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Abstract. In this paper, we introduce two subclasses of analytic and Spiral-
like functions and investigate convolution properties, the necessary and suffi-

cient condition, coefficient estimates and inclusion properties for these classes.

1. Preface

In recent times, the study of analytic functions has been useful in solving many
problems in mechanics, Laplace equation, electrostatics, etc. An analytic function
is said to be univalent in a domain if it does not take the same value twice in that
domain. Let us denote the family of all meromorphic functions f with no poles in
the unit disk U := {z ∈ C : |z| < 1} of the form

f(z) = z + a2z
2 + a3z

3 + · · · = z +
∞∑
k=2

akz
k, (1)

by A. Clearly, functions in A are analytic in U and the set of all univalent functions
f ∈ A is denoted by S. Functions in S are of interest because they appear in the
Riemann mapping theorem and several other situation in many different contexts.
In 1983, Salagean [?] introduced differential operator Dk : A → A defined by

D0f(z) = f(z),

D1f(z) = Df(z) = zf ′(z),

Dnf(z) = D(Dn−1f(z)) = z(Dn−1f(z))′, n ∈ N = {1, 2, 3, . . . }.
In this way

Dnf(z) = z +

∞∑
k=2

knakz
k, n ∈ N0 = {0} ∪ N. (2)

For functions f given by (1) and g given by

g(z) = z + b2z
2 + b3z

3 + · · · = z +
∞∑
k=2

bkz
k,
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2 ON SOME CLASSES OF SPIRALLIKE FUNCTIONS DEFINED BY THE . . .

the Hadamard product or convolution of f(z) and g(z) is defined by

f(z) ∗ g(z) = z +

∞∑
k=2

akbkz
k.

In this paper, we investigate convolution properties of Sα
n [A,B] and Kα

n [A,B] as-
sociated with Salagean differential operator. Using convolution properties, we find
the necessary and sufficient condition, coefficient estimates and inclusion properties
for these classes. More recent works can be found on [2, 5, 10, 12, 16].

2. Preliminaries

We start with some useful definitions, theorems and lemmas.

Definition 2.1. A function f ∈ S is said to be starlike in U if the image f(U) is
starlike with respect to 0. It is well known that a function f is starlike if and only
if

Re
(zf ′(z)

f(z)

)
> 0 (z ∈ U).

We denote by S∗ the class of all functions in S which are starlike in U. A function
f ∈ S is said to be convex in U if the image f(U) is convex.

Lemma 2.2. The function f is convex in U if and only if

Re
(
1 +

zf ′′(z)
f ′(z)

)
> 0 (z ∈ U).

We denote by K the class of all functions in S which are convex in U. It is easy
to see that, K ⊂ S∗ ⊂ S ⊂ A.

Definition 2.3. For analytic functions g and h in U, g is said to be subordinate
to h if there exists an analytic function w such that

w(0) = 0, |w(z)| < 1, and g(z) = h(w(z)), z ∈ U.

This subordination will be denoted here by

g ≺ h,

or, conventionally, by

g(z) ≺ h(z),

In particular, when h is univalent in U,

g ≺ h ⇐⇒ g(0) = h(0), and g(U) ⊂ h(U), z ∈ U.

Making use of the principal of subordination and Salagean differential operator
between analytic functions, we introduce the following classes of analytic functions

for n ∈ N0, |α| < π

2
and −1 ≤ B < A ≤ 1:

Sα
n [A,B] =

{
f ∈ S : eiα

z(Dnf(z))′

Dnf(z)
≺ cosα

(1 +Az

1 +Bz

)
+ i sinα, z ∈ U

}
, (3)

and

Kα
n [A,B] =

{
f ∈ S : eiα

(
1 +

z(Dnf(z))′′

(Dnf(z))′
)
≺ cosα

(1 +Az

1 +Bz

)
+ i sinα, z ∈ U

}
,

Note that

f(z) ∈ Kα
n [A,B] ⇐⇒ zf ′(z) ∈ Sα

n [A,B]. (4)

By specializing the parameters, we have the following know subclasses studied by
various researhers.
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I S0
0 [A,B] = S[A,B] and K0

0[A,B] = K[A,B], where the classes S[A,B] and
K[A,B] are introduced and studied by many authors in [1, 6, 8, 9, 14].

II S0
0 [1 − 2β,−1] = S∗(β) and K0

0[1 − 2β,−1] = K(β), where the classes S∗(β)
and K(β) are introduced and stadied in [7].

III S0
0 [

b2−a2+b
b ,

1− b

a
] = S(a, b) and K0

0[
b2 − a2 + b

b
,
1− b

a
] = K(a, b), where the

classes S(a, b),K(a, b) are introduced and stadied by in [14, 15].
IV Sα

0 [A,B] = Sα[A,B] and Kα
0 [A,B] = Kα[A,B] = Sα

1 [A,B], where the classes
Sα[A,B], Kα[A,B] are introduced and stadied in [3, 4, 11].

