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Summary

A calculation is presented for the mass relationships between electron, muon and the tau particle. It is shown
that charged leptons with mass levels beyond the one of the tau particle cannot exist because of insufficient
binding energy. The underlying mechanism of the relationship between the leptons is the isospin feature of
Dirac particles, which appears being a substantial attribute next to nuclear angular spin. It is further shown that
the energy of the elementary electric charge, such as embodied by the mass of an electron, is due to the
interaction between the isospins of the pion’s quark and antiquark.
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Introduction

In his classic paper on electrons, Dirac [1] has derived expressions for two elementary dipole
momenta. The first one is due to the well known elementary angular momentum, eventually
dubbed as spin S =7/2, which manifests itself physically as a magnetic dipole moment,
with a magnitude linearly proportionate to S. The second one is an elementary dipole
moment with magnitude %/2c, which is less known. It has been waived away by Dirac,
because it showed up as an imaginary quantity for which he could not find a physical
justification. If it would have a physical justification, one might expect that it would show up
as an elementary electrical dipole moment. This view has been adopted by Hestenes [2,3] in
his studies on the jitter (“zitterbewegung”) of electrons. In present day quantum physics,
guite some studies are going on, aiming to establish values for the electrical dipole moment
of electrons if it would exist [4,5,6,7]. The existence of it an electric moment of electrons is
put into doubt, because it would violate the CPT pillar of the Standard Model of particle
physics [8]. This would be the case indeed if the electrical moment would be the result of a
possible distribution of electric charge in a spatial structure. Curiously, in those studies
usually no reference is given to Dirac’s paper, who took the pointlike format of an electron
as an axiom.

It is my aim to show in this article that, in spite of Dirac’s conclusion, the second elementary
dipole moment of a Dirac particle, which we shall indicate for short as isospin, is not an
imaginary quantity, but a real one. | wish to show the impact of this isospin on the structure
of nuclear particles that can be composed by quarks, in particular on the structure of a pion
before decay and after its decay into a muon. The primary aim is showing the relationship
between the masses of the electron, the muon and the tau particle and revealing the reason
why no charged leptons exist with a mass beyond the tau particle’s one. Doing so, various
axioms of present day quantum physics will be discussed and put into a new light. Among
these are the Higgs field, the isospin of quarks and nucleons, the large amount of elementary
particles and the hadrionic mass spectrum.
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The article falls apart into two parts. The analysis of spin and isospin of Dirac particles,
although a basic ingredient of the article, will be described in the Appendix. The results of it,
will be invoked in the main text that describes how the masses of charged leptons depend
on these attributes.

The energy field of quarks and electrons

The Standard Model of particle physics heavily relies upon the concept of an omnipresent
energetic nuclear background field, dubbed as the Higgs field. In its most simple
representation, this field @ is characterized by its Lagrangian density U ,(®). This density is

heuristically defined as [9],

. @ nygl

Uy (@) =py BN 4 (1)

where 1, and A, are characteristic real constants. The justification for this format is the

simple fact that many predictions from the theoretical elaboration of this underlying axiom
of the Standard Model are in agreement with experimental evidence. It is instructive to
compare this heuristically conceived energetic background field with the background field
around an electric pointlike charge in an ionized plasma [10], where the background field has
the format

q)z
Ups =Nog - (2)

The energetic field @ flowing from the pointlike charge is influenced by this background
field and can be derived by the overall Lagrangian density L with the generic format

L:—%8u®8”®+U(CD)+pCD, (3)

where U(® )is the potential energy of the background field and where p®is the source

term. By application of the Euler-Lagrange equation, the potential ® of the pointlike source
of this (Debije) field can be derived as,

exp(—A
q)DB :@OM’ (4)

A pp?
with @, = OA/4mne,, where Q is the electric charge and g,the vacuum electric permittivity.

Supposing that a quark is an energetic pointlike source, we may try to establish its potential,
thereby expecting it being influenced by the energetic background field. Unfortunately, the
format of the Higgs background field prevents obtaining straightforwardly an analytical
expression. However, by profiling a solution, a numerical procedure may serve for
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establishing a good fit. To make a long story short, documented in previous work [11], the
result is a quark field with the format,

g, (5)

1
DO(r) =D, exp(—Ar) {}37 .

where the parameter A determines the spatial range of the field. Its value depends on the
Higgs parameters 1, and A, . The numerical value of the dimensionless factor g, can be
established from curve fitting as g, = 2. It will be shown later in this text that it can be

conceived as a gyrometric factor that is related with the gyromagnetic constant of quantum
mechanical electromagnetism. This field can be conceived as the sum of a near field and a
far field such that,

O(r)=0,(r)+D,(r), with

exp(—Ar)
(hr)?

exp(—Ar)

q)N(r):(Do o

and ®,(r)=g,®, (7)

The latter one, i.e. @, (7), has the same format as an electric field if A = 0. It has the

characteristics of a Debije field, where the free energetic flow from the source is suppressed
by a surrounding background field. The near field @, () shows the characteristics of a dipole

field, or, more precisely, the characteristics of a field from an linear dipole moment aligned
along the dipole axis.

