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Abstract:  10 

XGBoost is recognized as an algorithm with exceptional predictive capacity. Models for a binary 11 
response indicating the existence of accident claims vs. no claims can be used to identify the 12 
determinants of traffic accidents. We compare the relative performances of logistic regression and 13 
XGBoost approaches for predicting the existence of accident claims using telematics data. The 14 
dataset contains information from an insurance company about individuals’ driving patterns – 15 
including total annual distance driven and percentage of total distance driven in urban areas. Our 16 
findings show that logistic regression is a suitable model given its interpretability and good 17 
predictive capacity. XGBoost requires numerous model-tuning procedures to match the predictive 18 
performance of the logistic regression model and greater effort as regards interpretation. 19 

Keywords: dichotomous response; predictive model; tree boosting; GLM; machine learning 20 
 21 

1. Introduction 22 
Predicting the occurrence of accident claims in motor insurance lies at the heart of premium 23 

calculation, but with the development of new artificial intelligence methods, the question of choosing a 24 
suitable model has yet to be completely solved. In this article, we consider the recently proposed 25 
methods of XGBoost (Chen and Guestrin 2016) and logistic regression and compare their predictive 26 
performance in a sample of insured drivers, for whom we have telematic information.  27 

We discuss the advantages and disadvantages of XGBoost compared to logistic regression and we 28 
show that a slightly improved predictive power is only obtained with the XGBoost method, but this 29 
complicates the interpretation of the impact of covariates on the expected response. In the case of 30 
automobile insurance, where the premium calculation is regulated and has to be fully specified, the 31 
weight of each risk factor in the final price needs to be disclosed and the connection between the 32 
observed covariate value and the estimated probability of a claim needs to be shown. If these 33 
conditions are not met, the regulating authority may deny the insurance company the right to 34 
commercialize that product. We discuss, nevertheless, why the use of an XGBoost algorithm remains 35 
interesting for actuaries and how methods both old and new might be combined for optimum results. 36 
We do not examine any other boosting methods here and remind readers that excellent descriptions 37 
can be found in Lee and Lin (2018), while extensions to high dimensional datasets are presented in 38 
Lee and Antonio (2016), both of which present cases studies of insurance applications. Many of those 39 
alternatives place their emphasis on algorithm speed, but in terms of their essential setups they do not 40 
differ greatly from XGBoost.  41 

To compare the two competing methods, we use a real dataset comprising motor insurance 42 
policy holders and their telematics measurements, that is, real-time driving information collected and 43 
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stored via telecommunication devices. More specifically, GPS-based technology captures an insured’s 44 
driving behavior patterns, including distance travelled, driving schedules, and driving speed, among 45 
many others. Here, pay-as-you-drive (PAYD) insurance schemes represent an alternative method for 46 
pricing premiums based on personal mileage travelled and driving behaviors. Guillen et al. (2019), 47 
Verbelen et al. (2018), and Pérez-Marin and Guillen (2019) show the potential benefits of analyzing 48 
telematics information when calculating motor insurance premiums. Further, Hultkrantz et al. (2012) 49 
highlight the importance of PAYD insurance plans insofar as they allow insurance companies to 50 
personalize premium calculation and, so, charge fairer rates. 51 

The rest of this paper is organized as follows. First, we introduce the notation and outline the 52 
logistic regression and XGBoost methods. Second, we describe our dataset and provide some 53 
descriptive statistics. Third, we report the results of our comparisons in both a training and a testing 54 
sample. Finally, we conclude and offer some practical suggestions about the feasibility of applying 55 
new machine learning methods to the field of insurance. 56 

2. Methodology description  57 
Let us suppose that in a data set of n individuals and P covariates, we have a binary response 58 

variable  𝑌 , i= 1,…,n taking values 0,1; and a set of covariates denoted as 𝑋 , p=1,…,P. The 59 
conditional probability density function of 𝑌  = t (t= 0,1) given 𝑋  (𝑋 , … , 𝑋 ), is denoted as ℎ (𝑋 ). 60 
Equivalently, we say that Prob(Yi = t)=ℎ (𝑋 ), and that E(Yi )=Prob(Yi = 1)=ℎ (𝑋 ). 61 

2.1. Logistic regression  62 
Logistic regression, a widely recognized regression method for predicting the expected 63 

outcome of a binary dependent variable, is specified by a given set of predictor variables. McCullagh 64 
and Nelder (1989) presented the logistic regression model as part of a wider class of generalized 65 
linear models. What distinguishes a logistic regression from a classical linear regression model is 66 
primarily that the response variable is binary rather than continuous in nature. 67 

