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Summary 
A calculation is presented for the mass relationships between electron, muon and the tau particle. It is shown 
that charged leptons with mass levels beyond the one of the tau particle cannot exist because of insufficient 
binding energy. The underlying mechanism of the relationship between the leptons is the isospin feature of 
Dirac particles, which appears being a substantial attribute next to nuclear angular spin. It is further shown that 
the energy of the elementary electric charge, such as embodied by the mass of an electron, is due to the 
interaction between the isospins of the pion’s quark and antiquark. 
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Introduction 
In his classic paper on electrons, Dirac [1] has derived expressions for two elementary dipole 
momenta. The first one is due to the well known elementary angular momentum, eventually 
dubbed as spin 2/S , which manifests itself physically as a magnetic dipole moment, 
with a magnitude linearly proportionate to S . The second one is an elementary dipole 
moment with magnitude c2/ , which is less known. It has been waived away by Dirac, 
because it showed up as an imaginary quantity for which he could not find a physical 
justification. If it would have a physical justification, one might expect that it would show up 
as an elementary electrical dipole moment. This view has been adopted by Hestenes [2,3] in 
his studies on the jitter (“zitterbewegung”) of electrons. In present day quantum physics, 
quite some studies are going on, aiming to establish values for the electrical dipole moment 
of electrons if it would exist [4,5,6,7]. The existence of it an electric moment of electrons is 
put into doubt, because it would violate the CPT pillar of the Standard Model of particle 
physics [8]. This would be the case indeed if the electrical moment would be the result of a 
possible distribution of electric charge in a spatial structure. Curiously, in those studies 
usually no reference is given to Dirac’s paper, who took the pointlike format of an electron 
as an axiom. 
 
It is my aim to show in this article that, in spite of Dirac’s conclusion, the second elementary 
dipole moment of a Dirac particle, which we shall indicate for short as isospin, is not an 
imaginary quantity, but a real one. I wish to show the impact of this isospin on the structure 
of nuclear particles that can be composed by quarks, in particular on the structure of a pion 
before decay and after its decay into a muon. The primary aim is showing the relationship 
between the masses of the electron, the muon and the tau particle and revealing the reason 
why no charged leptons exist with a mass beyond the tau particle’s one. Doing so, various 
axioms of present day quantum physics will be discussed and put into a new light. Among 
these are the Higgs field, the isospin of quarks and nucleons, the large amount of elementary 
particles and the hadrionic mass spectrum.  
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The article falls apart into two parts. The analysis of spin and isospin of Dirac particles, 
although a basic ingredient of the article, will be described in the Appendix. The results of it, 
will be invoked in the main text that describes how the masses of charged leptons depend 
on these attributes.   
 
The energy field of quarks and electrons 
The Standard Model of particle physics heavily relies upon the concept of an omnipresent 
energetic nuclear background field, dubbed as the Higgs field. In its most simple 
representation, this field Φ is characterized by its Lagrangian density )Φ(HU . This density is 
heuristically defined as [9], 
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where N and N are characteristic real constants. The justification for this format is the 

simple fact that many predictions from the theoretical elaboration of this underlying axiom 
of the Standard Model are in agreement with experimental evidence. It is instructive to 
compare this heuristically conceived energetic background field with the background field 
around an electric pointlike charge in an ionized plasma [10], where the background field has 
the format 
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The energetic field   flowing from the pointlike charge is influenced by this background 
field and can be derived by the overall Lagrangian density L  with the generic format 
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where )(U is the potential energy of the background field and where  is the source 
term. By application of the Euler-Lagrange equation, the potential   of the pointlike source 
of this (Debije) field can be derived as, 
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with 00 4/  Q , where Q  is the electric charge and 0 the vacuum electric permittivity. 
 
Supposing that a quark is an energetic pointlike source, we may try to establish its potential, 
thereby expecting it being influenced by the energetic background field. Unfortunately, the 
format of the Higgs background field prevents obtaining straightforwardly an analytical 
expression. However, by profiling a solution, a numerical procedure may serve for 
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establishing a good fit. To make a long story short, documented in previous work [11], the 
result is a quark field with the format, 
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where the parameter  determines the spatial range of the field. Its value depends on the 
Higgs parameters N and N . The numerical value of the dimensionless factor mg can be 
established from curve fitting as mg  2. It will be shown later in this text that it can be 
conceived as a gyrometric factor that is related with the gyromagnetic constant of quantum 
mechanical electromagnetism. This field can be conceived as the sum of a near field and a 
far field such that, 
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The latter one, i.e. )(rN , has the same format as an electric field if 0r . It has the 
characteristics of a Debije field, where the free energetic flow from the source is suppressed 
by a surrounding background field. The near field )(rN shows the characteristics of a dipole 
field, or, more precisely, the characteristics of a field from an linear dipole moment aligned 
along the dipole axis.  
 