The far field behaves similarly as the Debije field, i.e. as a field where the free energetic flow
is suppressed by an energetic background field. Each of two quarks in @ meson are coupled
to the field of the other with a coupling factor g . Hence, the combined field from two

quarks in a meson aligned along the x —axis, spaced at a 2d distance, can be expanded as,

V(x) = ®(d +x)+ D(d — x) = g®, (k, + kx> +.00r)), (8)

where kjand k, are dimensionless coefficients with magnitudes that depend on the spacing

d . The interesting feature of the meson configuration now is, that its center of mass is
subject to a potential that (almost) depends on the square of x . Hence, the meson shows
the characteristics of a quantum mechanical oscillator. It is therefore subject to excitation,
which is the underlying mechanism for the systematic characteristic of the mass spectrum of
mesons [12]. The two quarks in the meson align themselves in the condition of minimum
energy, such that they are spaced at dA = d! . (~0.856).

There is one nasty thing though. Where the far field can be explained in conventional field
theory by considering it as the description of a repelling force from one quark to another,
like in the electromagnetic case, the gluing near field is not clear. Therefore, the open
question is, how to explain the attracting force that keeps two forces in equilibrium toward a
guasi stable configuration. In particle physics, the problem is settled by defining a force of
unknown origin, dubbed as color force, which make mesons and baryons quasi stable. This
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color force is conceived in a frame work of mathematical formalism, but, in fact, a true
physical justification is lacking. Nevertheless, Quantum Chromatic Dynamics (QCD) is one of
the pillars of present day quantum physics. Except this, the justification of the Higgs field is
not very convincing, because it is mainly based upon analogies [9], from which it is not clear
why those should apply to all space. If, on the other hand, an explanation would be found for
the field as described by the profiled solution (5), the Higgs field (1) would be explained as
well. In previous works, | have adopted the quark field profile (5) by simply assuming that,
next to a vectorial bosonic far field, a scalar near field exists with the desired properties. It is
my aim in this work to show that this assumption can be justified and improved because of
two recent obtained results. The first of these is the awareness of Dirac’s second dipole
moment of electrons. The second of these is the awareness of an omnipresent cosmological
energetic background field, which shows up as the vacuum solution of Einstein’s Field
Equation under adoption of a non-zero value for the Cosmological Constant[13].The
combined effect from the two novel views result in a theoretically based model for the quark
potential similar to (5). Such without the need for adopting the spontaneous symmetry
breaking (SSB) mechanism, which so far has been proposed to justify the Higgs field format
(1). The crux is the adoption of the Dirac particle description for quarks, including its
potential to eject an energetic flow like electrons do, and the validation of isospin for Dirac
particles next to spin. The interaction between the isospins, i.e., the second dipole moments
of quarks, is the reason that they attract. Because dipole fields are decaying rapidly, the
attracting near field range show a » > dependency of the potential, while the range of the
repelling far field from the energetic flow, shows the regular » ' dependency. The additional
exponential decay is due to an energetic background field with a format as shown by the
Debije effect.

The second dipole moment will change the scalar field of an electron as well. There is some
difference with the nuclear field of a quark, though, because the field of an electron in free
space is not subject to the shield of the Higgs field. Hence, the scalar field of a pointlike
electric charge is made up as,

1 1
q)e(r)_q)o{ﬁ_gmﬁ} . (9)

As just explained, a quark and an antiquark in conjunction, compose a meson. The archetype
one is the pion.

The mass of the electron

Apart from the electron itself, the smallest observable particle showing an electric charge is
the pion. The simple pion model, as discussed in this text so far, is inadequate for explaining
the origin of electric charge. It can be understood from the influence of the spins of the
quark and the antiquark on the rest mass of the pion. As explained in this text, a quark has
an angular moment, spin for short, and a second dipole moment, which is non-angular in its
origin, in this text dubbed as isospin for short. It is well known that the spin has a major
impact on the rest mass of a meson. If the spins are parallel, the meson is of the
pseudoscalar type. If the spins are anti-parallel, the meson is of the vector type. A pion is a
pseudoscalar meson. It has a rest mass of about 140 MeV. Its vector type counter part is the
rho meson, which has a rest mass of about 780 MeV. This marks a major impact of the
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angular spin on the meson’s mass. The mass difference is due to the interaction between the
spins of the quark and the antiquark. The energy of the spin interaction is the result of the
in-product of the spin vectors. Hence, it has to be expected that also the isospin vectors of
will have an impact on the mass of the mesons, on those of the vector type as well on those
of the pseudoscalar type. The difference becomes manifest in the mass difference between
the charged pions and the neutral pion. That means that the origin of electric charge can be
traced back to the second dipole moment of the quark. It is not by accident that the ratio of
the difference between the mass of the charged pion and the neutral pion over the
difference between the mass the pseudoscalar pion and its vector-type counter part is just
equal to the electromagnetic fine constant 1/137. This is clear from

(139.57-135)/(780-140) ~1/137.

This suggests that we may consider the electron-positron bond as the electromagnetic
version of the pion’s quark-antiquark bond. Hence, it may be expected that the ratio of the
massive energy of this electron-positron bond over the rest mass of the charged pion is
equal to 1/137 as well. The mass of the electron is just half this value. The result of the
calculation shows (139.57/137)/2 = 0.509 MeV. This corresponds rather accurately with the
known energy 0.511 MeV massive energy as established from experiments reported by the
Particle Data Group (PDG), [14]. Obviously, the pion hides the origin of electron charge. As
shown in Appendix B, the electric energy is due to the potential energy of the second dipole
moment of the quark with respect to the second moment of the antiquark. Hence, the
second dipole moment of the quark effectively is an electric dipole moment. The electric
energy, though, is a holistic result of the quark-antiquark conjunction.