The logistic regression uses the logit function as a canonical link function, in order words, the 68 
log ratio of the probability functions ℎ (𝑋 ) is a linear function of X; that is: 69 𝑙𝑛 ( )( ) = 𝑙𝑛 Prob(Yi = 1)Prob(Yi = 0) =  𝛽 + ∑ 𝑋 𝛽 ,       (1) 70 
where 𝛽 , 𝛽 , . . . , 𝛽  are the model coefficients1, and Prob(Yi = 1) is the probability of observing the 71 
event in the response (response equal to 1), and Prob(Yi = 0) is the probability of not observing the 72 
event in the response (response equal to 0).  73 

The link function provides the relationship between the linear predictor դ =  𝛽 + ∑ 𝑋 𝛽  74 
and the mean of the response given certain covariates. In a logistic regression model, the expected 75 
response is: 76 𝐸(𝑌 ) = Prob(Yi = 1) =  ∑∑ .       (2) 77 
A logistic regression can be estimated by maximum likelihood (for further details see, for example, 78 
Greene 2002). Therefore, the idea underlying a logistic regression model is that there must be a linear 79 
combination of risk factors that is related to the probability of observing an event. The data analyst’s 80 
task is to find the fitted coefficients that best estimate the linear combination in (2) and to interpret 81 
the relationship between the covariates and the expected response. In a logistic regression model, a 82 
positive estimated coefficient indicates a positive association; thus, when the corresponding 83 
covariate increases, the probability of the event response also increases. Correspondingly, if the 84 
estimated coefficient is negative then the association is negative and, so, the probability of the event 85 
decreases when the observed value of the corresponding covariate increases. Odds-ratios can be 86 
calculated as the exponential values of the fitted coefficients and they can also be directly interpreted 87 
as the change in odds when the corresponding factor increases by one unit.  88 

                                                 
1 Note we have opted to refer here to ‘coefficients’ as opposed to ‘parameters’ to avoid confusion with the 
values defined below when describing the XGBoost method. 
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Apart from their interpretability, the popularity of logistic regression models is based on two 89 
characteristics: (i) maximum likelihood estimates are easily found and (ii) the analytical form of the 90 
link function in (2) always provides predictions between 0 and 1 that can be directly interpreted as 91 
the event probability estimate. For these motives, logistic regression has become one of the most 92 
popular classifiers, their results providing a straightforward method for predicting scores or 93 
propensity values which, in turn, allow new observations to be classified to one of the two classes in 94 
the response. For R users, the glm function is the most widely used procedure for obtaining 95 
coefficient estimates and their standard errors, but alternatively a simple optimization routine can 96 
easily be implemented. 97 

2.2. XGBoost  98 
Chen and Guestrin (2016) proposed XGBoost as an alternative method for predicting a response 99 

variable given certain covariates. The main idea underpinning this algorithm is that it builds D 100 
classification and regression trees (or CARTs) one by one, so that each subsequent model (tree) is 101 
trained using the residuals of the previous tree. In order words, the new model corrects the errors 102 
made by the previously trained tree and then predicts the outcome.  103 

In the XGBoost, each ensemble model2 uses the sum of D functions to predict the output:  104 
                   𝑌 =  ₣(𝑋 ) = ∑ 𝑓 (𝑋 ) ,      𝑓  𝜖 Ϝ, 𝑖 = 1, … , 𝑛                   (3) 105 
where Ϝ is the function space3 of the CART models, and each 𝑓  corresponds to an independent 106 
CART structure which we denote as q. In other words, q is the set of rules of an independent CART 107 
that classifies each individual i into one leaf. The training phase involves classifying n observations 108 
so that, given the covariates X, each leaf has a score that corresponds to the proportion of cases 109 
which are classified into the response event for that combination of 𝑋 . We denote this score as 110 𝑤 ( ). 111 

Thus, we can write q as a function q: ℝ  T , where T is the total number of leafs of a tree and j 112 
is later used to denote a particular leaf, j=1,…,T. To calculate the final prediction for each individual, 113 
we sum the score of the leafs as in (3), where Ϝ = { f(X) = 𝑤 ( )}, with q: ℝ  T, and 𝑤 𝜖 ℝ . 114 

In general, boosting methods fit D models in D iterations (each iteration denoted by d, d=1,…,D) 115 
in reweighted versions. Weighting is a mechanism that penalizes the incorrect predictions of past 116 
models, in order to improve the new models. The weighting structures are generally optimal values, 117 
which are adjusted once a loss function is minimized. Then new learners incorporate the new 118 
weighting structure in each iteration, and predict new outcomes. In particular, the XGBoost method 119 
minimizes a regularized objective function, i.e. the loss function plus the regularization term:   120 ℒ =  ∑ ℓ 𝑌 , 𝑌 + ∑ ή(𝑓 ),                     (4) 121 
where ℓ is a convex loss function that measures the difference between the observed response 𝑌  122 
and predicted response 𝑌  and ή = µT+ 𝜆‖𝑤‖ , ή is the regularization term also known as the 123 
shrinkage penalty which penalizes the complexity of the model and avoids the problem of 124 
overfitting. The tree pruning parameter µ regulates the depth of the tree and 𝜆 is the regularization 125 
parameter that is associated with l2-norm of the scores vector, which is a way of evaluating the 126 
magnitude of scores. Including this norm, or any other similar expression, penalizes excessive sizes 127 
in the components of 𝑤. 128 

