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Abstract Using a joint statistical analysis, we test a four-
dimensional FLWR model embedded in a five-dimensional
bulk based on the Nash-Greene embedding theorem. Per-
forming a Markov Chain Monte Carlo (MCMC) modelling,
we combine observational data sets as those of the recent
“Gold 2018” growth data, the best-fit Planck2018/ΛCDM
parameters on the Cosmic Microwave Background (CMB),
the Baryon Acoustic Oscillations (BAO) measurements, the
Pantheon Supernovae type Ia and the Hubble parameter data
with redshift ranging from 0.01 < z < 2.3 to impose restric-
tions on the model. From linear Nash-Green fluctuations of
the metric, we obtain the related perturbed equations in lon-
gitudinal Newtonian gauge to obtain the evolution of growth
matter. We show that a mild alleviation is obtained from
the σ tension between the growth amplitude factor and the
matter content (σ8-Ωm) of the observations from CMB and
Large Scale Structure (LSS) probes with degeneracies on
the parameters. We also apply the Om(z) diagnosis to dis-
tinguish the model from ΛCDM. The Akaike Information
Criterion (AIC) is used and we find a relative statistical con-
sistence of the present model with both ΛCDM and wCDM
models up to 1% of percentage difference at early times.

1 Introduction

The true mechanism behind the accelerated phase of the uni-
verse still remains an open question. After more than 20
years since the very first evidences of the cosmic acceler-
ated expansion, one of the pivotal directions of investiga-
tions is about to unravel whether the dark energy equation
of state (EoS), with the main fluid parameter w(z), is re-
stricted to the value w0 =−1, as suggested by observations
[1, 2], in conformity with the very popular ΛCDM model,
or if there exists any deviations from that value leading to
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dynamical dark energy models. Even though its success, the
ΛCDM model lacks of an underlying physical understand-
ing, since the Cosmological constant Λ and the Cold dark
matter (CDM) are problems of their own nature [3–9].

The theoretical background of this paper relies on the
possibility that the universe may be embedded in a larger
space and the dark energy problem may be explained as a
geometric outcome from the extrinsic curvature to amplify
the gravitational strength of Einstein’s gravity. Most of these
extra dimensional models have been Kaluza-Klein or/and
string inspired, such as, for instance, the Arkani-Hamed,
Dvali and Dimopolous (ADD) model [10], the Randall-Sun-
drum model [11, 12] and the Dvali-Gabadadze-Porrati model
(DPG) [13] commonly referred as braneworld models. Dif-
ferently form these models and variants, we investigate how
the embedding regarded as a prior mathematical structure
can be suited for construction of a physical theory, keeping
no relation with brane or string proposals. Several authors
have been explored this possibility in many contexts [14–
30]. Moreover, a cosmological model is proposed based on
previous works at background level [16, 20, 23, 24] and we
proceed further to obtain the cosmological perturbed equa-
tions to be discussed in section 3.

This paper aims at investigating the σ8 tension revealed
by the notorious cryptic discrepancy of the data inferred
from Planck CMB radiation and the Large Scale Structure
(LSS) observations with the ΛCDM model as a background,
and possibly explanations may come from modified gravity
[31–37]. The σ8 denotes the r.m.s amplitude of matter den-
sity at a scale of a radius R ∼ 8h.Mpc−1 within a enclosed
mass of a sphere. We perform the Markov Chain Monte
Carlo (MCMC) sample technique with a modified code from
[38, 39] using the joint likelihood of kinematical probes as
of the Cosmic Microwave Background (CMB) Planck2015
[1] and Planck2018 [2] datasets, the largest dataset Pantheon
SnIa [40] with redshift ranging from 0.01 < z < 2.3 that
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guarantees a low and intermediate redshift data, the Hubble
parameter as a function of redshift H(z) [41–46] and Bary-
onic Acoustic Oscillations (BAO) from points of the joint
surveys 6dFGS [47], SDDS [48], BOSS CMASS [49], Wig-
gleZ [50], MSG [51] and BOSS DR12 [52]. A comparison
with the ΛCDM and general relativity (GR) quintessense
(wCDM) [53, 54] is presented with analysis on the growth
density evolution and Om(z) diagnosis [55]. In addition, we
apply the Akaike Information Criterion [56] on the resulting
contours confidence regions. In the final section, we con-
clude with our final remarks and prospects.