The masses of the muon and the tau particle

Let us now proceed by considering a muon as the boson-fermion transformation (decay) of a
pion. Where a pion can be conceived as a quark spaced from an antiquark under equilibrium
of an attractive field component and a repulsive field component, a muon can be
hypothetically conceived as two equally signed electric charges ¢ /2 under equilibrium by
the two field components shown by (7). This, of course, is a conjecture that should be
supported later with experimental evidence. Under this hypothesis, the two muon
components spaced 2d apart, compose an anharmonic oscillator, described by a wave
equation for its wave function y that results from from (9) as,

n dy
-— +V(x)y = Ey, with
o a2 T v =Ey
q 1 1
Vix)=Ud+x)+U(d-x); Ux)=—D(5——-g,—) - 10
(x) ( X) ( X) (.X) 2 0(}\,2)(:2 gm }\,X) ( )

where m is the effective central mass of the configuration and where E is the generic energy
constant, which is subject to quantization. Note that ¢/2is the coupling constant from one

charge to the other’s field potential. This equation can be normalized as,
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2

d\ll ! 1A !
Y v = By (11)
2~ 2
o, =y 22D gy J2ED) g — o
mq®, 0 q®,

The potential 7'(x) can be conveniently expanded as,
V'(x)=ky +k,x"* + ... , (12)

where

2 4 6 4

0= E T kZ_F_dm'

Hence, (11) can be written as,

2

ﬁ+k2x'2\|/ = (E' —k,)y. (13)

Because all other quantities including o, are dimensionless as well. From (11), we have

R\
mq®, .

o, = (14)

The quantity g®  can be interpreted as the potential energy of the center of mass due to the

field potential ® . There are no other sources to produce the field’s energy apart from the
massive energy mc” in the center of mass. The identification of a relationship between the
field’s potential and this massive source energy requires a general relativistic analysis on the
basis of Einstein’s Field Equation. Inheriting the result for quarks, such as shown in [15, eq.
(24)], under the electroweak relationship,

2 =4n80g2hc, (15)

we have,

2 2
0
From (16) and (14)
2
o, = k—°. (17)

2k,
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Note: Obviously, the simple relationship (17) heavily relies upon eq. (16) that has been
invoked from previous work. | consider its re-derivation outside the scope of this text,
because it can be readily reproduced from the published article [15].

Let us proceed by observing figure 1. It shows the potential (energy) V'(x)of the muon’s
center of mass, defined by (12) and (10) as a function of its deviation from the spatial center.
Each curve in the figure is characterized by a particular parameter value for the (normalized)
spacing d' between the poles. There is a clear minimum for d' =d an increase of the

i
min /

curvature for d' <d!. and a decrease of the curvature for d'>d! . . If the two poles are
spaced in the state of minimum potential (d'=d! ), the vibration energy of the muon is in

the ground state. As long as the curves show a minimum with a negative value, the
V(%)

6

Figure 1: The potential energy of the muon’s center of mass as a function of spacing between the
poles. The stable ground state of the muon occurs at maximum binding energy (V(x) = -2; d’ = 1).
The binding energy is lost for spacing d’ = 0.5.

configuration shows an amount of stability-preserving binding energy. It will be clear that
the binding energy is lost for narrow spacing. In figure 2 it is illustrated that the energy
constant level of first excitation in ground state may correspond with the ground state
energy constant of the configuration at a smaller spacing.

V (x)
25

/

X
-0.75 -0. . 02505 0.75

Figure 2: The jump from the muon state to the tauon state is a jump from the first excitation level
of the muon state to the ground state of the heavier tauon. It happens at a spacing d’ = 0.56,
where the energy constants (not to be confused with the massive energies) match, under
preservation of a slight amount of binding energy.
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This is the reason why, under excitation conditions, the configuration may jump from the
muon state to the tauon state. It will be clear that the jump to the level of second excitation
cannot be made under preservation of negative binding energy. Hence, charged leptons
beyond the tauon particle are non-existing.

Let us accept the muon’s mass as a reference for the calculation of the tau particle’s mass. A
basic ingredient for the calculation is the basic quantum mechanical relationship between
the mass m, the quantization step 7 in its vibration energy and the curvature k, of the
field potential that causes the vibration. Hence, from (11),

2
m®

= q®yk,\7 . (18)

The second ingredient is an expression that relates the strength quantity g®, and the

spatial parameter A of an electron-type Dirac field. In a general relativistic analysis on the
basis of Einstein’s Field Equation [15, eq. (24)], it has been found that its ratio is frame
independent and amounts to,

q®, oanhc (19)
A dkyd

min

where ais a dimensionless constant of order 1. Its meaning will soon be clear.

The third ingredient is the consideration that the field’s energy is not an external field, but,
instead, that the origin of the field’s energy is due to the potential field of the two poles.
Hence, the mass of the structure is nothing else but the created vibration energy. This means
that the spacing 2d = 2d],, /A equals half the wavelength of a standing wave, such that

2d;., oacT ¢ 12amc - 2hod]

¢ _1 N ) (20)
A 2 2f 2 o an(fc)

where avis a dimensionless constant of order 1, as just mentioned.