Note that pruning is a machine learning technique which reduces the size of a decision tree by 129 
removing decision nodes whose corresponding features have little influence on the final prediction 130 

                                                 
2 Natekin and Knoll (2013) explain that the ensemble model can be understood as a committee formed by a 
group of base learners or weak learners. Thus, any weak learner can be introduced as a boosting framework. 
Various boosting methods have been proposed, including: (B/P-) splines (Huang and Yang 2004); linear and 
penalized models (Hastie et al. 2009); decision trees (James et al. 2013); radial basis functions (Gomez-Verdejo et 
al. 2002); and Markov random fields (Dietterich et al. 2008). Although Chen and Guestrin (2016) state 𝑓  as a 
CART model, the R package xgboost currently performs three boosters: linear, tree and dart. 
3 The XGBoost works in a function space rather than in a parameter space. This framework allows the objective 
function to be customized accordingly.  
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of the target variable. This procedure reduces the complexity of the model and, thus, corrects 131 
overfitting. 132 

The l2-norm is used in the L2 or Ridge regularization method, while the l1-norm is used in the 133 
L1 or Lasso regularization method. Both methods can take the Tikhonov or the Ivanov form (see 134 
Tikhonov and Arsenin 1977; Ivanov 2003). 135 

A loss function or a cost function like (4) measures how well a predictive algorithm fits the 136 
observed responses in a data set (for further details, see Friedman et al. 2001). For instance, in a 137 
binary classification problem, the logistic loss function is suitable because the probability score is 138 
bounded between 0 and 1. Then, by selecting a suitable threshold, a binary outcome prediction can 139 
be found. Various loss functions have been proposed in the literature, including: the square loss, the 140 
hinge loss (Steinwart and Christmann 2008), the logistic loss (Schapire and Freund 2012), the cross 141 
entropy loss (de Boer et al. 2015) and the exponential loss (Elliott and Timmermann 2013).  142 

The intuition underpinning the regularization proposed in (4) involves reducing the magnitude 143 
of 𝑤, so that the procedure can avoid the problem of overfitting. The larger the ή, the smaller the 144 
variability of the scores (Goodfellow et al. 2016).  145 

The objective function at the d-th iteration is :  146 
             ℒ( ) =  ∑ ℓ 𝑌 , 𝑌 ( ) + 𝑓 (𝑋 ) + ή(𝑓 ),                  (5) 147 
where 𝑌 ( )is the prediction of the i-th observation at the (d-1)-th iteration. Note that ℓ(·,·) is 148 
generally a distance so its components can be swapped, i.e. ℓ 𝑌 , 𝑌  = ℓ 𝑌 , 𝑌 . Following Chen and 149 
Guestrin (2016), we assume that the loss function is a symmetric function.  150 

Due to the non-linearities in the objective function to be minimized, the XGBoost is an 151 
algorithm that uses a second-order Taylor approximation of the objective function ℒ  in (5) as 152 
follows: 153 

                  ℒ( ) ≅  ∑ [ ℓ 𝑌 , 𝑌 ( ) + 𝑔 𝑓  (𝑋 ) + ℎ 𝑓 (𝑋 )] + ή(𝑓 ),            (6) 154 
where 𝑔 = 𝜕 ( ) ℓ 𝑌 , 𝑌 ( )  and ℎ = 𝜕 ( ) ℓ 𝑌 , 𝑌 ( )  denote the first and second 155 
derivatives of the loss function ℓ with respect to the component corresponding to the predicted 156 
classifier.  157 

Since we minimize (6) with respect to 𝑓 , we can simplify this expression by removing constant 158 
terms as follows: 159 

                       ℒ( ) =  ∑ [𝑔  𝑓 (𝑋 ) + ℎ 𝑓 (𝑋 )] + ή(𝑓 ).                      (7) 160 
Substituting the shrinkage penalty ή of (4) in (7), we obtain:  161 

                    ℒ( ) =  ∑ [𝑔 𝑓 (𝑋 ) + ℎ 𝑓 (𝑋 )]+ µT+ 𝜆‖𝑤‖ .                     (8) 162 
The l2-norm shown in (8) is equivalent to the sum of the squared weights of all T leafs. 163 

Therefore (8) is expressed as: 164 
                  ℒ( ) =  ∑ [𝑔 𝑓 (𝑋 ) + ℎ 𝑓 (𝑋 )]+ µT+ 𝜆 ∑ 𝑤 .                    (9) 165 