The far field behaves similarly as the Debije field, i.e. as a field where the free energetic flow 
is suppressed by an energetic background field. Each of two quarks in a meson are coupled 
to the field of the other with a coupling factor g . Hence, the combined field from two 
quarks in a meson aligned along the x axis, spaced at a d2 distance, can be expanded as, 
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where 0k and 2k are dimensionless coefficients with magnitudes that depend on the spacing 
d . The interesting feature of the meson configuration now is, that its center of mass is 
subject to a potential that (almost) depends on the square of x . Hence, the meson shows 
the characteristics of a quantum mechanical oscillator. It is therefore subject to excitation, 
which is the underlying mechanism for the systematic characteristic of the mass spectrum of 
mesons [12]. The two quarks in the meson align themselves in the condition of minimum 
energy, such that they are spaced at  (mindd 0.856). 
 
There is one nasty thing though. Where the far field can be explained in conventional field 
theory by considering it as the description of a repelling force from one quark to another, 
like in the electromagnetic case, the gluing near field is not clear. Therefore, the open 
question is, how to explain the attracting force that keeps two forces in equilibrium toward a 
quasi stable configuration. In particle physics, the problem is settled by defining a force of 
unknown origin, dubbed as color force, which make mesons and baryons quasi stable. This 
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color force is conceived in a frame work of mathematical formalism, but, in fact, a true 
physical justification is lacking. Nevertheless, Quantum Chromatic Dynamics (QCD) is one of 
the pillars of present day quantum physics. Except this, the justification of the Higgs field is 
not very convincing, because it is mainly based upon analogies [9], from which it is not clear 
why those should apply to all space. If, on the other hand, an explanation would be found for 
the field as described by the profiled solution (5), the Higgs field  (1) would be explained as 
well. In previous works, I have adopted the quark field profile (5) by simply assuming that, 
next to a vectorial bosonic far field, a scalar near field exists with the desired properties. It is 
my aim in this work to show that this assumption can be justified and improved because of 
two recent obtained results. The first of these is the awareness of Dirac’s second dipole 
moment of electrons. The second of these is the awareness of an omnipresent cosmological 
energetic background field, which shows up as the vacuum solution of Einstein’s Field 
Equation under adoption of a non-zero value for the Cosmological Constant[13].The 
combined effect from the two novel views result in a theoretically based model for the quark 
potential similar to (5). Such without the need for adopting the spontaneous symmetry 
breaking (SSB) mechanism, which so far has been proposed to justify the Higgs field format 
(1). The crux is the adoption of the Dirac particle description for quarks, including its 
potential to eject an energetic flow like electrons do, and the validation of isospin for Dirac 
particles next to spin. The interaction between the isospins, i.e., the second dipole moments 
of quarks, is the reason that they attract. Because dipole fields are decaying rapidly, the 
attracting near field range show a 2r dependency of the potential, while the range of the 
repelling far field from the energetic flow, shows the regular 1r dependency. The additional 
exponential decay is due to an energetic background field with a format as shown by the 
Debije effect.  
 
The second dipole moment will change the scalar field of an electron as well. There is some 
difference with the nuclear field of a quark, though, because the field of an electron in free 
space is not subject to the shield of the Higgs field. Hence, the scalar field of a pointlike 
electric charge is made up as, 
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As just explained, a quark and an antiquark in conjunction, compose a meson. The archetype 
one is the pion. 
 
 The mass of the electron 
Apart from the electron itself, the smallest observable particle showing an electric charge is 
the pion. The simple pion model, as discussed in this text so far, is inadequate for explaining 
the origin of electric charge. It can be understood from the influence of the spins of the 
quark and the antiquark on the rest mass of the pion. As explained in this text, a quark has 
an angular moment, spin for short, and a second dipole moment, which is non-angular in its 
origin, in this text dubbed as isospin for short. It is well known that the spin has a major 
impact on the rest mass of a meson. If the spins are parallel, the meson is of the 
pseudoscalar type. If the spins are anti-parallel, the meson is of the vector type. A pion is a 
pseudoscalar meson. It has a rest mass of about 140 MeV. Its vector type counter part is the 
rho meson, which has a rest mass of about 780 MeV. This marks a major impact of the 
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angular spin on the meson’s mass. The mass difference is due to the interaction between the 
spins of the quark and the antiquark. The energy of the spin interaction is the result of the 
in-product of the spin vectors. Hence, it has to be expected that also the isospin vectors of 
will have an impact on the mass of the mesons, on those of the vector type as well on those 
of the pseudoscalar type. The difference becomes manifest in the mass difference between 
the charged pions and the neutral pion. That means that the origin of electric charge can be 
traced back to the second dipole moment of the quark. It is not by accident that the ratio of 
the difference between the mass of the charged pion and the neutral pion over the 
difference between the mass the pseudoscalar pion and its vector-type counter part is just 
equal to the electromagnetic fine constant 1/137. This is clear from 
 
(139.57-135)/(780-140) 1/137. 
 