The three ingredients hold for the basic ground state, i.e. the state where the effective mass
of the anharmonic oscillator can be found by equating mc? with Z®. In the excitation mode
these relationships have to be considered with care. This holds particularly for the
relationships between @, A and the pole spacing d . From (18) and (20), we have

84" ,
? = (a;‘; k,(d")q®,. (21)

mc

This expression allows relating the mass of the structure as a function of the spacing d'.
Normalizing the massive energy on the muon’s one, we have,
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mc? _ ky(d)
2 ky(d )

mc min

. (22)

muon

It has to be emphasized that this mass is no longer made up by a standing like in the muon’s
case. The lower curve in figure 3 graphically shows the mass dependence as a function of the
spacing between the poles.

E/Eref
' 20
I
I
I 15
I
N lst exe.muon |
I 10
I
: ground state muor
I
I
. L . . . 4’
0.5 06 —6.7— 0.8 0.9
binding energy
m/mref
Mor v

0.5 0.6 0.7 0.8 0.9
Figure 3: The lower curve shows the dependence of the lepton’s physical mass on the pole spacing.
The upper graph shows that the pole spacing of the tau particle is determined by the equilaty in
vibration energy of the muon’s first excitation level and the ground state vibration energy of the
heavier tau particle. Note that the binding energy of the tau particle is just slightly negative.

In combination with the upper curve it illustrates how the mass of the tauon particle is
related with the mass of the muon. At the spacing d' =0.56 the vibration energy of the
muon in first excitation equals the ground state energy of the heavier tau particle. Note that
the binding energy, represented by the red curve, is still negative. The cross-over to a
positive value occurs at d' =0.5. The lower curve shows that, at spacing d'=0.56, the
relative mass value of the structure amounts to 18.9. This means that the tau particle’s mass
is expected being 1.89 GeV/c>. This is rather close to the tau particle’s PDG rest mass (1.78
GeV/c?. The difference is due to a slight inaccuracy of the calculation. Where the upper curve
of figure 3 is the result of a rather accurate numerical computation of the anharmonic
oscillator, the lower curve is less accurate, because k, in (22) is determined as the result of

the truncation of the series expansion (12).

Conclusion
The decay of a pion into a muon is a transformation of the bosonic quark-antiquark state
into the fermionic state of two separate kernels with equal electric charge. Similarly as a
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guark and an electron, these kernels behave as Dirac particles, which have, next to the
nuclear dipole moment from an elementary angular moment, a second dipole moment. This
isospin is instrumental for the force equilibrium between the repulsive Coulomb-type
interaction between the kernels and the attracting dipole moment field. The result is a
qguantum mechanical oscillator structure with a physical massive energy (vibration), solely
composed by the standing wave energy between the kernels. A structure with a narrower
spacing has, apart from vibration energy, massive kernels, but is not stable, unless its ground
state energy equals the first-level excitation energy of the muon state. The analysis shows
that only a single excitation can be maintained without violating the binding force condition
of negative energy. This is the tauon particle state. Its calculated massive energy 1.89 GeV/c?
corresponds fairly with the tau particle’s PDG rest mass (1.78 GeV/c?). It has been concluded
further that the mass of the elementary charge, such as embodied by the electron, is the
result of the spin-spin interaction between the second dipole moments of the pion’s quark
and antiquark.

Appendix A: The spin and the isospin of Dirac and Majorana particles

The quantum mechanical wave function of a Dirac particle and a Majorana particle

Let us first consider a generic free moving particle. Its Einsteinean energy is given as,

E, =J(myc®)* +(cp))? (A1)

where m, is the particle’s rest mass and where p is the threevector momentum (ds/dt, not be
confused with the fourvector momentum p ). Without loss of generality the particle’s free motion
can be aligned along the x —axis in a system of Carthesian coordinates for which we shall adopt the

Hawking metric (ict,x, y,z), 1=v—1 _Squaring (8) gives,
EVZV =—p§c2 :(mocz)z +czp12, (A2)
which can be normalized as,

Py
m,c

p(')2+p1’2+120;p;,= (A3)

Note: | prefer to use the Hawking metric (ict, x, v,z ) or (+,+,+,+) to avoid the ugly minus sign in (-
,+,+,1), which shows up as metric if the time dimension is defined as real instead of imaginary. As
long as the temporal dimension is included, the bold italic notation for the vector p will be

maintained.

Dirac wrote this equation as,

py +p +l=B+o-p)B+a-p)=0,with & =a(a,.a,)and p'(py, P, (Ada)
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while Majorana wrote this equation as,
pe +pt =@ +a-p)B-a-p)=0,with a=0a(a,a,)and p'(p.p)), (Adb)

Thereby leaving freedom for the type of the number £ and for the type of components of the two-
dimensional vector & . The elaboration of the middle term is:

B+a-pHBxta-p)= (B+Z%P;¢)(Bizavpi‘,)
=B*+ > +Bo,p, + > a,bp, - D> a0, p.p.

n

=B’ +D (#Ba, +a p)p, £ (a,a, +o,a,)p,p, Y aip)’
b n h (A5)

In this equation the upper sign in £ holds for the Dirac mode, while the lower sign holds for the
Majorana mode. To satisfy Dirac’s the following conditions should be true:

a0, +oo, =0ifusv; B> =1, Ba, +Pa, =0and a;=1forp=01, (A6a)
while for the Majorana mode,

