sensitive indicator for PD progression as PD patients exhibit altered 

patterns of gait with increased cadence and reduced stride lengths. The specific gait 

patterns, gait initiation and freezing gait (FOG) characterized as indicators of PD. Gait-

based PD detection methods utilize different image and video processing methods for PD 

detection through the subject’s gait assessment. Speech disorders in PD patients are 

dissimilar and heterogeneous, comprising hypo-, hyperkinetic and repetitive abnormalities. 

Recent studies have revealed that some form of vocal impairment detected in more than 

90% of PD patients. In general, there are two ways to analyze the speech status: (1) 

subjective: by speech therapist (perceptive analysis) and (2) objective: by analyzing speech 

signals through acoustic analysis (Brabenec, Mekyska et al. 2017). Speech-based PD 

detection methods mainly use the Unified Parkinson’s Disease Rating Scale (UPDRS). 

Several machine learning models have established for predicting the UPDRS score of the 

subject by using speech signals. These techniques can provide non-intrusive means of 

monitoring the onset and development of the PD conditions. 

 

Several researchers have applied computational techniques for detection of PD. Little et al. 

(Little, McSharry et al. 2009) employed a support vector machine (SVM) classifier with 

Gaussian radial basis kernel functions for PD detection. They also attempted to choose the 
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optimum subset of features. Das (Das 2010) compared various types of classification 

approaches for effective PD diagnosis, with the prime objective being to discern healthy 

people. According to the results, the neural network classifier produces the most accurate 

outcomes. Guo et al. (Guo, Bhattacharya et al. 2010) hybridized genetic programming with 

the expectation-maximization algorithm to develop the GP-EM approach for detecting 

healthy individuals and those with PD. The researchers found that GP-EM is highly 

effective. Hossein et al. (Hossen, Muthuraman et al. 2010) employed wavelet-

decomposition with a soft-decision algorithm to diagnose the Parkinson tremor from 

essential tremor. Luukka (Luukka 2011) applied a feature selection approach based on 

fuzzy entropy measures together with the similarity classifier for predicting PD and the 

results indicated a notable prediction enhancement by using the proposed method. Astrӧm 

and Koker (Åström and Koker 2011) utilized a parallel neural network technique to 

increase the precision of PD predictions. Based on their results, substantial prediction 

improvements achieved by using the proposed model. Chen et al. (Chen, Huang et al. 2013) 

applied the fuzzy k-nearest neighbor (FKNN) technique to develop an efficient model for 

PD diagnosis. By making a comparison, the researchers demonstrated that FKNN 

outperforms SVM in PD prediction. Daliri (Daliri 2013) proposed a chi-square distance 

kernel-based SVM approach to diagnosing PD using gait signals. Based on the assessments 

of 93 individuals with PD and 73 healthy people, they concluded that the technique could 

be used successfully for PD diagnosis. Hariharan et al. (Hariharan, Polat et al. 2014) 

acquired a hybrid intelligent approach comprising feature pre-processing, feature 

reduction/selection and classification. Their results signified that the proposed scheme is 

capable of precise classification for PD detection. 

 

Lahmiri et al. (Lahmiri 2017) have also investigated the statistical characteristics and 

effectiveness of diverse types of dysphonia assessments in PD detection. Results of the 

statistical tests concluded that all dysphonia assessments usually show diverse variability 

among PD patients and healthy candidates. The results of classification acquired through 

SVM classifier, indicated that in contrast to the other dysphonia measures, SVM trained 

with VFFS produced the maximum accurateness of 88%, while SVM trained with NLDCM 

resulted in the minimum precision of 80.82%. A three-phase methodology by Travieso et 

al. (Travieso, Alonso et al. 2017) aimed at automatic detection of voice disease. This study 

advocates the transformation of the feature space by a Discrete Hidden Markov Model 

(DHMM) first and then application of RBF-SVM classifier. Wu Y. et al. (Wu, Chen et al. 

2017) proposed to use an interclass probability risk (ICPR) technique for the vocal 

parameter selection. Subsequently, they have compared three different non-linear 

classifiers including SVM, GLRA (generalized logistic regression analysis) and Bagging 

ensemble algorithms, to distinguish the voice patterns of PD patients and healthy subjects. 