This suggests that we may consider the electron-positron bond as the electromagnetic 
version of the pion’s quark-antiquark bond. Hence, it may be expected that the ratio of the 
massive energy of this electron-positron bond over the rest mass of the charged pion is 
equal to 1/137 as well. The mass of the electron is just half this value. The result of the 
calculation shows (139.57/137)/2 = 0.509 MeV. This corresponds rather accurately with the 
known energy 0.511 MeV massive energy as established from experiments reported by the 
Particle Data Group (PDG), [14]. Obviously, the pion hides the origin of electron charge. As 
shown in Appendix B, the electric energy is due to the potential energy of the second dipole 
moment of the quark with respect to the second moment of the antiquark. Hence, the 
second dipole moment of the quark effectively is an electric dipole moment. The electric 
energy, though, is a holistic result of the quark-antiquark conjunction. 
 
 
The masses of the muon and the tau particle 
Let us now proceed by considering a muon as the boson-fermion transformation (decay) of a 
pion. Where a pion can be conceived as a quark spaced from an antiquark under equilibrium 
of an attractive field component and a repulsive field component, a muon can be 
hypothetically conceived as two equally signed electric charges 2/q under equilibrium by 
the two field components shown by (7). This, of course, is a conjecture that should be 
supported later with experimental evidence. Under this hypothesis, the two muon 
components spaced d2 apart, compose an anharmonic oscillator, described by a wave 
equation for its wave function   that results from from (9) as, 
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where m  is the effective central mass of the configuration and whereE is the generic energy 
constant, which is subject to quantization. Note that 2/q is the coupling constant from one 
charge to the other’s field potential. This equation can be normalized as, 
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The potential )(xV  can be conveniently expanded as, 
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Hence, (11) can be written as, 
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Because all other quantities including 0 are dimensionless as well. From (11), we have 
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The quantity 0Φq can be interpreted as the potential energy of the center of mass due to the 
field potential Φ . There are no other sources to produce the field’s energy apart from the 
massive energy 2mc in the center of mass. The identification of a relationship between the 
field’s potential and this massive source energy requires a general relativistic analysis on the 
basis of Einstein’s Field Equation. Inheriting the result for quarks, such as shown in [15, eq. 
(24)], under the electroweak relationship, 
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From (16) and (14) 
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Note: Obviously, the simple relationship (17) heavily relies upon eq. (16) that has been 
invoked from previous work. I consider its re-derivation outside the scope of this text, 
because it can be readily reproduced from the published article [15].     
 
Let us proceed by observing figure 1. It shows the potential (energy) )(xV  of the muon’s 
center of mass, defined by (12) and (10) as a function of its deviation from the spatial center. 
Each curve in the figure is characterized by a particular parameter value for the (normalized) 
spacing d   between the poles. There is a clear minimum for mindd  , an increase of the 
curvature for mindd  and a decrease of the curvature for mindd  . If the two poles are 
spaced in the state of minimum potential ( mindd  ), the vibration energy of the muon is in 
the ground state. As long as the curves show a minimum with a negative value, the  

 
 
Figure 1: The potential energy of the muon’s center of mass as a function of spacing between the 
poles.  The stable ground state of the muon occurs at maximum binding energy  (V(x) = -2; d’ = 1). 
The binding energy is lost for spacing d’ = 0.5.   
 
configuration shows an amount of stability-preserving binding energy. It will be clear that 
the binding energy is lost for narrow spacing.  In figure 2 it is illustrated that the energy 
constant level of first excitation in ground state may correspond with the ground state 
energy constant of the configuration at a smaller spacing.  
 

 
 
Figure 2: The jump from the muon state to the tauon state is a jump from the first excitation level 
of the muon state to the ground state of the heavier tauon. It happens at a spacing d’ = 0.56, 
where the energy constants (not to be confused with the massive energies) match, under 
preservation of a slight amount of binding energy. 
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This is the reason why, under excitation conditions, the configuration may jump from the 
muon state to the tauon state. It will be clear that the jump to the level of second excitation 
cannot be made under preservation of negative binding energy. Hence, charged leptons 
beyond the tauon particle are non-existing.  
 