_ . . 2 _ _ 2 _
ao, +aa, =0ifusv; =1, —Ba, +Ba, =0and o} =1 for p=0,1, (A6b)

From these expressions it will be clear that the numbers ¢, and S have to be of special type. To

this end we could use for the Dirac mode the following (Pauli) matrices,

0 1 1 0 0 -1
(1026121 NE o, =0, = 0 —1l" andBZGZZi ol (A7a)

while for the Majorana mode we could use

, /10 , 10 1 1 0
(102101210 . ,OL1=103:11 O,andB: o 11’ (A7b)

It can be verified that (A7a) meets the condition (A6a). Similarly, (A7b) meets the condition (A6b). It
means that the Majorana condition can be derived from the Dirac condition, simply by replacing the
real o.- matrices by corresponding imaginary ones after swop and by replacing the imaginary 3 -

matrix by the Identity matrix. The reason of the swop will be explained later.

Let us now invoke the basic theorem of quantum mechanics to associate a wave function with a
particle. This is done by transforming momentum elements into wave function elements. Because in
this simplified case the momentum relationship is two-dimensional, the wave function should be
two-dimensional as well. Therefore, after transforming the momenta into operators on wave
functions,

p, > Dby with p=——"" (A8)

d0i:10.20944/preprints201905.0118.v1


https://doi.org/10.20944/preprints201905.0118.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 10 May 2019 d0i:10.20944/preprints201905.0118.v1

(axiomatic quantum mechanical hypothesis), the momentum relationship (4) is transformed under
consideration (A8) into the following two equivalent two-dimensional wave equations

[ao]{’fe}“}[ {pl"’o} [ﬁ]{"’o} _0, and ")
PoV, pl\l’l

Note that the Dirac condition is met for a single equation with a +sign in front of 3, while the

Majorana condition falls apart into three possible modes , namely a single equation mode with either
a +sign, or a —sign, or a dual equation mode with two equations that should be simultaneously
true, i.e., one with a + sign, and a second one with a —sign. As will be shown, It is the latter one that
makes the actual Majorana mode. The other two modes coincide with the Dirac mode.

With explicit expressions of the Pauli matrices for the Dirac case, we have

0 1| p,] 1 0| p 0 -1
1 0] poy, 0 —1] pyv, i 0y,
In alternative terms, this reads as:

ﬁ(’)\Vl +ﬁ1’\Vo +iy, =0 and ﬁ(,)\lfo _ﬁly\vl —iy, =0, (A11)

Denormalizing (11)and writing it in matrix terms gives,

D p, —im,c
{A p‘1 Po ) 0 }{WO}:O. (A12)
Py t1myc — D v,

Let this set be heuristically solved by
. w
v (x,0) =u, eXpl(%x —;t), (A13)

After substitution of (A-13a) into the upper signed part of (A-12) we find

{ )2 (iW/c—- imoc)}{uo} 0 A14)

(AW /c+im,c) - p, u,

Non-trivial solutions for y/; are obtained if the determinant of the matrix is zero. In both cases this is

true if:
w
(?)2 = p; +myc’. (A15)

This condition corresponds with the square of the Einsteinean relationship (Al). This marks the
solution of Dirac’s equation as a two-component solution A(13). The solution shows two different
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options for the amplitude ratio u, /u,. These are not conflicting because of the quadratic nature of
the determinant condition (A15).

LN N _Wle=me (A16)
u, W/c+myc) )2

Under non-relativistic condition (|p1| << m,c ) and positive energy (W > 0), there is a large

dominant component (1, ) as compared to a small minor component (u,).

Let us now consider the less-known Majorana case. Denormalizing (A12a) and writing it in matrix
terms gives,

i 0| p] 0 i p, 1 0
0 —if poy, A 0 1] v,
This case represents three different possible modes, namely the single plus mode, the single minus

mode and a dual mode where two different modes should be simultaneously be true. Let us first
consider the single plus mode. It reads as the set,

1P, +ipy, +y,=0 . —ipoy, +ipy, +y, =0 ; (A18)

Using the same procedure as before, (A18) is denormalized and written in matrix terms as,

ip, +m,c ip
{ po' i 0 - D }{\Vo}zo. (A19)
1p —1py +mC || Y,

Note the symmetry between (A19) and the corresponding one (A12) in the Dirac case. The symmetry
is due to the swop between the Pauli matrices as mentioned while discussing (A7b).

Let this set be heuristically solved by
. w
v (x,0) =u, eXpl(%x—;t), (A20)

After substitution of (A20) into (A19) we find

myc+(W/c) ip, | _p (A21)
ip, myc—W/c) | u, '

Non-trivial solutions for y/; are obtained if the determinant of the matrix is zero. This is true if:
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(K)2 = P12 + mécz. (A22)
c

Similarly as in the Dirac case, this condition corresponds with the square of the Einsteinean
relationship (A1). It makes (A20) a valid solution. Let us now consider the minus mode of the

Majorana case. Analytically, it means simply changing the sign of m,c. Apart from the sign in the

ratio u, /u,, the solution is not different. In both cases and similarly in the Dirac case, it makes no

relevant difference either if we would had taken the conjugate complex alternative for the tentative
solutions (A13) and (1A9 by changing the sign of the argument of the exponential functions. Hence,
both the plus mode and the minus mode of the Majorana case are not different from the Dirac case.
The actual difference is made by accepting the dual equation mode that combines the plus mode and
the minus mode. In that case two sets of solutions, y,, (V,,¥,) and y,;(W,,y;) should be
simultaneously true, where