2 The theoretical framework

2.1 The D-dimensional equations

We start with a summary of main elements of a gravitational
model based on the mathematical background of the theory
of dynamical embeddings [15–17]. The first mechanism is
the defined by the gravitational action functional. Thus, in
the presence of confined matter fields on a four-dimensional
space with thickness l embedded in a D-dimensional ambi-
ent space (bulk), we define

S =− 1
2κ2

D

∫ √
|G |RdDx−

∫ √
|G |L ∗

mdDx , (1)

where κ2
D is the fundamental energy scale on the embedded

space, R denotes the Ricci scalar of the bulk and L ∗
m is the

confined matter lagrangian. The normal radii l is the smallest
value of the curvature radii obtained from the relation

det(gµν − lakµνa) = 0 . (2)

In a geometrical sense, the term la represents a displacement
of the embedded space along the extra-dimensions.

The matter energy momentum tensor occupies a finite
hypervolume with constant radius l along the extra-dimensions.
The variation of Einstein-Hilbert action in Eq.(1) with re-
spect to the bulk metric GAB leads to the Einstein equations
for the bulk

RAB−
1
2
GAB = α

?TAB , (3)

where α? = 8πG∗ is energy scale parameter and G∗ is the
bulk “gravitational constant”. The tensor TAB is the energy-
momentum tensor for the bulk [16, 17, 20]. To generate a
thick embedded space-time is important to perturb the re-
lated background and can be done using the confinement hy-
pothesis that depends only on the four-dimensionality of the
space-time [58–60], even though any gauge theory can be
mathematically constructed in a higher dimensional space.

In order to obtain a more general theory based on em-
beddings to elaborate a physical model, Nash’s original em-
bedding theorem [61] used a flat D-dimensional Euclidean

space, later generalized to any Riemannian manifold includ-
ing non-positive signatures by Greene [62] with indepen-
dent orthogonal perturbations. This choice of perturbations
facilitates to obtain a differentiable smoothness of the em-
bedding between the manifolds, which is a primary concern
of Nash’s theorem and satisfies the Einstein-Hilbert princi-
ple, where the variation of the Ricci scalar is the minimum
as possible. Accordingly, it guarantees that the embedded
geometry remains smooth (differentiable) after smooth (dif-
ferentiable) perturbations.

With all these concepts, let us consider a Riemannian ge-
ometry V4 with a non-perturbed metric ḡµν being locally and
isometrically embedded in a D-dimensional Riemannian ge-
ometry Vn. The embedded space-time V4 is endowed with
the local coordinates xµ = {x0, ...,x3} whereas the extra-
dimensions in the bulk space can be defined with the coordi-
nates xa = {x4, ...,xD−1} and D = 4+n. Hence, the bulk lo-
cal coordinates can be denoted by the set {xµ ,xa}. All these
definitions allow us to construct a differentiable and regular
map X : V4→Vn satisfying the embedding equations

X A
,µX B

,ν GAB = ḡµν , (4)

X A
,µ η̄

B
a GAB = 0 , (5)

η̄
A
a η̄

B
b GAB = ḡab , (6)

where the set of X A(xµ ,xa) : X A = {X 0...X D−1} de-
notes the non-perturbed embedding function coordinates, the
metric GAB denotes the metric components of VD in arbi-
trary coordinates and η̄A

a denotes a non-perturbed unit vec-
tor field orthogonal to V4. Concerning notation, capital Latin
indices run from 1 to n. Small case Latin indices refer to
the extra dimension considered. All Greek indices refer to
the embedded space-time counting from 1 to 4. Those sets
of equations represent, respectively, the isometry condition
in Eq.(4), the orthogonality between the embedding coordi-
nates X and η̄ in Eq.(5), and also, the vector normaliza-
tion η̄A

a and ḡab = εaδab with εa = ±1 in which the signs
represent the signatures of the extra-dimensions. Hence, the
integration of the system of equations Eqs.(4), (5) and (6)
assures a correct configuration of the embedding map X .