Let us accept the muon’s mass as a reference for the calculation of the tau particle’s mass. A 
basic ingredient for the calculation is the basic quantum mechanical relationship between 
the mass m , the quantization step   in its vibration energy and the curvature 2k of the 
field potential that causes the vibration. Hence, from (11), 
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The second ingredient is an expression that relates the strength quantity 0Φq  and the 
spatial parameter   of an electron-type Dirac field. In a general relativistic analysis on the 
basis of Einstein’s Field Equation [15, eq. (24)], it has been found that its ratio is frame 
independent and amounts to, 
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where  is a dimensionless constant of order 1. Its meaning will soon be clear. 
 
The third ingredient is the consideration that the field’s energy is not an external field, but, 
instead, that the origin of the field’s energy is due to the potential field of the two poles. 
Hence, the mass of the structure is nothing else but the created vibration energy. This means 
that the spacing  /22 mindd equals half the wavelength of a standing wave, such that 
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where  is a dimensionless constant of order 1, as just mentioned.  
 
The three ingredients hold for the basic ground state, i.e. the state where the effective mass 
of the anharmonic oscillator can be found by equating 2mc with  . In the excitation mode 
these relationships have to be considered with care. This holds particularly for the 
relationships between 0Φ ,   and the pole spacing d . From (18) and (20), we have  
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This expression allows relating the mass of the structure as a function of the spacing d  . 
Normalizing the massive energy on the muon’s one, we have, 
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It has to be emphasized that this mass is no longer made up by a standing like in the muon’s 
case. The lower curve in figure 3 graphically shows the mass dependence as a function of the 
spacing between the poles. 
 

 
Figure 3: The lower curve shows the dependence of the lepton’s physical mass on the pole spacing. 
The upper graph shows that the pole spacing of the tau particle is determined by the equilaty in 
vibration energy of the muon’s first excitation level and the ground state vibration energy of the 
heavier tau particle. Note that the binding energy of the tau particle is just slightly negative. 
 
In combination with the upper curve it illustrates how the mass of the tauon particle is 
related with the mass of the muon. At the spacing d 0.56 the vibration energy of the 
muon in first excitation equals the ground state energy of the heavier tau particle. Note that 
the binding energy, represented by the red curve, is still negative. The cross-over to a 
positive value occurs at d 0.5. The lower curve shows that, at spacing  d 0.56, the 
relative mass value of the structure amounts to 18.9. This means that the tau particle’s mass 
is expected being 1.89 GeV/c2. This is rather close to the tau particle’s PDG rest mass (1.78 
GeV/c2. The difference is due to a slight inaccuracy of the calculation. Where the upper curve 
of figure 3 is the result of a rather accurate numerical computation of the anharmonic 
oscillator, the lower curve is less accurate, because 2k in (22) is determined as the result of 
the truncation of the series expansion (12).  
 
Conclusion 
The decay of a pion into a muon is a transformation of the bosonic quark-antiquark state 
into the fermionic state of two separate kernels with equal electric charge. Similarly as a 
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quark and an electron, these kernels behave as Dirac particles, which have, next to the 
nuclear dipole moment from an elementary angular moment, a second dipole moment. This 
isospin is instrumental for the force equilibrium between the repulsive Coulomb-type 
interaction between the kernels and the attracting dipole moment field. The result is a 
quantum mechanical oscillator structure with a physical massive energy (vibration), solely 
composed by the standing wave energy between the kernels. A structure with a narrower 
spacing has, apart from vibration energy, massive kernels, but is not stable, unless its ground 
state energy equals the first-level excitation energy of the muon state. The analysis shows 
that only a single excitation can be maintained without violating the binding force condition 
of negative energy. This is the tauon particle state. Its calculated massive energy 1.89 GeV/c2 
corresponds fairly with the tau particle’s PDG rest mass (1.78 GeV/c2). It has been concluded 
further that the mass of the elementary charge, such as embodied by the electron, is the 
result of the spin-spin interaction between the second dipole moments of the pion’s quark 
and antiquark. 
 
 
                      
Appendix A: The spin and the isospin of Dirac and Majorana particles 
 
The quantum mechanical wave function of a Dirac particle and a Majorana particle 

Let us first consider a generic free moving particle. Its Einsteinean energy is given as, 
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where 0m  is the particle’s rest mass and where p is the threevector momentum ( dtds / , not be 
confused with the fourvector momentum p ). Without loss of generality the particle’s free motion 
can be aligned along the x axis in a system of Carthesian coordinates for which we shall adopt the 

Hawking metric ( zyxct ,,,i ), 1i  . Squaring (8) gives, 
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which can be normalized as, 
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Note: I prefer to use the Hawking metric ( zyxct ,,,i ) or (+,+,+,+) to avoid the ugly minus sign in (-
,+,+,+), which shows up as metric if the time dimension is defined as real instead of imaginary. As 
long as the temporal dimension is included, the bold italic notation for the vector p will be 
maintained.  
 