Wy, (x,1) =u, expt i(&x —Kt); W, (x,1) =u, expt i(&x —Kt);
h h h h

v, (x,t) =u, expt i(&x —Kt); Wy, (x,1) = u, expx i(&x—lt);
h h and h h

Y g p by b

u, W /c+myc) u, W /c+myc)

(A23)

This allows equating u, =uyand u, =u, and subsequent combining to the wave function set

v(V,,V,), where
D 4
=u_Ccos(—x——1I),
v, =u, (h 5 )
. D w
=u, Sin(—x——t),
WV, b (h 7 )
ua pl

u, _(W/c+moc)' (A24)

Summarizing: A Majorana particle, free moving in space in a Carthesian frame of coordinates along
the motion direction, has a real wave function with two orthogonal components, whereas a free
moving Dirac particle that is similarly aligned, has a complex wave function with two complex
components. The Majorana mode is obtained from modifying Dirac’s heuristic derivation, by a slight
different composition of the Einsteinean energy and by modifying the real valued Pauli-matrices into
imaginary ones.

The spin and the isospin of Dirac particles and Majorana particles

After having compared the wave functions of Dirac particles and Majorana particles, we wish to

analyze their spins. If we write Dirac’s decomposition of the Einsteinean energy as (4a), we may write
Majorana’s decomposition as,

Ey =(B+ia- p)B-ia-p'). (A25)
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Because of the relationships as developed by (A5) and (A6), we may capture both cases as,

E, =1+(a-pa-p). (A26)
To proceed, we shall make use of a particular property of Pauli matrices, which states [16]
(E-V)(-H-W)=V-W+|wa|. (A27)
Hence, from (A25)and (A26),

(a-p')(a-p')+l=p'-p'+|p'xp'|+1. (A28)
This might seem a trivial result, because the vector product of a vector with itself is zero.
Hence, this is just a retrieval of the Einsteinean energy expression (Al). However, under
influence of the presence of a conservative field forces, characterized by a (normalized)
vector potential 4, the expression changes under the change of momenta components,
pop+4. (A29)
such that (A27) transforms to,

’ ’ ’ ’ ’ ’ ’ ’ ’ ’ ’ ’
Pp+[pxpH—o(p+A)-(p'+A)+|(p'+ A)x(p'+ A (A30)
The vector product in this expression still seems being irrelevant, because of its zero value.
This, however, changes after the quantum mechanical transform from momenta to

operations on a wave function, defined by

' A . N 1 & O
0 u

Applying these transforms on the generic identity

(V+W)X(V+W)=(VvXX)+(WXV)

we have

(P +ANX(p'+A) > (p'x Ay +(A"x p')y. (A32)

Where the operator in the first term operates on y as well as on 4’, the operator in the
second term only operates on y . As a consequence (A32) is evaluated as,

(p'x A+ (A% p) = A (A33)

myc
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Where the vector product of the momentum representation is zero, the equivalent wave
function representation is not. Apparently, the expression (A1) of the Einsteinean energy
under influence of spin changes via (A30) as,

(p'+ANYp +A)+1+

LN A’)‘ =0. (A34)

imc

Generically, the fourvector potential 4 consists of a scalar component ® next to a vector
component A  In spite of the particle’s motion in one spatial direction, we shall suppose first

that, next to a zero component A4_, the vectorial component has a zero valued transversal
component 4,. Moreover, we suppose that the scalar component is orthogonal to the

motion, i.e. independent of x . Hence

d/c

P =p(p;.p);, A=A ,0,0). (A35)

myc
Note: The i factor in the scalar component is due to the (Hawking) metric choice (+,+,+,+) /
(ict,x,y,z). It can be easily seen from the Lorenz gauge

V~A+Lza£=0—>V-A+iaq)/c=

- 0. (A36)
c” Ot Oict

Note also that CID/mOc2 is a dimensionless quantity. Under consideration of (A35), we have

€ €

i * Y 0. @
VxA'=| 8/ict 0/dx 0/dy|=——i—7e, (A37)

i®/me> 00 e

where e ,e and e, respectively , are unit vectors along the two spatial axes and the

temporal axis. and the spatial axis. In this operation (A37) the virtue of the two-dimensional
modeling becomes clear, because it allows including the temporal axis into the curl
operation on the vector potential. Under consideration of (A37), the Einsteinean energy
expression (A34) evolves as,

1D ()]
(py + ! 2)2 +pl’2 iii

-+1=0. (A38)
myc myc 0y m,c

After denormalization,

p 10 myv h o0 @
( 0 + - )2 +( 0 )2 + I -
myc  m,c m,c myc 0y m,c

+1=0. (A39)

Hence, under consideration of (2),
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Lrgp o (Lo, @ MoV B O Dy (A40)
m,c myc myc m,c myc Oy m,c

Note that p, is imaginary, like can be concluded from (A2). Hence, after squaring the left
hand term of (A40) is a real quantity. The term in conjunction with p,represents the change

of the temporal momentum that would show up under influence of a potential field energy
@ if present. Supposing that the first two terms in the most right-hand part are much smaller than 1,

2
E, z(moczz)(ulv—ziriLi ¢ — ) = (mye )(1+——)_il3cp. (A41)
2¢* 2¢my Oy myc® 2¢°7 2cm, 0y

The small value condition to move from (A40) to (A41) is not a prerequisite. It is adopted
here to reveal the physical interpretation of #/2c as a virtual dipole moment #/2c,
because eventually, in the static condition, the torque disappears and the condition is true
for tiny mass as well. The +/- term is the result of the quantum mechanical analysis enabled
by the operator view. It is absent in the case that spin would have been ignored. It shows an
additional amount of energy not present in classical mechanics. In the next paragraph we
shall discuss it in more detail.