Now, let us define 𝐼  = {i|q(𝑋 )}, 𝐼  is the set of observations that are classified into one leaf j, 166 
j=1,…,T. Each 𝐼  receives the same leaf weight 𝑤 . So ℒ( ) in (9) can also be seen as an objective 167 
function that corresponds to each set 𝐼 . In this sense, the 𝑓 (𝑋 ) , which is assigned to the 168 
observations, corresponds to the weight wj that is assigned to each set 𝐼 . Therefore (9) is expressed 169 
as:  170 

              ℒ( ) =  ∑ ∑ 𝑔є 𝑤 + ∑ ℎє + 𝜆 𝑤  + µT.                        (10) 171 
In order to find the optimal leaf weight 𝑤∗, we derive (10) with respect to 𝑤 , let the new 172 

equation be equal to zero, and clear the value of 𝑤∗. Then we obtain:  173 
                         𝑤∗ =  − ∑   ∑    .                                     (11) 174 

So we update (10) by replacing the new 𝑤∗. The next boosting iteration will minimize the following 175 
objective function:  176 ℒ( ) =  ∑ ∑ 𝑔  − ∑   ∑   +  ∑ ℎ +  𝜆 − ∑   ∑   + µT =              177 
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    = −  ∑ ∑∑ + µ𝑇.                                                   (12) 178 

Once the best objective function has been defined and the optimal leaf weights assigned to 𝐼 , 179 
we next consider what the best split procedure will be. Because (12) is derived for a wide range of 180 
functions, we are not able to identify all possible tree structures q in each boosting iteration. This 181 
algorithm starts by building a single leaf and continues by adding new branches. Consider the 182 
following example:  183 

Let 𝐼  and 𝐼  be the sets of observations that are in the left and right parts of a node following a 184 
split. So that I = 𝐼  + 𝐼 .  185 

            ℒ( ) =  − ∑ ∑∑ + ∑ ∑∑ + ∑ ∑∑  − µ ,            (13) 186 ℒ( )of (13) is the node impurity measure, which is calculated for the P covariates. The split is 187 
determined by the maximum value of (13). For example, in the case of CART algorithms, the 188 
impurity measure for categorical target variables can be information gain, Gini impurity or 189 
chi-square, while for continuous target variables it can be the Gini impurity. 190 

Once the tree 𝑓  is completely built (i.e. its branches and leaf weights are established), 191 
observations are mapped on the tree (from the root to one corresponding leaf). Thus, the algorithms 192 
will update from (5) to (14) as many times as D boosting iterations are established and the final 193 
classification is the sum of the D obtained functions which are shown in (3). Consequently, the 194 
XGBoost corrects the mistaken predictions in each iteration, as far as this is possible, and tends to 195 
overfit the data. Thus, to prevent overfitting, the regularization parameter value in the objective 196 
function is highly recommended. 197 

The implementation of XGBoost has proved to be quite effective for fitting real binary response 198 
data and a good method for providing a confusion matrix, i.e. a table in which observations and 199 
predictions are compared, with very few false positives and false negatives. However, since the final 200 
prediction of an XGBoost algorithm is the result of a sum of D trees, the graphical representation and 201 
the interpretation of the impact of each covariate on the final estimated probability of occurrence 202 
may be less direct than in the linear or logistic regression models. For instance, if the final predictor 203 
is a combination of several trees, but each tree has a different structure (in the sense that each time 204 
the order of segmentation differs from that of the previous tree), the role of each covariate will 205 
depend on understanding how the covariate impacts the result in the previous trees and what the 206 
path of each observation is in each of the previous trees. Thus, in the XGBoost approach, it is difficult 207 
to isolate the effect on the expected response of one particular covariate compared to all the others. 208 

Under certain circumstances, the XGBoost method can be interpreted directly. This happens 209 
when 𝑓  have analytical expressions that can easily be manipulated to compute ∑ 𝑓 (𝑋 ). One 210 
example is the linear booster, which means that each 𝑓  is a linear combination of the covariates 211 
rather than a tree-based classifier. In this case of a linear function, the final prediction is also a linear 212 
combination of the covariates, resulting from the sum of the weights associated with each covariate 213 
in each 𝑓 . 214 

Results for the true XGBoost predictive model classifier can easily be obtained in R with the 215 
xgboost package. 216 

3. Data and Descriptive Statistics 217 
Our case-study database comprises 2,767 drivers under 30 years of age who underwrote a 218 

pay-as-you-drive (PAYD) policy with a Spanish insurance company. Their driving activity was 219 
recorded using a telematics system. This information was collected from January 1 through to 220 
December 31, 2011. The data set contains the following information about each driver: insured’s age 221 
(age), age of the vehicle (ageveh) in years, insured’s gender (male), driving experience (drivexp) in 222 
years, percentage of total kilometers travelled in urban areas (pkmurb), percentage of total kilometers 223 
travelled at night – that is, between midnight and 6 am (pkmnig), the percentage of kilometers above 224 
the mandatory speed limits (pkmexc), total kilometers (kmtotal), and, finally, the presence of an 225 
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accident claim with fault (Y) which was coded as 1 when, at least, one claim with fault occurred in 226 
the observational period and was reported to the insurance company, and 0 otherwise. We are 227 
interested in predicting Y using the aforementioned covariates. This data set has been extensively 228 
studied in Ayuso et al. (2014, 2016a, 2016b); and Boucher et al. (2017). 229 