Dirac wrote this equation as, 
 
   0))((12

1
2

0  pppp , with ),( 10   and ),( 10 pp p ,                 (A4a) 
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while Majorana wrote this equation  as, 
 
   0))((12

1
2

0  pppp , with ),( 10   and ),( 10 pp p ,                 (A4b) 
 
Thereby leaving freedom  for  the type of the number   and for the type of components  of the two-
dimensional vector    . The elaboration of the middle term is: 
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
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


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
 









22

2

)()(
                                                  (A5)

 

 
In this equation the upper sign in   holds for the Dirac mode, while the lower sign holds for the 
Majorana mode.  To satisfy Dirac’s the following conditions should be true: 
 

0   if   ; 12  ,  0  and 12    for 10, ,                              (A6a) 

 
while for the Majorana mode, 
 

0   if   ; 12  ,  0  and 12    for 10, ,                      (A6b) 

                                                    
From these expressions it will be clear that the numbers   and    have to be of special type. To 

this end we could use for the Dirac mode the following  (Pauli) matrices,  
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31 ,   and 







 


0i

i0
2 ,                                         (A7a) 

 
while for the Majorana mode we could use 
 

    










10

01
ii 10   ,   










01

10
ii 31 ,   and 








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10

01
,                                              (A7b) 

 
It can be verified that (A7a) meets the condition (A6a). Similarly, (A7b) meets the condition (A6b).  It 
means that the Majorana condition can be derived from the Dirac condition, simply by replacing the 
real   - matrices by corresponding imaginary ones after swop and by replacing the imaginary  - 
matrix by the Identity matrix. The reason of the swop will be explained later. 
 
Let us now invoke the basic theorem of quantum mechanics to associate a wave function with a 
particle. This is done by transforming momentum elements into wave function elements. Because  in 
this simplified case the momentum relationship is two-dimensional, the wave function  should be 
two-dimensional as well. Therefore, after transforming the momenta into operators on wave 
functions,  
 

         pp ˆ      with      


 xcm
p





i

1
ˆ

0


    ,                                                                                     (A8)  
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(axiomatic quantum mechanical hypothesis), the momentum relationship (4) is transformed under 
consideration  (A8)  into the following  two equivalent two-dimensional wave equations  
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
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

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



p

p

p

p
,  and                                                                     (A9)         

 
Note that the Dirac condition is met for a single equation with a  sign in front of  , while the 
Majorana condition falls apart into three possible modes , namely a single equation mode with either 
a  sign, or a  sign, or a dual equation mode with two equations that should be simultaneously 
true, i.e., one with a  sign, and a second one with a  sign. As will be shown, It is the latter one that 
makes the actual Majorana mode. The other two modes coincide with the Dirac mode.  
 
With explicit expressions of the Pauli matrices for the Dirac case, we have 
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p
,                                                   (A10) 

 
In alternative terms, this reads as: 
  
 0iˆˆ 10110  pp    and       0iˆˆ 01100  pp ,                                                             (A11)   
 
Denormalizing (11)and writing it in matrix terms gives, 
 

                            0
ˆiˆ

iˆˆ

1

0
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



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.                                                                            (A12) 

 
Let this set be heuristically solved by 
 

    )expi(),( 1 t
W

x
p

utx ii


 ,                                                                                                             (A13) 

 
After substitution of (A-13a) into the upper signed part of (A-12) we find 
 

     0
)ii(

)ii(

1

0

10

01 




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










u

u

pcmcW

cmcWp
.                                                                                      (A14) 

 
Non-trivial solutions for i  are obtained if the determinant of the matrix is zero. In both cases this is 
true if: 
 

    22
0

2
1

2)( cmp
c

W
 .                                                                                                                                  (A15) 

 
This condition corresponds with the square of the Einsteinean relationship (A1). This marks the 
solution of Dirac’s equation as a two-component solution A(13). The solution shows two different 
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options for the amplitude ratio 10 /uu . These are not conflicting because of the quadratic nature of 
the determinant condition (A15).  
 
 

      
1

0

0

1

1

0 i
)/(

i
p

cmcW

cmcW

p

u

u 



       .                                                                                          (A16) 

 
Under non-relativistic condition ( cmp 01  ) and positive energy )0( W , there is a large 

dominant component ( 0u ) as compared to a small minor component  ( 1u ).  
 
Let us now consider the less-known Majorana case. Denormalizing (A12a) and writing it in matrix 
terms gives, 
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.                                                             (A17) 

 
This case represents three different possible modes, namely the single plus mode, the single minus 
mode and a dual mode where two different modes should be simultaneously be true. Let us first 
consider the single plus mode. It reads as the set,    
 
 
        0ˆiˆi 01100  pp  .                0ˆiˆi 10110  pp   ;                                             (A18) 
 
 
Using the same procedure as before, (A18) is denormalized and written in matrix terms as, 
 

                            0
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
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.                                                                          (A19) 

 
Note the symmetry between (A19) and the corresponding one (A12) in the Dirac case. The symmetry 
is due to the swop between the Pauli matrices as mentioned while discussing (A7b).  
 