The non-perturbed extrinsic curvature k̄µν of V4 is, by
definition, the projection of the variation of η̄ onto the tan-
gent plane :

k̄µν =−X A
,µ η̄

B
,νGAB = X A

,µν η̄
BGAB , (7)

where the comma denotes the ordinary derivative.
If one defines a geometric object ω̄ in V4, its Lie flow for

a small distance δy is given by Ω = Ω̄ +δy£η̄ Ω̄ , where £η̄

denotes the Lie derivative with respect to η̄ . In particular,
the Lie transport of the Gaussian veilbein {X A

µ , η̄A
a }, de-

fined on V4 gives straightforwardly the perturbed coordinate
Z A(xµ ,ya) := Z A such as

Z A
,µ = XA

,µ +δya £η̄ XA
,µ = X A

,µ +δya
η̄

A
a,µ , (8)

η
A
a = η̄

A
a +δyb [η̄a, η̄b]

A = η̄
A
a . (9)
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It is worth mentioning that Eq.(9) shows that the normal
vector ηA does not change under orthogonal perturbations.
However, from Eq.(7), we note that in general η,µ 6= η̄,µ .
Hence, to describe the perturbed embedded geometry, we
set a perturbed coordinates Z A that are needed to satisfy
the embedding equations similar to Eqs.(4), (5) and (6) as

Z A
,µ ZB

,νGAB = gµν , Z A
,µ η

B
b GAB = gµb, η

A
a η

B
b ,GAB = gab , (10)

where gab = εaδab with εa =±1.
If we take Eq.(10) and rewrite Eq.(5) as

gµb = Z A
,µ η

B
b GAB = δyaAµab . (11)

Then, Eq.(11) results from a generalization of the Gauss-
Weingarten equations

η
A
a,µ = Aµacgcb

η
A
b − k̄µρaḡρνZ A

,ν , (12)

that leads to

Aµab = η
A
a,µ η

B
b GAB = η̄

A
a,µ η̄

B
b GAB = Āµab . (13)

Likewise the normal vector in Eq.(9), it happens that the
torsion vector, Aµab, does not change under orthogonal per-
turbations. In geometric language, the presence of a torsion
potential tilts the embedded family of submanifolds with re-
spect to the normal vector ηA

a . If the bulk has certain killing
vectors then Aµab transforms as the component of a gauge
field under the group of isometries of the bulk [15, 28, 63].
It is worth noting that the gauge potential can only be present
if the dimension of the bulk space is equal or greater than six
(n ≥ 2) in accordance with Eq.(13) since the torsion vector
fields are antisymmetric under the exchange of extra coordi-
nate a and b. Thus, with the Eq.(10) and using the definition
from Eq.(7), one obtains the perturbed metric and extrinsic
curvature of the new geometry written as

gµν = ḡµν −2yak̄µνa + (14)

δya
δyb

[
ḡσρ k̄µσak̄νρb +gcdAµcaAνdb

]
,

and the related perturbed extrinsic curvature

kµνa = k̄µνa−δyb
(

gcdAµcaAνdb + ḡσρ k̄µσak̄νρb

)
. (15)

Taking the derivative of Eq.(14) with respect to y coordinate,
one obtains Nash’s deformation condition

k̄µνa = −
1
2

∂ ḡµν

∂ya . (16)

The meaning of this expression is twofold. It can be real-
ized in a pictorial view under the basic theory of curves, i.e.,
one gets a congruence of curves (or orbits) orthogonal to
the embedded space V4. Moreover, the parameter y is time-
like or not, and it is irrelevant the sign of its signature. A
similar expression was obtained years later in the context
of the ADM formulation by Choquet-Bruhat and York [64].
In fact, the physical interpretation of Eq.(16) means that it
localizes the matter in the embedded space-time imposing

on it a geometric confinement. In other words, it holds true
for any perturbations resulting from n-parameter families of
embedded submanifolds denoted by ya, and the matter re-
mains confined to the resulting perturbed metric that can
bend and/or stretch without ripping the manifold (embedded
space-time), which may be a valuable feature for a quanti-
zation process [17] and cosmology.