Physical interpretation of spin and isospin

Assigning a meaningful interpretation to the spin phenomenon requires an identification of
the physical nature of the vector potential of the field of forces and on the coupling of the
particles to such a field. In that respect, the behavior of a Dirac type charged particle
(electron), is not much different from a quark. Let us first consider the electron.

Electrons
Let us consider E as the additional amount of energy due to spin as shown by (A41). It

amounts to
E, = h1 0y (Ad42)
2c m, Oy

We may interpret the potential @ by the force equity F as

F= q3q> :3q>—>q> L (A43)

oy oy q’

where ¢is the electric charge of an electrical particle under consideration. Hence, from
(A42) and A(43),

40y, (Ad4)
2cm, Oy
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It is an additional amount of energy that would be executed by a torque force if a field would
be present with a component perpendicular to the direction of the motion. It reveals a
hidden electric moment p, to the amount of

= ii (~3.09 1032 C m for an electron). (A45)
2¢ m,

el

To date no experiment has found a non-zero electric moment for the electric moment. The
Particle Data Group states that, if it would exist, its value is u,, < 0.87 10->° C m. Curiously,

in his classic paper on electrons, Dirac has identified an electric moment for electrons.
However, he has waived it away, because in his calculation it showed up as an imaginary
guantity. To support the conclusion that the electric moment of electrons is as real as the
magnetic moment is, it is useful to include time-independent vector components in the
vector potential. To do so, we expand (A37) to

e, e, e,

VxA'=| 0lict 0/ox 0/0dy =—§i ®2eX+(§A;_§A;)et (A46)
i©/myc A A Y M€ Y

Because of B=V x A, we have

4O y-p (A47)

ox * oy

Because e, is a unit vector along the imaginary axis, both contributions in (A46) are
imaginary, thereby making a real contribution in (A34). Including this result into (A41) gives,

z

2
E, z(mocz)(prlv—ziriLi ® 5 h 1
¢” 2cmy 0y myc~  2cm, myc

2
E, z(mocz)(ulv—z)iiiiqﬁﬁlzsz.
2¢ 2c m, Oy 2 m,

(A48)

Taking (43) into consideration it has to be noted that similarly as @ is not the same as ©_,
B is not the same as B,. The difference is a factor ¢. Hence, apart from the electric

moment p,, the electron contains a spin magnetic moment p, to the amount of

n, = q% ~(9.27 10 Ccm?s?), (A49)
0

which is known as the Bohr magneton.

(Note: n, =g, 2LS; g,=2, §= %, where g, is known as the gyromagnetic ratio).
m,


https://doi.org/10.20944/preprints201905.0118.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 10 May 2019 d0i:10.20944/preprints201905.0118.v1

The conclusion is that electrons show a magnetic dipole moment as well as an electric dipole
moment. The latter one is too weak to be detected. Denoting the spin magnetic dipole
moment for short as spin, it makes sense to denote the spin electric dipole moment as
isospin. This view has been developed before by David Hestenes [..].

Let us proceed by considering the field potential. First, from the linear momentum. Second,
from the angular momentum. As can be expected, the most simple expression for the field
from the linear momentum will show up along the alignment axis of the dipole. Under
consideration of a generic dipole moment ¢ ,d , this potential field can be readily derived as,

q,d qh 1
O, (r)=—"—5>=0,(r)=—"— .
v () 4mig 1’ v () 2mc 4ngyr’

(A50)

Note that the charge ¢, of the fictitious pole in the elementary dipole is different from the
effective charge g of the electron. It is no more than just an auxiliary quantity. Something
similar holds for the elementary angular moment g#i/2m. It can be viewed as a monopole
q , circulating with light speed at a distance d from a virtual center. Interpreting the angular

momentum as a rotation of charge g, with light speed at a fictitious radius 7, =1/g,\, we

have

c
iﬁ:L_)qp _g 4N (A51)
my2 g\ my, 2c

The factor g, can be interpreted as a gyromagnetic factor.
Hence,

q Ax 1 . A1
O ()=t mg LR 8w R (AS2)
4ne,r my, 2 c 4ne,r  4me, my, 2 ¢ Ar

Along the alignment axis, the total potential field ®_ () of the electron can be written as,

q?&h(l 1

4me, 2cm, A'r’ “E8n

O (r) =D (r)+Dy(r) = ) (A53)

where it is taken for granted that the electric forces from near field and far field have
opposite signs.

Quarks

The difference between the quark case and the electron case is a consequence of a
difference in the force equity expression (A43). Because the antiquark couples with the
generic quantum mechanical coupling factor to the field of a quark, (43) changes simply into
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F:gai(l)qu :aicb—wbqu -2 (A54)
Y Y g

After that, the analysis evolves along similar lines.