Let this set be heuristically solved by 
 

    )expi(),( 1 t
W

x
p

utx ii


 ,                                                                                                             (A20) 

 
After substitution of (A20) into (A19) we find 
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Non-trivial solutions for i  are obtained if the determinant of the matrix is zero. This is true if: 
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    22
0

2
1

2)( cmp
c

W
 .                                                                                                                                  (A22) 

 
Similarly as in the Dirac case, this condition corresponds with the square of the Einsteinean 
relationship (A1). It makes (A20) a valid solution. Let us now consider the minus mode of the 
Majorana case. Analytically, it means simply changing the sign of cm0 . Apart from the sign in the 

ratio 10 /uu , the solution is not different. In both cases and similarly in the Dirac case, it makes no 
relevant difference either if we would had taken the conjugate complex alternative for the tentative 
solutions (A13) and (1A9 by changing the sign of the argument of the exponential functions. Hence, 
both the plus mode and the minus mode of the Majorana case are not different from the Dirac case. 
The actual difference is made by accepting the dual equation mode that combines the plus mode and 
the minus mode. In that case two sets of solutions, ),( 1001   and ),( 3223   should be 
simultaneously true, where  
 

.
)/(

i

);i(exp),(

);i(exp),(

0

1

0

1

1
11

1
00

cmcW

p

u

u

t
W

x
p

utx

t
W

x
p

utx














       and        

.
)/(

i

);i(exp),(

);i(exp),(

0

1

3

2

1
33

1
22

cmcW

p

u

u

t
W

x
p

utx

t
W

x
p

utx












                       (A23)             
 
 
This allows equating 31 uu  and 20 uu  and subsequent combining to the wave function set 

ba  ,( ), where 
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Summarizing: A Majorana particle, free moving in space in a Carthesian frame of coordinates along 
the motion direction, has a real wave function with two orthogonal components, whereas a free 
moving Dirac particle that is similarly aligned, has a complex wave function with two complex 
components. The Majorana mode is obtained from modifying Dirac’s heuristic  derivation, by a slight 
different composition of the Einsteinean energy and by modifying the real valued Pauli-matrices into 
imaginary ones.  
 
The spin and the isospin of Dirac particles and Majorana particles 
 
After having compared the wave functions of Dirac particles and Majorana particles, we wish to 
analyze their spins. If we write Dirac’s decomposition of the Einsteinean energy as (4a), we may write 
Majorana’s decomposition as, 
 

)i)(i(2 pp WE .                                                                                                                  (A25) 
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Because of the relationships as developed by (A5) and (A6), we may capture both cases as, 
 

))((12 pp WE .                                                                                                                            (A26) 
 
To proceed, we shall make use of a particular property of Pauli matrices, which states [16] 
 

wvwvwv  ))(( .                                                                                                                 (A27) 

 
Hence, from (A25)and (A26), 
 

11))((  pppppp  .                                                                                             (A28) 
 
This might seem a trivial result, because the vector product of a vector with itself is zero. 
Hence, this is just a retrieval  of the Einsteinean energy expression (A1). However, under 
influence of the presence of a conservative field forces, characterized by a (normalized) 
vector potential A , the expression changes under the change of momenta components,  
 

A pp .                                                                                                                                    (A29) 
  
such that (A27) transforms to, 
 

)()()()( AAAA  pppppppp                                                 (A30) 
 
The vector product in this expression still seems being irrelevant, because of its zero value. 
This, however, changes after the quantum mechanical transform from momenta to 
operations on a wave function, defined by  
 

         pp ˆ      with      


 xcm
p





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0

  .                                                                            (A31)  

 
Applying these transforms on the generic identity 
 

)()()()( vwxvwvwv   
 
we have  
 

 )ˆ()ˆ()()( pAApApAp  .                                                                      (A32)                                          
 
Where the operator in the first term operates on   as well as on A , the operator in the 
second term only operates on  . As a consequence (A32) is evaluated as, 
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Where the vector product of the momentum representation is zero, the equivalent wave 
function representation is not. Apparently, the expression (A1) of the Einsteinean energy 
under influence of spin changes  via (A30) as, 
 

0)(
i

1))((
0

 AApAp
cm

 .                                                                                  (A34) 

 
Generically, the fourvector potential A consists of a scalar component   next to a vector 
component A . In spite of the particle’s motion in one spatial direction, we shall suppose first 
that, next to a zero component xA , the vectorial component has a zero valued transversal 
component yA . Moreover, we suppose that the scalar component is orthogonal to the 

motion, i.e. independent of x . Hence 
 

),( 10 pp  pp ;  ),,
/

(AA 00i
0cm

c .                                                                                       (A35) 