In addition, the integrability conditions for equations in
Eq.(10) are given by the non-trivial components of the Rie-
mann tensor of the embedding space expressed in the Gaus-
sian frame {Z A

µ ,ηA
a } known as the Gauss-Codazzi-Ricci

equations. This guarantees to reconstruct the embedded ge-
ometry and to understand its properties from the dynam-
ics of the four-dimensional embedded space-time. Conse-
quently, we can define a Gaussian coordinate system in the
new perturbed coordinates {Z A

,µ ,η
A
a } in the vicinity of V4

that allows us to write the metric of the bulk in such a way

GAB =

(
gµν +gabAµaAνb Aµa

Aνb gab

)
, (17)

where the perturbed metric gµν is given by Eq.(14). The ex-
pression in Eq.(17) is the metric of the bulk with at least
two extra-dimensions, i.e., D ≥ 6. This resembles the non-
Abelian Kaluza-Klein metric and the quantity Aµa plays the
role of the Yang-Mills potentials where Aµa = xbAµab. We
emphasize that for just one extra-dimension, the torsion vec-
tor does not exist and for two extra-dimensions it turns to the
usual Maxwell field, which means that the non-Abelian part
of Aµa is lost in a six dimensional bulk. This means that
the resulting force is the ordinary electromagnetic one in the
case of two extra dimensions [18, 19, 28, 29].

As proposed in Refs.[15–17, 27, 30], one obtains the in-
duced field covariant equations of motion taking Eq.(3) in
the frame defined in Eq.(17) at background level. Thus, the
background of a 4-D observer in the embedded space is set
by the following equations

Gµν +Qµν = 8πGTµν , (18)

where the quantity Tµν denotes the stress energy tensors for
ordinary intrinsic matter (including Yang-Mills fields). The
second equation involves relations with extrinsic terms k̄αβa
and Aµab

∇
∗
ν k̄a−∇

∗
µ k̄µ

aν = 8πGNTaν , (19)

where the term ∇∗µ k̄αβa denotes ∇∗µ k̄αβa := k̄αβa;µ−Aµabk̄b
αβ

and the semicolon denotes the covariant derivative. More-
over, the third equation is denoted as

R+ k̄µνmk̄µνm− k̄ak̄a =−16πGNηabTab , (20)

where ηab = εaδab with εa = ±1. The quantities G, Taν ,
Tab denote the induced gravitational Newton’s constant, the
stress energy tensors projections of TAB on the cross and nor-
mal directions of the space-time, respectively.
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Those set of equations are the results from the integrabil-
ity conditions of the embedding given by the Gauss-Codazzi-
Ricci equations. From the Nash-Green theorem, the solu-
tions of these equations were obtained by a differentiable
process [15, 16, 29]. The first of the two equations are known,
respectively, by the gravi-tensor equation (a modified Ein-
stein’s equations by the appearance of the extrinsic curva-
ture) as in Eq.(18) and the gravi-vector equation as in Eq.(19).
In summary, they reflect the meaning of a dynamical embed-
ding: the pseudo-Riemann curvature of the embedding space
acts as a reference for the pseudo-Riemann curvature of the
embedded space-time. Moreover, the projection of the Rie-
mann tensor of the embedding space along the normal di-
rection is given by the tangent variation of the extrinsic cur-
vature as shown by Eq.(19) that is the trace of the Codazzi
equations composed by the extrinsic terms k̄αβa,Aµab. The
last equation is known as gravi-Scalar equation and serves
as a constrain on the torsion vector fields Aµab.

The quantity Qµν is denoted by

Qµν = ḡcd
(

ḡρσ k̄µρck̄νσd− k̄µνd ḡαβ k̄αβc

)
(21)

−1
2

(
k̄λφck̄λφ

d ḡαβ k̄αβd ḡγδ k̄γδc

)
ḡµν ,

is an independently conserved quantity in the sense of Noe-
ther’s theorem with Qµν ;ν = 0. It means that this geomet-
ric new term does not exchange gravitational energy with
ordinary matter and resembles the quintessence in the dark
energy problem. The conservation of Qµν holds true for per-
turbed quantities of gµν and kµνa.