The experimental results demonstrated better classification accuracy by SVM and Bagging 

ensemble classifiers (90.77%) with ICPR. Yang et al. (Yang, Zheng et al. 2014) used two 

feature dimensionality reduction methods, including kernel principal component analysis 

(KPCA) and sequential forward selection (SFS). They selected four vocal measures 

including MDVP: F0, MDVP: Jitter (%), DFA, spread2 and employed MAP (Maximum A 

Posteriori) for classification. In contrary to little et al. (Little, McSharry et al. 2009), who 

executed rescaling of feature values from -1 to 1, authors have argued that for such data 
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set, input data normalization is not required. In their opinion, normalization or rescaling 

may not be robust for the minor data set, as the full vocal records are less than 200. New 

recruited voice records may require another rescaling session, and consequently, 

consuming more computation time. 

Moreover, physical magnitude information regarding voice measurements is suspected to 

be lost after data normalization. Problems of small data set mainly revolve around high 

variance where overfitting, outliers, and noise emerge considered as significant concerns. 

To avoid overfitting, Tsanas et al. (Tsanas, Little et al. 2012) suggested using cross-

validation for an approximation of the true generalization performance on the unknown 

cases. 

 

Most of the existing researches on PD detection, primarily focus on the accuracy of 

prediction and reliability of the diagnosis. However, up to this time, too little attention has 

been paid to investigate the time efficiency and computational complexity of different 

classification mechanisms for PD detection. Islam et al. (Islam, Parvez et al. 2014) 

investigated Feed forward back propagation based on ANN (FBANN), SVM and Random 

tree classifiers for PD detection using dysphonia measures. Their results signify that 

FBANN demonstrates higher sensitivity with relatively less execution time. Generally, an 

appropriate feature selection method can effectively tackle both computation times and 

cure-of-dimension problems. In the context of Firefly-SVM, Chao et al. (Chao and Horng 

2015) advocated that convergence with the most optimal solution within a limited time is 

possible when firefly-SVM associated with the feature selection.  

 

SVM is known as a machine learning system which has attained considerable significance 

in applications linked to the environment (Jain, Garibaldi et al. 2009, Ornella and Tapia 

2010). SVM is a learning algorithm that applies high-dimensional features. SVM model 

precision depends on parameter determination (Chapelle, Vapnik et al. 2002). Although 

structured strategies for parameter selection are vital, model parameter alignment is also 

required. To choose the SVM model parameters, scientists have utilized several standard 

optimization algorithms. However, the outcomes are not very efficient due to parameter 

complexity (Lee and Verri 2003, Friedrichs and Igel 2005, Bao, Hu et al. 2013). The grid 

search algorithm (Lorena and De Carvalho 2008) and decent gradient algorithm (Chung, 

Kao et al. 2003, Hsu, Chang et al. 2003) are two algorithms which are applied before. The 

computational complication is a main disadvantage of the grid search algorithm; therefore, 

it utilized for selecting a few parameters. 

Moreover, the grid search algorithm is commonly disposed to the local minima. Most of 

the optimization complications have various local solutions, but advanced algorithms 

appear to be the optimum means of solving these as they offer global solutions. Recently, 

the optimization techniques applied for classification (Mosavi and Vaezipour 2012),  and 

(Brunato and Battiti 2013).  

 

The Multi-Layer Perceptron (MLP) applied for numerous practical complications. The 

training on applications required for using MLP, which usually might encounter different 

complications such as entrapment in local minima, convergence speed, and sensitivity to 

initialization. In this study, authors propose the Biogeography-Based Optimization (BBO) 
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algorithm for training MLPs to diminish such complications. Their experimental results on 

several classification datasets such as balloon, iris, breast cancer, heart problems, and 

several approximating datasets such as sigmoid, cosine, sine, sphere, Griewank, and 

Rosenbrock demonstrate that BBO has much more ability to escape local minima in 

comparison with PSO, GA, ACO, ES, and PBIL (Mirjalili, Mirjalili et al. 2014).  

 

In one of the most recent studies (Pham, Nguyen et al. 2019), the researchers proposed a 

hybrid machine learning method known as MLP-BBO for estimating the coefficient of 

consolidation as an essential parameter of soft soil. This technique is according to the 

Multi-layer Perceptron Neural Network (MLP) and Biogeography-based Optimization 

(BBO). For comparing the performance of the models applied in their study, standard 

machine learning methods applied including Backpropagation Multi-layer Perceptron 

Neural Networks, Radial Basis Functions Neural Networks, Gaussian Process, M5 Tree, 

and Support Vector Regression. The outcomes of that research model indicated that the 

recommended MLP-BBO technique has the maximum predictive competency. 