Note: The i factor in the scalar component is due to the (Hawking) metric choice (+,+,+,+) / 
(ict,x,y,z). It can be easily seen from the Lorenz gauge 
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Note also that 2

0cm/ is a dimensionless quantity. Under consideration of (A35), we have 
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where yx ,ee and te , respectively , are unit vectors along the two spatial axes and the 

temporal axis. and the spatial axis. In this operation (A37) the virtue of the two-dimensional 
modeling becomes clear, because it allows including the temporal axis into the curl 
operation on the vector potential. Under consideration of (A37), the Einsteinean energy 
expression (A34) evolves as, 
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After denormalization,  
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Hence, under consideration of (2), 
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Note that 0p  is imaginary, like can be concluded from (A2). Hence, after squaring the left 
hand term of (A40) is a real quantity. The term in conjunction with 0p represents the change 
of the temporal momentum that would show up under influence of a potential field energy 
Φ if present. Supposing that the first two terms in the most right-hand part are much smaller than 1, 
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The small value condition to move from (A40) to (A41) is not a prerequisite. It is adopted 
here to reveal the physical interpretation of c2/  as a virtual dipole moment c2/ , 
because eventually, in the static condition, the torque disappears and the condition is true 
for tiny mass as well. The +/- term is the result of the quantum mechanical analysis enabled 
by the operator view. It is absent in the case that spin would have been ignored. It shows an 
additional amount of energy not present in classical mechanics. In the next paragraph we 
shall discuss it in more detail.  
 
Physical interpretation of spin and isospin 
 
Assigning a meaningful interpretation to the spin phenomenon requires an identification of 
the physical nature of the vector potential of the field of forces and on the coupling of the 
particles to such a field. In that respect, the behavior of a Dirac type charged particle 
(electron), is not much different from a quark. Let us first consider the electron.  
 
Electrons 
Let us consider SE  as the additional amount of energy due to spin as shown by (A41). It 
amounts to 
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We may interpret the potential Φ by the force equity F as 
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where q is the electric charge of an electrical particle under consideration. Hence, from 
(A42) and A(43), 
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It is an additional amount of energy that would be executed by a torque force if a field would 
be present with a component perpendicular to the direction of the motion. It reveals a 
hidden electric moment el to the amount  of 
 

02 m

q

cel


 ( 3.09 10-32 C m for an electron).                                                                         (A45) 

 
To date no experiment has found a non-zero electric moment for the electric moment. The 
Particle Data Group states that, if it would exist, its value is el  0.87 10-30 C m. Curiously, 
in his classic paper on electrons, Dirac has identified an electric moment for electrons. 
However, he has waived it away, because in his calculation it showed up as an imaginary 
quantity. To support the conclusion that the electric moment of electrons is as real as the 
magnetic moment is, it is useful to include time-independent vector components in the 
vector potential. To do so, we expand (A37) to  
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Because of AB  , we have 
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Because te is a unit vector along the imaginary axis, both contributions in (A46) are 
imaginary, thereby making a real contribution in (A34). Including this result into (A41) gives, 
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Taking (43) into consideration it has to be noted that similarly as Φ is not the same as eΦ , 
B  is not the same as eB . The difference is a factor q . Hence, apart from the electric 
moment el , the electron contains a spin magnetic moment m to the amount of  
 

 
02m

qm

 (9.27 10-24 C m2 s-1),                                                                                              (A49) 

 
which is known as the Bohr magneton. 
 

(Note: S
m

q
g em

02
 ; eg 2;  

2


S , where eg is known as the gyromagnetic ratio). 
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The conclusion is that electrons show a magnetic dipole moment as well as an electric dipole 
moment. The latter one is too weak to be detected. Denoting the spin magnetic dipole 
moment for short as spin, it makes sense to denote the spin electric dipole moment as 
isospin. This view has been developed before by David Hestenes [..].  
 
Let us proceed by  considering the field potential. First, from the linear momentum. Second, 
from the angular momentum. As can be expected, the most simple expression for the field 
from the linear momentum will show up along the alignment axis of the dipole.  Under 
consideration of a generic dipole moment dq p , this potential field can be readily derived as,  

 

2
0

2
0 4

1

2
)(Φ

4
)(Φ

rmc

q
r

r

dq
r N

p
N 







.                                                                             (A50) 

                  
Note that the charge pq  of the fictitious pole in the elementary dipole is different from the 

effective charge q of the electron. It is no more than just an auxiliary quantity. Something 
similar holds for the elementary angular moment mq 2/ . It can be viewed as a monopole 

pq circulating with light speed at a distance d from a virtual center. Interpreting the angular 

momentum as a rotation of charge pq with light speed at a fictitious radius  mgr /10 , we 

have  
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The factor mg  can be interpreted as a gyromagnetic factor. 
 