2.2 The background cosmological model

To the present cosmological application, we consider a four-
dimensional metric embedded in a five-dimensional bulk to
make a proper comparison with the most of cosmological
models in recent literature. In this framework, the set of field
equations are simplified. The torsion vector Aµab does not
exist in five-dimensions and Eq.(19) turns to a homogeneous
equation and Eq.(20) provides only a relation of consistence
between Ricci scalar and extrinsic scalar quantities (no a pri-
ori information is gained).

To obtain the embedded four-dimensional equations, one
can take Eq.(18) written in the Gaussian frame embedding
veilbein {X A

µ ,ηA
a }. This reference frame is composed by

a regular and differentiable coordinate {X A
µ } and a unitary

normal vector {ηA
a }. Accordingly, one can obtain the set of

the embedded four-dimensional field equations

Rµν −
1
2

Rgµν +Qµν = 8πGTµν , (22)

k ρ

µ;ρ −h,µ = 0 , (23)

where the semi-colon denotes a covariant derivative. The
Tµν tensor is the four-dimensional energy-momentum ten-

sor of a perfect fluid, expressed in co-moving coordinates
as

Tµν = (p+ρ)UµUν + p gµν , Uµ = δ
4
µ ,

where Uµ is the co-moving four-velocity. Moreover, the de-
formation tensor Qµν is simplified and can given by

Qµν = gρσ kµρ kνσ − kµν H− 1
2
(
K2−h2)gµν , (24)

where we denote h = gµν kµν and h2 = h.h is the mean cur-
vature. The term K2 = kµν kµν denotes the related Gaussian
curvature. As previously shown, it follows that Qµν

Qµν
;ν = 0 . (25)

The related conservation equation for Tµν is given by

ρ +3H (ρ + p) = 0 , (26)

where ρ and p denote non-perturbed matter density and pres-
sure, respectively. Moreover, we work with a spatially Fried-
man-Lemaître-Robertson-Walker (FLRW) geometry with line
element expressed in coordinates (r,θ ,φ , t) in such a way

ds2 = −dt2 +a2 [dr2 + f 2
κ (r)

(
dθ

2 + sin2
θdϕ

2)] , (27)

where f (r)κ = sinr, r,sinhr. Since the FLRW geometry can
be locally embedded in five-dimensions, it can be regarded
as a four-dimensional hypersurface dynamically evolving in
a flat five-dimensional bulk whose Riemann tensor RABCD
is

RABCD = 0 , (28)

where GAB denotes the bulk metric components in arbitrary
coordinates. Hence, with a flat dimensional bulk, concerning
our cosmological applications, we are not considering the
appearance of the cosmological constant Λ .

In the following, we summarize the background results
obtained in previous works [16, 20]. Using Eq.(27), one ob-
tains a solution for Eq.(23) that is given by

ki j =
b
a2 gi j, i, j = 1,2,3, k44 =

−1
ȧ

d
dt

b
a
,

where the extrinsic bending function b(t) = k11 is function
of time. The dot symbol denotes an ordinary time derivative.
This arbitrariness follows from the confinement of the four-
dimensional gauge fields, which produces the homogeneous
equation as shown in Eq.(23).

Denoting the usual Hubble parameter by H = ȧ/a and
the extrinsic parameter B = ḃ/b, one obtains

ki j =
b
a2 gi j, k44 =−

b
a2 (

B
H
−1), (29)

K2 =
b2

a4

(
B2

H2 −2
B
H

+4
)
, h =

b
a2

(
B
H

+2
)
, (30)

Qi j =
b2

a4

(
2

B
H
−1
)

gi j, Q44 =−
3b2

a4 , (31)

Q =−(K2−h2) =
6b2

a4
B
H

, (32)
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where in Eq.(31), we have denoted i, j = 1..3, with no sum in
indices. For simplicity, we denote the expansion parameter
as a(t) = a and the bending function as b(t) = b.