V S0
0 [A,B] = R0[A,B] andK0

0[A,B] = R1[A,B], where the classesR0[A,B],R1[A,B]
are introduced and stadied in [1].

3. Convolution Properties

In this section, we study some of the properties of foresaid convolution. Unless
otherwise mentioned, we assume throughout this paper that −1 ≤ B < A ≤ 1,

|α| < π

2
, |ξ| = 1 and Dnf(z) is defined by (2). To prove our convolution properties,

we shall need the following lemmas due to Silverman and Silvia [14].

Lemma 3.1. [14] The function f(z) defined by (1) is in the class S∗[A,B] if and
only if for all z in U and all ξ, |ξ| = 1,

1

z

[
f ∗

z +
ξ −A

A−B
z2

(1− z)2

]
�= 0. (5)

Lemma 3.2. The function f(z) defined by (1) is in the class Sα
n [A,B] if and only

if for all z in U and all ξ, |ξ| = 1,

1

z

[
f ∗ (z +

∞∑
k=2

(
k − ψ

1− ψ
)knzk

)] �= 0 (6)

where

ψ =
eiα + (A cosα+ iB sinα)ζ

eiα(1 +Bζ)
(7)

Proof. An application of lemma 3.1 exhibits that f ∈ Sα
n [A,B] if and only if

eiα
z(Dnf(z))′

Dnf(z)
�= cosα

(1 +Aζ

1 +Bζ

)
+ i sinα (z ∈ U, |ξ| = 1)

⇐⇒ z(Dnf(z))′ −Dnf(z)
(eiα + (A cosα+ iB sinα)ζ

eiα(1 +Bζ)

)
�= 0 z ∈ U, |ξ| = 1. (8)

Since zf ′ = f ∗ z

(1− z)2
and f = f ∗ z

1− z
, we can write Dnf(z) = f(z)∗h(z)∗ z

1− z

and z(Dnf(z))′ = f(z)∗h(z)∗ z

(1− z)2
, where h(z) = z+

∞∑
k=2

knz
k and Substituting

ψ :=
eiα + (A cosα+ iB sinα)ζ

eiα(1 +Bζ)
, relation (8) is equivalent to

f(z) ∗ h(z) ∗
( z

(1− z)2
− ψz

1− z

)
�= 0 z ∈ U. (9)

On the other hand, by extention
z

(1− z)2
and

z

1− z
, we have

z

(1− z)2
− ψz

1− z
= z +

∞∑
k=2

(
k − ψ

1− ψ
)zk. (10)

By substituting (10) in (9), the proof is complete. �
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Theorem 3.3. A necessary and sufficient condition for the function f defined by
(1) to be in the class of Sα

n [A,B] is that

1−
∞∑
k=2

(k − 1)(eiα + iBζ sinα)− (A− kB)ζ cosα

(A−B)ζ cosα
knakz

k−1 �= 0. (11)

Proof. Notice that

k − ψ

1− ψ
= − (k − 1)(eiα + iBζ sinα)− (A− kB)ζ cosα

(A−B)ζ cosα
, (12)

where ψ was defined in (7). Using (12), we can write (6) as

1

z

[
z −

∞∑
k=2

(k − 1)(eiα + iBζ sinα)− (A− kB)ζ cosα

(A−B)ζ cosα
knakz

k
]
�= 0 (13)

Simplifying relation (13), we obtain (11) and the proof is complete. �

Lemma 3.4. The function f(z) defined by (1) is in the class of Kα
n [A,B] if and

only if for all z in U and all ξ, |ξ| = 1,

1

z

[
f ∗ (z +

∞∑
k=2

(
k − ψ

1− ψ
)kn+1zk)

]
�= 0, (14)

where ψ was defined in (7).

Proof. Set

g ≺ h ⇐⇒ g(0) = h(0), and g(U) ⊂ h(U), z ∈ U.

Note that

zg′(z) = z +
∞∑
k=2

(
k − ψ

1− ψ
)kn+1zk. (15)

From the identity zf ∗ g = f ∗ zg′ and the fact that f ∈ Kα
n [A,B] if and only if

zf ′ ∈ Sα
n [A,B], from lemma 3.1 we have

1

z

[
zf ′(z) ∗ g(z)

]
�= 0 ⇐⇒ 1

z

[
f(z) ∗ zg′(z)

]
�= 0. (16)

By substituting relation (15) in (16), we have obtain (14) and the proof is complete.
�

In a similar way of theorem 3.3 and using lemma 3.4, we can prove the following
theorem.

Theorem 3.5. A necessary and sufficient condition for the function f defined by
(1) to be in the class of Kα

n [A,B] is that

1−
∞∑
k=2

(k − 1)(eiα + iBζ sinα)− (A− kB)ζ cosα

(A−B)ζ cosα
kn+1akz

k−1 �= 0.

4. Coefficient Estimates

In the following, as an applications of Theorems 3.3 and 3.5, we determine co-
efficient estimates and inclusion properties for a function of the form (1) to be in
the classes Sα

n [A,B] and Kα
n [A,B].