Table 1 shows the descriptive statistics for the accident claims data set. This highlights that a 230 
substantial part of the sample did not suffer an accident in 2011, with just 7.05% of drivers reporting 231 
at least one accident claim. Insureds with no accident claim seem to have travelled fewer kilometers 232 
than those presenting a claim. The non-occurrence of accident claims is also linked to a lower 233 
percentage of driving in urban areas and a lower percentage of kilometers driven above mandatory 234 
speed limits. In this dataset, 7.29% of men and 6.79% of women had an accident during the 235 
observation year.   236 

Table 1. Description of the variables in the accident claims data set1 237 

Variables 
 Non-occurrence of 

accident claims  
(Y=0) 

Occurrence 
of accident 

claims (Y=1) 
Total 

Age (years)  25.10 24.55 25.06 

Gender Female 1,263 (93.21%) 92 (6.79%) 1,355 
Male 1,309 (92.71%) 103 (7.29%) 1,412 

Driving experience (years)  4.98 4.46 4.94 
Age of vehicle (years)  6.37 6.17 6.35 
Total kilometers travelled  7,094.63 7,634.97 7,132.71 
Percentage of total kilometers 
travelled in urban areas 

 24.60 26.34 24.72 

Percentage of total kilometers 
above the mandatory speed 
limit 

 
6.72 7.24 6.75 

Percentage of total kilometers 
travelled at night 

 6.88 6.66 6.86 

Total number of cases  2,572 (92.95%) 195 (7.05%) 2,767 
1 The mean of the variables according to the occurrence and non-occurrence of accident claims. The absolute 238 
frequency and row percentage is shown for the variable gender.  239 

The data set is divided randomly into a training data set of 1,937 observations (75% of the total 240 
sample) and a testing data set of 830 observations (25% of the total sample). Function 241 
CreateDataPartion of R was used to maintain the same proportion of events (coded as 1) of the 242 
total sample in both the training and testing data sets. 243 

4. Results  244 
In this section, we compare the results obtained in the training and testing samples when 245 

employing the methods described in Section 2.  246 

4.1. Coefficient Estimates 247 
Table 2 presents the estimates obtained using the two methods. Note, however, that the values 248 

are not comparable in magnitude as they correspond to different specifications. The logistic 249 
regression uses its classical standard method to compute the coefficients of the variables and their 250 
standard errors. However, the boosting process of the XGBoost builds D models in reweighted 251 
versions and, so, we obtain a historical record of the D times P+1 coefficient estimates. XGBoost can 252 
only obtain a magnitude of those coefficients if the base learner allows it, and this is not the case 253 
when 𝑓  are CART models.  254 

The signs obtained by the logistic regression point estimate and the mean of the XGBoost 255 
coefficients are the same. Inspection of the results in Table 2 shows that, in general, older insureds 256 
are less likely to suffer a motor accident than younger policy holders. In addition, individuals who 257 
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travel more kilometers in urban areas are more likely to have an accident than those that travel fewer 258 
kilometers in urban areas. We are not able to interpret the coefficients of the XGBoost, but by 259 
inspecting the maximum and minimum values of the linear booster case, we obtain an idea of how 260 
the estimates fluctuate until iteration D. 261 

 Table 2. The parameter estimates of the logistic regression and XGBoost with linear booster. 262 

 Training Data Set 

Parameter 
Estimates 

Logistic Regression  XGBoost (linear booster) 
Lower 
Bound Estimate 

Upper 
Bound 

 
Minimum Mean Maximum 

Constant -2.8891 -0.5442 1.8583  -2.6760 -2.6690 -1.7270 
*age -0.2059 -0.0994 0.0011  -0.2573 -0.2416 -0.0757 

drivexp -0.1285 -0.0210 0.0906  -0.0523 -0.0517 -0.0069 
ageveh -0.0786 -0.0249 0.0257  -0.0897 -0.0885 -0.0220  

male -0.3672 0.0039 0.3751  0.0019 0.0020 0.0070 
kmtotal -0.0203 0.0266 0.0707  0.0137 0.1164 0.1176 
pkmnig -0.0354 -0.0046 0.0239  -0.0292 -0.0290 -0.0061 
pkmexc -0.0122 0.0144 0.0385  0.0180 0.1007 0.1016 
*pkmurb 0.0002 0.0146 0.0286  0.0436 0.2008 0.2023  