 

In another study by Das et al. (Das, Pattnaik et al. 2014), the researchers have applied 

Artificial Neural Network (ANN) trained with Particle Swarm Optimization (PSO) for 

solving the channel equalization problems. According to the proposed method, they used 

PSO on Artificial Neural Networks (ANN) to find optimal weights of the network on 

training step, and they tried to consider a suitable network topology and transfer 

performance of the neuron. The PSO algorithm can optimize the variables, weights and 

network parameters. Hence, this study emphases on improving the weights, transfer 

function, and topology of an ANN which made for channel equalization. In the current 

study, it demonstrated that the equalizer perform better than other ANN equalizer in all 

noise conditions. 

 

Blum & Socha in 2005 (Blum and Socha 2005) proposed an ACO algorithm for the training 

of feed-forward neural networks. The algorithm function evaluated by pattern classification 

complications related to the medical field. They compared their algorithms to several feed-

forward neural network training, called BP, LM and genetic algorithm. The functionality 

of the ACO was as good as the performance of other NN training algorithms. Although the 

ACO_NN method was initially presented to solve the distinct optimization issues, in recent 

times, it applied for the improvement of algorithms used for the endless optimization issues. 

 

Moreover, Chandwani et al. (Chandwani, Agrawal et al. 2015) applied hybrid model of 

Artificial Neural Networks (ANN) and Genetic Algorithms (GA) for modelling slump of 

Ready Mix Concrete (RMC) related to its design mix constituents viz., cement, fly ash, 

sand, coarse aggregates, admixture and water-binder proportion. The recommended hybrid 

approach joined GA to develop the optimum set of first neural network weights and 

predispositions that were later fine-tuned utilizing Lavenberg Marquardt back-propagation 

training algorithm. Their research indicated that the hybridizing ANN with GA, the 

convergence rate of ANN and its estimating accurateness upgraded.  
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In the current study, the MLP is combined with BBO into a hybrid method (MLP-BBO) to 

detect PD from 22 biomedical voice assessments. BBO is employed to find out the optimal 

MLP parameters. The primary objective of this research is to examine the appropriateness 

of the suggested MLP-BBO approach for PD detection. To verify the MLP-PSO method’s 

precision its capability compared with existing optimization methods.  

 

2 Materials and Methods 

2.1 Data Description 

For the present research, an investigation was carried out using a PD dataset obtained from 

the UCI machine learning repository (http://archive.ics.uci.edu/ml/datasets/Parkinsons, 

last accessed: August 2014). The objective of the data is to diagnose healthy individuals 

and people suffering from PD, providing the outcomes of several medical examinations 

performed on the patients. The utilized data includes a collection of biomedical voice 

assessments related to 31 individuals in which 23 of them suffer from PD. The period from 

PD diagnosis varies between 0 and 28 years. The subjects are in the 46-85 years old range, 

with an average of 65.8. Each candidate delivered a middling of six vowel phonations 

(yielding 195 testers entirely), and the duration of each phonation was 36 seconds. Further 

information on this dataset presented in the paper published by Little et al. (Little, 

McSharry et al. 2009). Remarkably, all features are real and no missing and unreliable 

values exist in the used dataset. The brief explanations about the dataset can be found from 

the Little et al. (Little, McSharry et al. 2009). 

 
 

2.2 Biogeography-Based Optimization_ Multi-Layer Perceptron (BBO_MLP) 

The basic idea of Biogeography-Based Optimization algorithm was motivated by 

biogeography, referring to the science of biological creatures related to the geographical 

spreading over time and space (Simon 2008) . The development of ecosystems to get to a 

steady condition while making an allowance for diverse species (including predator, prey, 

etc.), and the influence of migration and mutation was the leading motivation for the BBO 

algorithm. BBO algorithm uses several search agents known as habitats as chromosomes 

in Gas, and a Habitat Suitability Index (HSI) states the general fitness of a habitat. The 

greater the HSI, the higher fit the habitat. The habitats develop over time according to the 

three principles as below (Ma, Simon et al. 2013).  

▪ Habitants living in environments with more HSI are more probable to immigrate 

to territories with less HSI. 

▪ Environments with less HSI are more likely to be fascinating for new immigrant 

habitats from those with more HSI. 

▪ Random alterations may take place in the habitats irrespective to their HSI values. 