Hence,  
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Along the alignment axis, the total potential field  )(Φ e r  of the electron can be written as, 
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where it is taken for granted that the electric forces from near field and far field have 
opposite signs.  
 
Quarks 
The difference between the quark case and the electron case is a consequence of a 
difference in the force equity expression (A43). Because the antiquark couples with the 
generic quantum mechanical coupling factor to the field of a quark, (43) changes simply into  
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After that, the analysis evolves along similar lines.  
 
 
Appendix B: The interactions between the spins and the isospins in a meson 
The spin spin interaction between the dipole moments of the quark and the antiquark can 
be analyzed similarly  to the interaction between the spin of the orbital electron and the spin of the 
proton in the hydrogen atom.  This interaction is known to be the cause of the hyperfine structrure in 
the spectral lines of the hydrogen gas. Similarly as the intrinsic angular momentum of an electron 
and a proton set up a magnetic dipole field, the intrinsic angular moment of a quark sets up a nuclear 
equivalent. Similarly as the magnetic moment of an electron experiences a potential energy from the 
field of the magnetic dipole from the proton spin, the nuclear equivalent of the magnetic moment of 
a pion quark experiences a potential energy from the nuclear equivalent of the magnetic dipole field 
from the spin of the antiquark. The difference between the hydrogen model and the pion is that we 
have to deal not only with the angular moments, but also with the non-angular dipole moments.  Let 
us first consider the interaction between the angular moments.  
 
It is well known that the magnetic field of a dipole that results from a current loop with an 
infinitesimal small dimension, as a consequence of a magnetic moment 1μ  is given by [9,p.157], 
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where  1μ  is the magnetic moment and where r̂  is the unit vector in r direction.  The potential 

energy 2U of a second particle with a magnetic moment 2μ , placed at a distance r apart, is 
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In classical conditions, the second right-hand part in this expression does not play any role. However, 
if the two particles are of a quantum mechanical nature, therefore requiring a distributed wave 
function description, this is no longer true. As proven by Griffiths [9], it is in fact the only part that 
effectively contributes. The first right-hand part is angular dependent, implying a dependence of the 
mutual orientation of the two spins. Therefore, on the average, the contribution of this first part 
cancels out, while the magnitude of the second part is made up by the integral of all contributions 
within the sphere of overlap of the two wave functions. In such condition, the potential energy of 
any of the two particles resulting from interaction with the field of the other, as calculated from (B2), 
reduces to the constant contribution,   
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The formula applies to the positronium model, where a particle moves around an identical one at a 
distance 2 0d , thereby making  a circle with radius 0d around the center of mass. In the hydrogen 
case, this result corresponds with the presence of the 21 cm line in its spectrum [9]. The magnetic 
moments amount to [9], 
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where s is the gyromagnetic ratio 2s  and where iσ are the spin vectors of the dipole. Hence, 
from  (B3) and (B4),  
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The spins will align themselves in parallel or in anti-parallel, which gives, respectively, 
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Hence, considering the case of parallel alignment, we have 
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Let us now consider the nuclear case with the two dipole moments. The angular one is the classical 
one: a circular current creates  the nuclear equivalent of a magnetic field, on which the other angular 
dipole moment interacts with the nuclear coupling factor. The non-angular one creates a different 
field, in fact an electric one, on which the second non-angular dipole moment interacts with the 
electric coupling factor. Hence, as a consequence from spin vectors iσ there are two dipole-induced 
energetic contributions.  How to derive the nuclear equivalent of (B7) ? We know that the 
electromagnetic force eF  and the (vectorial) far field force nF between two charged quarks, spaced 

at distance 02d , can be established from,  
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where )(rF is respectively given as )()( rFrF e  and )()( rFrF n , such that 
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There is no reason why these forces would be the same. What is clear, however, is, that /0g

plays a similar role as )4/( 0
2 eq , i.e.,  
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Furthermore, as noted before, previous studies have revealed a nuclear equivalent for the 
electromagnetic fine structure relationship [15].  Where, 
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Expressions (B7) and (B11) enable establishing the potential energy under parallel spin as  
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The second one is due to the nuclear equivalent of an electric dipole moment, to the amount of  
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Hence, from  (B3) and (B13),  
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Hence, from (B12) and (B13), the ratio of the non-angular spin-spin interaction over the angular spin-
spin interaction, is calculated as,  
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Taking into account that mind 0.856 and  0.69, [15], this ratio is near to 2g 1/137 as 
predicted in the third paragraph of the main text, albeit that the fit Is not perfect.  
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