Since the dynamics equations for the extrinsic curvature
are not complete in five-dimensions, motivated by the lack
of uniqueness of the function b(t), and being the extrin-
sic curvature independent rank-2 field, one can derive the
Einstein-Gupta equations [20, 65] in a form

Fµν = 0 , (33)

where they are defined as a copy (concerning its structure)
of the usual Riemannian geometry. Hence, once can define
a “f-Riemann tensor”

Fναλ µ = ∂αϒµλν − ∂λϒµαν +ϒασ µϒ
σ

λν
−ϒλσ µϒ

σ
αν ,

ϒµνσ =
1
2
(
∂µ fσν +∂ν fσ µ −∂σ fµν

)
,

ϒµν
λ = f λσ

ϒµνσ .

that were constructed from a “connection” associated with
kµν and

fµν =
2
K

kµν , and f µν =
2
K

kµν , (34)

in such a way that the normalization condition f µρ fρν = δ
µ

ν

applies.

2.3 The modified Friedmann equation

From the results of Eqs.(22), (23) and (25) by means of cal-
culating Qµ

µ,i = 0, the Friedmann equation modified by the
extrinsic curvature can be written as(

ȧ
a

)2

=
8
3

πGρ +α0a2β0−4eγ±(t) , (35)

where α0 denotes an integration constant originated from the
influence of the extrinsic curvature. We point out that when
α0→ 0, we obtain the standard result of GR. Concerning the
total energy ρ , we denote ρ = ρmat + ρrad , which is com-
posed by the matter density ρmat and the radiation energy
density ρrad , respectively. The γ-exponent in the exponential
function in Eq.(35) is defined as γ±(t) =±

√
|4η0a4−3|∓

√
3arctan

(√
3

3

√
|4η0a4−3|

)
and the relation of expansion

scale factor with redshift is given by a = 1
1+z . By means of

background cosmography tests [23, 24, 26], it was shown
that the parameter β0 tunes the magnitude of the decelera-
tion parameter q(z) and the parameter η0 adjusts the width
of the transition phase redshift from a decelerating to accel-
erating phase. Moreover, we can write Friedman equations
as

H(z) = H0

√
Ωm(z)+Ωrad(z)+Ωext(z)e±γ(z) , (36)

where H(z) is the Hubble parameter in terms of redshift z
and H0 is the current value of the Hubble constant. The mat-
ter density parameter is denoted by Ωm(z) = Ω 0

m(1 + z)3,

Ωrad(z) = Ω 0
rad(1 + z)4 with Ω 0

rad = Ω 0
mzeq and the term

Ωext(z) = Ω 0
ext(1+ z)4−2β0γ0 stands for the density param-

eter associated with the extrinsic curvature. The upper script
“0” indicates the present value of any quantity. The equiva-
lence number for the expansion factor aeq given by

aeq =
1

1+ zeq
=

1
(1+2.5×104Ωmh2(Tcmb/2.7)−4)

(37)

where zeq is the equivalence redshift. The CMB temperature
we adopt the value Tcmb = 2.7255K and the dimensionless
Hubble parameter h = 0.672.

The complete form for Hubble parameter as in Eq.(36)
has been investigated in a sequence of studies [20, 22–24,
26] but at perturbation level, the Hubble function in Eq.(36)
is not continuous for any arbitrary redshift z or, equivalently,
for the expansion factor a. To obtain a stable solution, we an-
alytically expand H(a) by using a Mclaurin-Puiseux series
with η0→ 0 for an asymptotic limit a→ 0 truncating at sec-
ond order, i.e, eγ(x(a)) ∼ 1+

√
3

3 x(a)3/2 +O(x5/2). Consider-
ing only the linear order, it gives roughly in terms of redshift
eγ(z) ∼ (z+1)−4. The convergence of eγ(a) is in compliance
with the Walsh theorem on convergence of analytic approx-
imations [66]. For a flat space, the current “extrinsic con-
tribution” Ω 0

ext is given by the normalization condition for
redshift at z = 0 that results in

Ω
0
ext =

2
η0

(
1−Ω

0
m−Ω

0
rad
)
. (38)

Hence, we can write the dimensionless Hubble parameter
E(z) = H(z)

H0
as

E2(z) = Ω
0
m(1+ z)3 +Ω

0
rad(1+ z)4 + (39)(

1−Ω
0
m−Ω

0
rad
)
(1+ z)−2β0 .