 

The BBO algorithm begins with a random set of habitats. Every habitat has dissimilar 

habitats that represent the number of variables of a particular issue. Emigration (𝜇k), 

immigration (𝜆k) and mutation (mn) for each habitat expressed as functions of the number 

of habitats as below: 

𝜇𝑛 =
𝐸×𝑛

𝑁
                                          (1) 
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𝜆𝑘 = 1 ×
1−𝑛

𝑁
                                    (2) 

𝑚𝑛 = 𝑀 × (1 −
𝑝𝑛

𝑝𝑚𝑎𝑥
)                       (3) 

Where n is the existing number of habitats, N is the acceptable maximum number of 

habitats which is raised by HSI (the more appropriate the habitat, the greater number of 

habitats), E is the maximum emigration rate, and I indicates the maximum immigration 

rate. M is an original value for mutation described by the user, pn is the mutation possibility 

of the nth habitat, and pmax = argmax(pn), n = 1,2,. . .,N. 

The overall stages of the BBO algorithm is: 

 

1. Initializing step: a random set of habitats 

2. do{ 

3.        calculating HIS of each habitat 

4.        updating the rate of Emigration (𝜇k), immigration (𝜆k) and mutation (mn) for 

each habitat 

5.        the non_elite habitats are migrated and mutated based on the updated rates 

6.        selecting the best habitats as elites for next generation} 

7. While (non_satisfying the terminated criterion) 

8. Returning the best solution (habitats) 

 

For further details about the algorithm refer to (Simon 2008). 

 

2.3 BBO for MLP 

The BBO algorithm used for an MLP with two main phases (Mirjalili, Mirjalili et al. 2014) : 

1. Demonstration strategy: the weights and biases must be expressed in the proper 

format (habitats) for BBO. 

For demonstrating the MLP training problem for BBO, the vector used as habitat 

formation. This vector contains weights and biases in MLP network. For instance, 

the last vector of the MLP shown in Fig .1 as below is a sample of this encoding 

strategy: 

Habitat= [w13 w23 w14 w24 …. w22 44 w22 44  𝜃1 𝜃2 𝜃3 𝜃4…]) wij: NN weight between 

neuron I and j and  𝜃𝑖 bias for neuron i 
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Fig .1 MLP with three layers [3] 

2. HSI: a fitness function using the error of the MLP would be described to estimate 

habitats. 

After demonstrating MLPs in the form of habitat vectors, an HSI formulation 

(fitness function) is prerequisite for calculating each of them. The Mean Square 

Error (MSE) for all training models used as a fitness function (MSE 

(habitat)=HIS(habitat)):  

𝐸 = ∑
∑ (𝑜𝑖

𝑘−𝑑𝑖
𝑘)2𝑚

𝑖=1

𝑞

𝑞
𝑘=1            (4) 

where q is the number of training samples, m is the number of outputs, 𝑑𝑖
𝑘 is the 

desired output of the ith input unit when the kth training sample used and 𝑜𝑖
𝑘  is 

the actual output of the ith input unit when the kth training sample appears in the 

input. The BBO_MLP algorithm explained in Fig .2: 
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Fig .2 Flow chart of BBO_MLP Method 

MLP-BBO is made in six phases as follow:  

▪ Initial step: making a random set of MLPs according to the outlined number of 

habitats 

▪ Calculating MSE for each MLP 

▪ Update emigration 𝜇𝑛 =
𝐸×𝑛

𝑁
, immigration  𝜆𝑘 = 1 ×

1−𝑛

𝑁
, and mutation 𝑚𝑛 =

𝑀 × (1 −
𝑝𝑛

𝑝𝑚𝑎𝑥
)rates                                   

▪ The MLP are united based on emigration and immigration (create vector [w13 w23 

w14 w24 …. w22 44 w22 44  𝜃1 𝜃2 𝜃3 𝜃4…]) wij: NN weight between neuron I and j 

and  𝜃𝑖 bias for neuron i 

▪ Each MLP mutated based on its habitat mutation rate 

▪ Elitism step: select the best MLPs with low MSE as elites for next generation 

▪ satisfaction of a termination criterion (if no satisfaction algorithm repeated as 

flowchart)  

▪ Return best MLP with minimum MSE(HSI) 

  

2.4 Input Parameters 
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The aptitude of BBO-MLP to produce reliable predictions is reliant on input parameter 

selection. In the current research, 22 biomedical voice measurements were used to produce 

the BBO-MLP model. The descriptive statistics including minimum, maximum and mean 

values, standard deviation and the range of values of the datasets applied in this research 

presented in Table 1.  