In the logistic regression columns, the point estimates are presented with the lower and upper bound of a 95% 263 
confidence interval. In the XGBoost columns, the means of the coefficient estimates with a linear boosting of the 264 
D iterations are presented. Similarly, bounds are presented with the minimum and maximum values in the 265 
iterations. There are no regularization parameter values. * Indicates that the coefficient is significant at the 90% 266 
confidence level in the logistic regression estimation. Calculations were performed in R and scripts are available 267 
from the authors. 268 

Only the coefficients of age and percentage of kilometers travelled in urban areas are 269 
significantly different from zero in the logistic regression model, but we have preferred to keep all 270 
the coefficients of the covariates in the estimation results so as to show the general effect of the 271 
telematics covariates on the occurrence of accident at-fault claims in this dataset, and to evaluate the 272 
performance of the different methods in this situation. 273 

 274 
Figure 1. The magnitude of all the estimates in the D=200 iterations.  275 
Different colors indicate each of the coefficients in the XGBoost iteration.  276 

Figure 1 shows the magnitude of all the estimates of the XGBoost in 200 iterations. From 277 
approximately the tenth iteration, the coefficient estimates tend to become stabilized. Thus, no 278 
extreme changes are present during the boosting. 279 

4.2. Prediction Performance 280 
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The performance of the two methods is evaluated using the confusion matrix, which compares 281 
the number of observed events and non-events with their corresponding predictions. Usually, the 282 
larger the number of correctly classified responses, the better the model. However, out-of-sample 283 
performance is even more important than in-sample results. This means that the classifier must be 284 
able to predict the observed events and non-events in the testing sample and not just in the training 285 
sample. 286 

The predictive measures used to compare the predictions of the models are sensitivity, 287 
specificity, accuracy and the root mean square error (RMSE). Sensitivity measures the proportion of 288 
actual positives that are classified correctly as such, i.e. True positive/(True positive + False 289 
negative). Specificity measures the proportion of actual negatives that are classified correctly as 290 
such, i.e. True negative/(True negative + False positive). Accuracy measures the proportion of total 291 
cases classified correctly (True positive + True negative)/Total cases. RMSE measures the distance 292 
between the observed and predicted values of the response. It is calculated as follows: 293 

                               ∑ ( )  ,                                  (14) 294 
The higher the sensitivity, the specificity and the accuracy, the better the models predict the 295 

outcome variable. The lower the value of RMSE, the better the predictive performance of the model.  296 

Table 3. Confusion matrix and predictive measures of the logistic regression, XGBoost with a tree booster and 297 
XGBoost with a linear booster for the testing and training data sets. 298 

Testing Data Set 
Predictive Measures Logistic 

Regression 
XGBoost 

(tree booster) 
XGBoost 

(linear booster) 𝑌 = 0, Y = 0 524 692 516 𝑌 = 1, Y = 0 38 58 38 𝑌 = 0, Y = 1 243 75 251 𝑌 = 1, Y = 1 25 5 25 
Sensitivity 0.3968 0.0790 0.3968 
Specificity 0.6831 0.9022 0.6728 
Accuracy 0.6614 0.8397 0.6518 

RMSE 0.2651 0.2825 0.2651 
Training Data Set 

Predictive Measures Logistic 
regression 

XGBoost 
(tree booster) 

XGBoost 
(linear booster) 𝑌 = 0, Y = 0 1030 1794 1030 𝑌 = 1, Y = 0 55 0 55 𝑌 = 0, Y = 1 775 11 775 𝑌 = 1, Y = 1 77 132 77 

Sensitivity 0.5833 1.0000 0.5833 
Specificity 0.5706 0.9939 0.5706 
Accuracy 0.5715 0.9943 0.5715 

RMSE 0.2508 0.0373 0.2508 
The threshold used to convert the continuous response into a binary response is the mean of the outcome 299 
variable. The authors performed the calculations.  300 

Table 3 presents the confusion matrix and the predictive measures of the methods (the logistic 301 
regression, XGBoost with a tree booster and XGBoost with a linear booster) for the training and 302 
testing samples. The results in Table 3 indicate that the performance of the XGBoost with the linear 303 
booster (last column) is similar to that of the logistic regression both in the training and testing 304 
samples. XGBoost using the tree approach provides good accuracy and a good RMSE value in the 305 
training sample, but it does not perform as well as the other methods in the case of the testing 306 
sample. More importantly, XGBoost fails to provide good sensitivity. In fact, the XGBoost with the 307 
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tree booster clearly overfits the data, because while it performs very well in the training sample, it 308 
fails to do so in the testing sample. For instance, sensitivity is equal to 100% in the training sample 309 
for the XGBoost tree booster methods, but it is equal to only 7.9% in the testing sample. 310 