To facilitate referencing, we call, for short, the proposed
model as β -model.

3 Matter evolution equations in conformal Newtonian
gauge

In longitudinal conformal Newtonian gauge, the metric in
Eq.(27) is given by

ds2 = a2[(1+2Φ)dη
2− ((1−2Ψ)δi jdxidx j] , (40)

where Φ = Φ(x,η) and Ψ =Ψ(x,η) denote the Newtonian
potential and the Newtonian curvature, respectively. The con-
formal time η is related with physical time as dt = a(η)dη .

The perturbed field equations of Eqs.(22) and (23) can
be written as

δGµ

ν = 8πGδT µ

ν −δQµ

ν , (41)

δkµν ;ρ = δkµρ;ν . (42)

To obtain the explicit form for perturbed field equations
in Eqs.(41) and (42), we need to determine both perturbed
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metric δgµν and perturbed extrinsic curvature δkµν . Using
the main result of the Nash-Green theorem [61, 62], one can
use the relation

δgµν =−2k̄µν δy , (43)

where δy denotes an infinitesimal displacement of the extra
dimension y in the bulk space.

The linear perturbations of a new geometry gµν is given
by gµν = ḡµν +δgµν that can be written as

gµν = ḡµν −2δyk̄µν , (44)

and the related perturbed extrinsic curvature

kµν = k̄µν −2δy ḡσρ k̄µσ k̄νρ , (45)

where we can identify δkµν = ḡσρ k̄µσ k̄νρ . Using the Nash
relation δgµν =−2k̄µν δy, we obtain

δkµν = ḡσρ k̄µσ δgνρ . (46)

The perturbation of the deformation tensor Qµν can be
made from its background form in Eq.(24) and the resulting
kµν perturbations from Nash’s fluctuations in Eq.(46). Thus,
one obtains

δQµν =−3
2
(K2−h2)δgµν . (47)

It is worthy noting that due to the Nash fluctuations in Eq.(44),
we notice that the Codazzi equations in Eq.(42) and the Eins-
tein-Gupta equations in Eq.(33) are invariant under the Nash
perturbations and are confined to the background (in the
sense that they maintain the same background form). Then
using the background relations in Eqs.(29), (30), (31), and
(32), we can determine the components of δQµν

δQi
j = γ0a2β0−2

Ψδ
i
j , (48)

δQi
4 = 0 , (49)

δQ4
4 = γ0a2β0−2

Φδ
4
4 . (50)

where γ0 is a constant term that merges all integration con-
stants and also carries an extrinsic curvature constant from
integration of the bending function b(t) which means that
if γ0 is zero, the usual GR configuration is restored once all
terms originated from extrinsic curvature will vanish accord-
ingly.

For a perturbed fluid with pressure p and density ρ , one
can write the perturbed components of the related stress-
tensor

δT 4
4 = δρ , (51)

δT 4
i =

1
a
(ρ0 + p0)δu‖i , (52)

δT i
j = −δ p δ

i
j , (53)

where δu‖i denotes the tangent velocity potential and, ρ0
and p0 denote the non-perturbed components of density and
pressure, respectively.

Moreover, we adopt the simplest condition for perturba-
tions Ψ = Φ and obtain the following set of equations in the
wave-number k-space of Fourier modes as

k2
Φk+3H

(
Φ
′
k +ΦkH

)
=−4πGa2

δρk+9γ0a2β0Φk , (54)

(aΦk)
′ =−4πGa2(ρ0 + p0)θ , (55)

Φ
′′
k +3H Φ

′
k +(H 2 +2H ′)Φk−9γ0a2β0Φk (56)

= 4πGa2c2
s δρk ,

where the conformal Hubble parameter is H ≡ aH, cs de-
notes the sound speed and θ = ik jδu‖ j denotes the diver-
gence of fluid velocity in k-space. Hence, from Eqs.(54),
(55) and (56), one obtains the gravitational potential formula
in k-space:

Φ
′′
k +3(1+ c2

s )H Φ
′
k +
[
k2c2

s +(1+3c2
s )H

2]
Φk (57)

= γ0a2β0(1+ c2
s )Φk−2H ′

Φk .