 

Table 1: Descriptive statistics for the data sets used 

 

Variable   Statistics   

 Min Max Mean Standard 

deviation 

Range 

In1 88.333 260.105 154.2286 41.3901 171.772 

In2 102.145 592.03 197.1049 91.4915 489.885 

In3 65.476 239.17 116.3246 43.5214 173.694 

In4 0.0017 0.0332 0.0062 0.0048 0.0315 

In5 0.000007 0.00026 0.000044 0.0000348 0.000253 

In6 0.0007 0.0214 0.0033 0.003 0.0207 

In7 0.0009 0.0196 0.0034 0.0028 0.0187 

In8 0.002 0.0643 0.0099 0.0089 0.0623 

In9 0.0095 0.1191 0.0297 0.0189 0.1096 

In10 0.085 1.302 0.2823 0.1949 1.217 

In11  0.0046 0.0565 0.0157 0.0102 0.0519 

In12  0.0057 0.0794 0.0179 0.012 0.0737 

In13 0.0072 0.1378 0.0241 0.0169 0.1306 

In14 0.0136 0.1694 0.047 0.0305 0.1558 

In15 0.0006 0.3148 0.0248 0.0404 0.3142 

In16 8.441 33.047 21.886 4.4258 24.606 

In17 0.2566 0.6852 0.4985 0.1039 0.4286 

In18 0.5743 0.8253 0.7181 0.0553 0.251 

In19 ‒7.965 ‒2.434 ‒5.6844 1.0902 5.531 

In20 0.0063 0.4505 0.2265 0.0834 0.4442 

In21 1.4233 3.6712 2.3818 0.3828 2.2479 

In22 0.0445 0.5274      0.2066            0.0901      0.4829 

 

Table 2 shows the user-defined parameters for MLP-BBO and PSO, ACO, GA and ES for 

PD detection.  
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Table 2 shows that the best experimental result achieved with the parameters value 200 for 

population size, 250 for the maximum number of generation, 0.008 for mutation 

probability, 1 for habitat modification probability and splitting 70-30 percentage of cross-

validation for Train/Test. As seen in table 2, these set of parameters regularization leads to 

the accuracy of 86 percentage. 

Therefore, the best result on multi-layer perceptron based on BBO algorithm was obtained 

according to the regularization of MLP_BBO parameters.  

 

3. Results and Discussion 

3.1 Statistical performance Analysis  

The accuracy formula is served as the reliable statistical parameters to appraise the 

capability of the MLP-PSO model on a more noticeable and individual basis. Table 5 offers 

the values achieved for accuracy during training and testing. It is evident that the models’ 

performance reduced from training to testing. According to the statistical results presented 

in Table 4, the proposed hybrid MLP-PSO model naturally exhibits greater PD detection 

capability and precision compared to the existing optimization model. 

The BBO algorithm is equated with PSO, GA, ACO, ES, and PBIL over these benchmark 

datasets to verify its performance. It is expected that every habitat was randomly adjusted 

in the range. The population size is 50 for Parkinson dataset.  Table 3 shows how the 

datasets are allocated in terms of training and test sets. 

 

Table 3 dataset in terms of training and testing 

Classification 

Dataset 

Number of 

feature 

Number of training 

samples 

Number of testing 

samples 

Number 

of classes 

Parkinson 22 

50% 

70% 

80% 

90% 

98 

136 

156 

175 

50% 

30% 

20% 

10% 

97 

59 

39 

20 

2 

 

In this study, the researchers have chosen the paramount trained MLP among ten runs, and 

then they applied it to categorize or estimate the test set. To deliver an unbiased association, 

the whole algorithms ended when a maximum amount of iterations (250) achieved. Lastly, 

Table 2: Parameter Regularization 

Population Size Maximum number of 
Generations 

Mutation probability Habitat modification 
probability [0 1] 

Percentage of cross-
validation for 

Train/Test 

Parameter 
value 

Accuracy Parameter 
value 

Accuracy Parameter 
value 

Accuracy Parameter 
value 

Accuracy Parameter 
value 

Accuracy 

20 
50 
150 
200 
300 

82 % 
84 % 
82 % 
86 % 
76 % 

50 
150 
250 
350 
500 

1000 

82 % 
84 % 
86 % 
84 % 
84 % 
84 % 

0.001 
0.005 
0.008 
0.01 
0.05 

68 % 
84 % 
86 % 
82 % 
82 % 

0.6 
0.8 
1 

74 % 
78 % 
86 % 

50-50 
70-30 
80-20 
90-10 

76.84 % 
86 % 
80 % 
84 % 
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the merging actions are correspondingly considered in the outcomes to deliver a complete 

assessment. It reminded that min-max standardization applied for the datasets comprising 

data with diverse ranges. Finally, the result of MLP_BBO in terms of accuracy rate 

illustrated in Table 4.  