It cannot be concluded from the foregoing, however, that XGBoost has a poor relative 311 
predictive capacity. Model-tuning procedures have not been incorporated in Table 3; yet, tuning 312 
offers the possibility of improving the predictive capacity by modifying some specific parameter 313 
estimates. The following are some of the possible tuning actions that could be taken: fixing a 314 
maximum for the number of branches of the tree (maximum depth), establishing a limited number 315 
of iterations of the boosting, or fixing a number of subsamples in the training sample. The xgboost 316 
package in R denotes these tuning options as general parameters, booster parameters, learning task 317 
parameters, and command line parameters, all of which can be adjusted to obtain different results in 318 
the prediction. 319 

Figure 2 shows the ROC curve obtained using the three methods on the training and testing 320 
samples. We confirm that the logistic regression and XGBoost (linear) have a similar predictive 321 
performance. The XGBoost (tree) presents an outstanding AUC in the case of the training sample, 322 
and the same value as the logistic regression in the testing sample; however, as discussed in Table 3, 323 
it fails to maintain this degree of sensitivity when this algorithm is used with new samples.  324 

 325 
Figure 2. The Receiver Operating Characteristics (ROC) curve obtained using the three methods on the 326 
training and testing samples. The red solid line represents the ROC curve obtained by each method in the 327 
training sample, and the blue dotted line represents the ROC curve obtained by each method in the testing 328 
sample. The area under the curve (AUC) is 0.58 for the training sample (T.S) and 0.49 for the testing sample 329 
(Te.S) when logistic regression is used; 0.58 for the T.S and 0.53 for the Te.S when XGBoost (linear booster) is 330 
used; and, 0.997 for the T.S and 0.49 for the Te.S when the XGBoost (tree booster) is used.  331 

4.3. Correcting the overfitting  332 
One of the most frequently employed techniques for addressing the overfitting problem is 333 

regularization. This method shrinks the magnitude of the coefficients of the covariates in the 334 
modelling as the value of the regularization parameter increases. 335 

In order to determine whether the XGBoost (tree booster) can perform better than the logistic 336 
regression model, we propose a simple sensitivity analysis of the regularization parameters. In so 337 
doing, we evaluate the evolution of the following confusion matrix measures: accuracy, sensitivity 338 
and specificity – according to some given regularization parameter values for the training and the 339 
testing sample – and, finally, choose the regularization parameter that gives the highest predictive 340 
measures in the training and testing samples.  341 

We consider two regularization methods. First, we consider the L2 (Ridge), which is Chen and 342 
Guestrin’s (2016) original proposal and takes the l2-norm of the leaf weights. It has a parameter λ 343 
that multiplies that l2-norm. Second, we consider the L1 (Lasso) method, which is an additional 344 
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implementation possibility of the xgboost package in R that takes the l1-norm of the leaf weights. It 345 
has a parameter 𝛼 that multiplies that l1-norm. Consequently, λ and 𝛼 calibrate the regularization 346 
term in (4). For simplicity, no tree pruning was implemented, so µ=0 in (4).  347 

 348 
Figure 3. The predictive measures according to 𝛼. L1 method applied to the training and testing samples  349 

The values of 𝛼 and λ should be as small as possible, because they add bias to the estimates, 350 
and the models tend to become underfitted as the values of the regularization parameters become 351 
larger. For this reason, we evaluate their changes in a small interval. Figure 3 shows the predictive 352 
measures for the testing and training samples according to the values of 𝛼  when the L1 353 
regularization method is implemented. When 𝛼 = 0, we obtain exactly the same predictive measure 354 
values as in Table 3 (column 3) because the objective function has not been regularized. As the value 355 
of 𝛼 increases, the models’ accuracy and sensitivity values fall sharply – to at least 𝛼 ≃ 0.06 in the 356 
training sample. In the testing sample, the fall in these values is not as pronounced; however, when 357 𝛼 is lower than 0.06 the specificity performance is the lowest of the three measures. Moreover, 358 
selecting an 𝛼 value lower than 0.05 results in higher accuracy and sensitivity measures, but lower 359 
specificity. In contrast, when 𝛼 equals 0.06 in the testing sample, we obtain the highest specificity 360 
level of 0.5079, with corresponding accuracy and sensitivity values of 0.5892 and 0.5988, 361 
respectively. In the training sample, when 𝛼 = 0.06 the specificity, accuracy and sensitivity are: 362 
0.7227, 0.6086, and 0.6000, respectively. As a result when 𝛼 is fixed at 0.06, the model performs 363 
similarly in both the testing and training samples.  364 

Thus, with the L1 regularization method (𝛼 = 0.06), the new model recovers specificity, but 365 
loses some sensitivity when compared with the performance of the first model in Table 3, for which 366 
no regularization was undertaken. Thus, we conclude that 𝛼 = 0.06 can be considered as providing 367 
the best trade-off between correcting for overfitting while only slightly reducing the predictive 368 
capacity. 369 
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 370 
Figure 4. The predictive measures according to 𝜆. L2 method applied to the training and testing samples.  371 