Appendix B: The interactions between the spins and the isospins in a meson

The spin spin interaction between the dipole moments of the quark and the antiquark can
be analyzed similarly to the interaction between the spin of the orbital electron and the spin of the
proton in the hydrogen atom. This interaction is known to be the cause of the hyperfine structrure in
the spectral lines of the hydrogen gas. Similarly as the intrinsic angular momentum of an electron
and a proton set up a magnetic dipole field, the intrinsic angular moment of a quark sets up a nuclear
equivalent. Similarly as the magnetic moment of an electron experiences a potential energy from the
field of the magnetic dipole from the proton spin, the nuclear equivalent of the magnetic moment of
a pion quark experiences a potential energy from the nuclear equivalent of the magnetic dipole field
from the spin of the antiquark. The difference between the hydrogen model and the pion is that we
have to deal not only with the angular moments, but also with the non-angular dipole moments. Let
us first consider the interaction between the angular moments.

It is well known that the magnetic field of a dipole that results from a current loop with an
infinitesimal small dimension, as a consequence of a magnetic moment p, is given by [9,p.157],

0,1 A 8 3
B(r) =j—{—3[3<u1 B)op ]+, 8 (1), (B1)
T r 3

where p, is the magnetic moment and where T is the unit vector in r —direction. The potential

energy U, of a second particle with a magnetic moment p,, placed at a distance r apart, is

1 R . 8
U,(r) ::l_; r_3[3(ll1 T)(p, ) - '"2]"'?75"1 -p283(l‘)}. (B2)

In classical conditions, the second right-hand part in this expression does not play any role. However,
if the two particles are of a quantum mechanical nature, therefore requiring a distributed wave
function description, this is no longer true. As proven by Griffiths [9], it is in fact the only part that
effectively contributes. The first right-hand part is angular dependent, implying a dependence of the
mutual orientation of the two spins. Therefore, on the average, the contribution of this first part
cancels out, while the magnitude of the second part is made up by the integral of all contributions
within the sphere of overlap of the two wave functions. In such condition, the potential energy of
any of the two particles resulting from interaction with the field of the other, as calculated from (B2),
reduces to the constant contribution,

:2&(“1 ")

B3
3 nd, &3

1,2

The formula applies to the positronium model, where a particle moves around an identical one at a
distance 2d,,, thereby making a circle with radius d,around the center of mass. In the hydrogen

case, this result corresponds with the presence of the 21 cm line in its spectrum [9]. The magnetic
moments amount to [9],
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(B4)

where y_is the gyromagnetic ratio 7, ® 2 and where 6;are the spin vectors of the dipole. Hence,
from (B3) and (B4),

2’Y§qe2 (6,-6,)

b e 3mm, nd;
The spins will align themselves in parallel or in anti-parallel, which gives, respectively,
h’ 3n°
6,6, =— and 6,6, =——— (B6)
4 4
Hence, considering the case of parallel alignment, we have
2 2 2
V4. N
U1,2 =M ———— 3 (B7)
6mm, md;

Let us now consider the nuclear case with the two dipole moments. The angular one is the classical
one: a circular current creates the nuclear equivalent of a magnetic field, on which the other angular
dipole moment interacts with the nuclear coupling factor. The non-angular one creates a different
field, in fact an electric one, on which the second non-angular dipole moment interacts with the

electric coupling factor. Hence, as a consequence from spin vectors 6, there are two dipole-induced
energetic contributions. How to derive the nuclear equivalent of (B7) ? We know that the
electromagnetic force /', and the (vectorial) far field force /, between two charged quarks, spaced

at distance 2d0 , can be established from,
Fd,+r)+Fd,-r), (B8)
where F(r) is respectively givenas F'(r) = F,(r) and F(r) = F,(r), such that

g DOy gD SN

; (B9)
or 4re,r or Ar

There is no reason why these forces would be the same. What is clear, however, is, that g0, /A

plays a similar role as qf /(4rnsg,),i.e.,

2
D
q_e PN & (BlO)
4re, A

Furthermore, as noted before, previous studies have revealed a nuclear equivalent for the
electromagnetic fine structure relationship [15]. Where,
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O h
g? =4nz,ghe, wehave ~—L =27 ,C : (B11)
A 2gd

min

Expressions (B7) and (B11) enable establishing the potential energy under parallel spin as

2 2 2 2 2 2 3

4me h 4 D, n 1 any;(hc
U, =y, LA 4. : ¥y : go, 1o v( ') . (812)
6mm, 4ne, nd,  6mm,c A wnd, 3d . mmyd,

The second one is due to the nuclear equivalent of an electric dipole moment, to the amount of

= Vle o (B13)
2m,c
Hence, from (B3) and (B13),
yoo 4 vl W g Aml R gl h4myp W
" og,c? 6mm, nd}  4me,c? 6mm, nd}  4nehc ¢ 6mm, nd’ (314)

2 2v; (he)’
3mimy d

Hence, from (B12) and (B13), the ratio of the non-angular spin-spin interaction over the angular spin-
spin interaction, is calculated as,

u, ,.2d.,
—= —).. B15
U % ( - ) (B15)

a

'
min

~0.856 and o =0.69, [15], this ratio is near to g2 ~1/137 as
predicted in the third paragraph of the main text, albeit that the fit Is not perfect.

Taking into account that d
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