 

 Table 4: Comparable Algorithms 

Method 
BBO_ML

P 

PSO_ML

P 

GA_ML

P 

ACO_ML

P 

ES_ML

P 

SVM_ML

P 

Accurac

y 
86 84 82 82 82 81 

Table 4 compares the six-optimization algorithm in terms of accuracy of the multi-layer 

perceptron (MLP). The above table indicates that the accuracy of BBO_MLP is more than 

the other five optimization MLP algorithm. The accuracy calculated as follow: 

  Accuracy = 
(TP+TN)

TP+TN+FP+FN
∗ 100                                   (5) 

where TP, TN, FP, and FN are true positive, true negative, false positive and false negative 

respectively. 

      

 

 

a b 

Fig 3a: The rate of error (RMSE) convergence and b. The rate of accuracy for several 

MLP based algorithm  

 

Figure 3a shows the MSE for each method of BBO, PSO, GA, ACO, and ES based on 

MLP. As it is evident in the figure, BBO method significantly decreases errors in 

comparison with other approaches. Also, the bar chart of the above figure (Fig 3b) indicates 
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that the MLP-BBO technique with an accuracy rate of 86% has offered better results 

compared with other developing methods. According to Fig 3b, the MLP-ACO, MLP-GA, 

and MLP-ES with the 82% had the same percentage of accuracy. Furthermore, in this study 

the recommended approach is examined on different activation functions such as sigmoid, 

linear, tanh, sin and Gaussian and the results are observed in Fig 4. 

 

 

  
a b 

 

Fig 4a: The rate of error (RMSE) convergence and b: The rate of accuracy for several 

activation functions on BBO_MLP algorithm  

Figure 4 shows that which activation functions have a better result in terms of high 

accuracy and low rate of RMSE error in BBO-MLP classification method. As it is evident 

in the Fig 4.a, sigmoid method significantly decreases errors in comparison with other 

activation functions in MLP. As it observed from the Fig 4.b, sigmoid activation functions 

with the 86% have better performance in comparison with other activation functions (Tanh: 

58%, Linear:56%, Gaussian:76% and Sin: 56%). 

 

4. Conclusion 

In this study, a hybrid approach proposed for the detection of Parkinson’s disease (PD) 

determined from biomedical voice measurements. To achieve this purpose, the MLP was 

combined with the BBO to develop the hybrid MLP-BBO method. MLP essentially 

achieves structural minimization, whereas other traditional optimization approaches focus 

on error minimization and are much less efficient. 
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As mentioned above, due to the lack of performance in MLP, a set of processes known as 

“Meta-heuristic algorithms” could reach to a solution by frequently bringing up to date the 

applicant solution and assessing to an optimal result to a problematic issue, through 

improving the objective function. In this research, the MLP parameters are optimized 

utilizing BBO that through calculating its performance, it is inferred to outperform the 

MLP performance. 

 Through the method of merging BBO with MLP, the flashing actions of the fireflies could 

be conveyed to form an objective function that could be useful to adjust the parameters of 

MLP. By BBO, it recognized that the higher frequency of comparisons between the BBO 

to find the optimum location in the swarm, the superior the outcomes would be.  

The principal aim was to identify the suitability of the MLP-BBO method developed for 

detecting two PD statuses: 0 – disease status and 1 – reasonable control status. The accuracy 

of MLP-BBO with 86 percentage verified against the lower accuracy of PSO, GA, ACO 

and ES method. Accuracy was served to assess the MLP-BBO models’ PD detection 

performance statistically. The findings indicate that the MLP-BBO model developed in 

this study is more precise than PSO, ACO, GA, and ES in PD detection. Consequently, the 

proposed diagnosis system exhibits favorable precision and is supposed as a promising and 

appealing tool for detecting PD.  
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