Theorem 4.1. If the function f(z) defined by (1) belongs to Sα
n [A,B], then

∞∑
k=2

(
|k(B + 1)− 1|+ | cosα+ iB sinα|

)
kn|ak| ≤ (A−B) cosα.
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Proof. Since we have
∣∣∣1−

∞∑
k=2

(k − 1)(eiα + iBζ sinα)− (A− kB)ζ cosα

(A−B)ζ cosα
knak

∣∣∣

≥ 1−
∞∑
k=2

∣∣∣ (k − 1)(eiα + iBζ sinα)− (A− kB)ζ cosα

(A−B)ζ cosα

∣∣∣kn|ak|,
and ∣∣∣ (k − 1)(eiα + iBζ sinα)− (A− kB)ζ cosα

(A−B)ζ cosα

∣∣∣
=

|(k − 1)(eiα + iB sinα)− (A− kB) cosα|
(A−B) cosα

≤ |k(B + 1)− 1|+ |A cosα+ iB sinα|
(A−B) cosα

,

the result follows from Theorem 3.3. �
Similarly, we can prove the following theorem.

Theorem 4.2. If the function f(z) defined by (1) belongs to Kα
n [A,B], then

∞∑
k=2

(
|k(B + 1)− 1|+ | cosα+ iB sinα|

)
kn+1|ak| ≤ (A−B) cosα.

5. Containment Properties

In this section, we study the containment properties of the mentioned classes.

Theorem 5.1. Sα
n+1[A,B] ⊂ Sα

n [A,B] for all n ∈ N.

Proof. If f ∈ Sα
n+1[A,B], By the lemma 3.2, we have

1

z

[
f ∗ (z +

∞∑
k=2

(
k − ψ

1− ψ
)kn+1zk)

]
�= 0, z ∈ U,

where ψ is given by (7). Note that we can write

z +

∞∑
k=2

(
k − ψ

1− ψ
)kn+1zk =

(
z +

∞∑
k=2

kzk
)
∗
(
z +

∞∑
k=2

(
k − ψ

1− ψ
)knzk

)
. (17)

But

1

z

[
(z +

∞∑
k=2

kzk) ∗ (z +
∞∑
k=2

k−1zk)
]
= 1 +

∞∑
k=2

zk−1 =
1

1− z
�= 0, z ∈ U.

Thus it follows from (17) that

f ∗
(
z +

∞∑
k=2

(
k − ψ

1− ψ
)knzk

)
�= 0, z ∈ U,

and we conclude that f ∈ Sα
n [A,B]. �

Similarly, we can prove the following theorem and corollaries.

Theorem 5.2. Kα
n+1[A,B] ⊂ Kα

n [A,B] for all n ∈ N.

corollary 5.3. Sα
n [A,B] ⊂ Sα[A,B] for all n ∈ N.

corollary 5.4. Kα
n [A,B] ⊂ Kα[A,B] for all n ∈ N.

Remark 5.5. In particular, it follow from corollary 5.3 and 5.4 that, Kα[A,B] ⊂
Sα[A,B].
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Theorem 5.6. If f ∈ Sα
n [A,B] and ϕ ∈ K, then f ∗ ϕ ∈ Sα

n [A,B] for all n ∈ N.

Proof. Let .

F :=
z(Dnf(z))′

Dnf(z)
.

If f ∈ Sα
n [A,B], then eiαF ≺ h, where h(z) = cosα

(1 +Az

1 +Bz

)
+ i sinα. Now

G(z) =
z(ϕ ∗ Dnf(z))′

ϕ ∗ Dnf(z)
=

z(ϕ ∗ (Dnf(z))′)
ϕ ∗ Dnf(z)

=
ϕ ∗ (z(Dnf(z))′)

ϕ ∗ Dnf(z)
=

ϕ ∗ (F · (Dnf(z)))

ϕ ∗ Dnf(z)

On the other hand, f ∈ Sα
n [A,B], Dnf(z) ∈ S∗. It follows from Theorem 2.1

[13], that
ϕ ∗ (F · (Dnf(z)))

ϕ ∗ Dnf(z)
lie in convex hall of F (U). But eiαF ≺ h and h is

convex, so the convex hall of eiαF (U) is subset of h(U), thus eiαG(U) ⊂ h(U), also
eiαG(0) = h(0), therefore eiαG(z) ≺ h(z) and this completes the proof. �
Theorem 5.7. If f, g ∈ Sα

n [A,B]. then f ∗ g ∈ Sα
n [A,B] for all n ≥ 1.

Proof. If ϕ ∈ Sα
n [A,B], then theorem 5.1 provides Sα

n [A,B] ⊂ Sα
1 [A,B] = Kα

0 [A,B].
On the other hand Kα

0 [A,B] ⊂ Kα[1,−1] ⊂ K. Therefore ϕ ∈ K. Now by theorem
5.6, f ∗ ϕ ∈ Sα

n [A,B] whenever f ∈ Sα
n [A,B]. This completes the proof. �
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