Figure 4 shows the predictive measures for the testing and training samples according to the 372 
values of λ when the L2 regularization method is implemented. From λ = 0 to λ = 0.30 all predictive 373 
measures are around 100% in the training sample; however, very different results are recorded in the 374 
testing sample. Specifically, accuracy and sensitivity fall slowly, but specificity is low – there being 375 
no single λ that makes this parameter exceed at least 20%. As such, no λ can help improve specificity 376 
in the testing sample. The L2 regularization method does not seem to be an effective solution to 377 
correct the problem of overfitting in our case study data set.   378 

The difference in outcomes recorded between the L1 and L2 regularization approaches might 379 
also be influenced by the characteristics of each regularization method. Goodfellow et al. (2016) 380 
explain that L1 penalizes the sum of the absolute value of the weights, and that it seems to be robust 381 
to outliers, has feature selection, provides a sparse solution, and is able to give simpler but 382 
interpretable models. In contrast, L2 penalizes the sum of the square weights, has no feature 383 
selection, is not robust to outliers, is more able to provide better predictions when the response 384 
variable is a function of all input variables, and is better able to learn more complex models than L1. 385 

4.4. Variable Importance 386 
Variable importance or feature selection is a technique that measures the contribution of each 387 

variable or feature to the final outcome prediction. This method is of great relevance in tree models 388 
because it helps identify the order in which the leafs appear in the tree. The tree branches 389 
(downwards) begin with the variables that have the greatest effect and end with those that have the 390 
smallest effect (for further details see, for example, Kuhn and Johnson 2013).  391 

Table 4 shows the three most important variables for each method. The two agree on the 392 
importance of the percentage of total kilometers travelled in urban areas as a key factor in predicting 393 
the response variable. Total kilometers driven and age only appear among the top three variables in 394 
the case of logistic regression, while the percentage of kilometers travelled over the speed limits and 395 
the percentage of kilometers driven at night appear among the most important variables in the case 396 
of the XGBoost method. 397 
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Table 4. Variable Importance. The most relevant variables of the different methods  398 
Level of 

importance 
Logistic Regression XGBoost  

(tree booster) 
First percentage of total kilometers 

travelled in urban areas  
percentage of kilometers above the 

mandatory speed limits 
Second age percentage of total kilometers 

travelled in urban areas 
Third total kilometers percentage of total kilometers 

travelled at night 

5. Conclusions 399 
XGBoost, and other boosting models, are dominant methods today among machine-learning 400 

algorithms and are widely used because of their reputation for providing accurate predictions. This 401 
novel algorithm is capable of building an ensemble model characterized by an efficient learning 402 
method that seems to outperform other boosting-based predictive algorithms. Unlike the majority of 403 
machine learning methods, XGBoost is able to compute coefficient estimates under certain 404 
circumstances and, so, the magnitude of the effects can be studied. The method allows the analyst to 405 
measure not only the final prediction, but also the effect of the covariates on a target variable at each 406 
iteration of the boosting process, which is something that traditional econometric models (e.g. 407 
generalized linear models) do in one single estimation step. 408 

When a logistic regression and XGBoost compete to predict the occurrence of accident claims 409 
without model-tuning procedures, the predictive performance of the XGBoost (tree booster) is much 410 
higher than that of the logistic regression in the training sample, but considerably poorer in the 411 
testing sample. Thus, a simple regularization analysis has been proposed here to correct this 412 
problem of overfitting. However, the improvement in predictive performance of the XGBoost 413 
following this regularization is similar to that obtained by the logistic regression. This means 414 
additional efforts have to be taken to tune the XGBoost model so as to obtain a higher predictive 415 
performance without overfitting the data. This might be considered as the trade-off between 416 
obtaining a better performance, and the simplicity it provides for interpreting the effect of the 417 
covariates. 418 

Based on our results, the classical logistic regression model can predict accident claims using 419 
telematics data and provide a straightforward interpretation of the coefficient estimates. Moreover, 420 
the method offers a relatively high predictive performance considering that only two coefficients are 421 
significant at the 90% confidence level. These results are not bettered by the XGBoost method. 422 

When the boosting framework of XGBoost is not based on a linear booster, interpretability 423 
becomes difficult, as a model’s coefficient estimates cannot be calculated. In this case, variable 424 
importance can be used to evaluate the weight of the individual covariates in the final prediction. 425 
Here, we obtained different conclusions for the two methods employed. Thus, given that the 426 
predictive performance of XGBoost was not much better than that of the logistic regression, even 427 
after careful regularization, we conclude that the new methodology needs to be adopted carefully, 428 
especially in a context where the number of event responses (accident) is low compared to the 429 
opposite response (no accident). Indeed, this phenomenon of unbalanced response is attracting more 430 
and more attention in the field of machine learning. 431 
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