As a matter of consistence, we point out when γ0 → 0 in
Eq.(57), the standard GR correspondence is obtained. Thus,
one recovers the subhorizon approximation with k2 >>H 2

or k2 >> a2H2 and Eq.(57) turns the Newtonian formula
Φk ∼ δρk

k2 .
After a Fourier transform, we perform the definition of

the “contrast” matter density δm ≡ δρ

ρ0
. For a pressureless

matter and a null anisotropic matter stress, we use Eq.(54)
and obtain a relation of Φk and δm given by

k2
Φk =−4πGe f f a2

ρ0δm , (58)

where Ge f f is the effective Newtonian constant and is given
by

Ge f f (a,k) =
G

1− γ0
k2 a2β0

, (59)

where G is the Newtonian gravitational constant.
The corresponding equation of evolution of the contrast

matter density δm(η) in conformal longitudinal Newtonian
frame can be written as

δ
′′
m +H δ

′
m−4πGe f f a2

ρ0δm = 0 , (60)

where the prime symbols denote derivatives with respect to
conformal time η . And, in terms of the expansion factor
a(t), we obtain the contrast matter density δm(a) accord-
ingly

δ̈m(a)+
(

3
a
+

Ḣ(a)
H(a)

)
δ̇m(a)−

3Ωm0Ge f f /G
2(H2(a)/H2

0 )
δm(a)= 0 , (61)

where the dot symbols denote derivatives with respect to
scale factor a.
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4 Observational constraints: analysis and results

4.1 Cosmological data

The methodology used to handle the data relies on the Markov
Chain Monte Carlo (MCMC) technique based on the Metro-
polis-Hasting algorithm. We perform our analysis using the
joint likelihood of the CMB Planck 2015 data [1], Pantheon
SnIa [40], the Hubble parameter as a function of redshift
[41–46] and Baryonic Acoustic Oscillations (BAO) from points
of the joint surveys 6dFGS [47], SDDS [48], BOSS CMASS
[49], WiggleZ [50], MSG [51] and BOSS DR12 [52].

To apply our χ2-statistics, we have an overall 1121 data
points. From each dataset, we have 1048 points from the
Pantheon SNIa observations, 3 points from CMB, 9 of BAO,
36 points from Hubble parameter (with some clustering)
and 25 points from growth data. We use the background
parameter vectors {Ωm0,100Ωbh2,β0,h,σ8} with the priors
{(0.001,1),(0.001,0.08),(−0.3,1),(0.01,0.5),(0.1,1.8)}.
Moreover, to implement the MCMC chains, the joint analy-
sis is defined by the product of the particular likelihoods L
for each data set

Ltot = LPantheon.LBAO.LCMB.LH(z).LGrowth , (62)

and the sum of individual χ2 to get the related total χ2

χ
2
tot = χ

2
Pantheon +χ

2
BAO +χ

2
CMB +χ

2
H(z)+χ

2
Growth. (63)

For the growth analysis, we use the σ8 parameter that
measures the growth of r.m.s fluctuations on the scale of
8h−1Mpc by defining the quantity

f σ8(a)≡ f (a).σ8(a) , (64)

where f (a) = lnδ

lna is the growth rate and the growth factor
δ (a). The data dependence from the fiducial cosmology and
another cosmological survey must be compatibilized. It can
be done by rescaling the growth-rate data by the ratio r(z)
of the Hubble parameter H(z) and the angular distance dA(z)
by the relation

r(z) =
H(z)dA(z)

H f (z)D f A(z)
, (65)

where the subscript “f ” corresponds a quantity of fiducial
cosmology. Moreover, the angular distance dA(z) is defined
as

dA(z) =
c

(1+ z)

∫ 0

z

1
H(z′)

dz′ . (66)

Likewise, the regulation of the χ2 statistics is given by

χ
2(Ωm0,w,σ8) =V iC−1

i j Vj , (67)

where V i ≡ f σ8,i− r(zi) f σ8(zi,Ωm0,w,σ8) denotes a set of
vectors that go up to ith-datapoints at redshift zi for each
i = 1...N. The term N is the total number of datapoints of a
related collection of data and from theoretical prediction we
have the f σ8,i datapoints [32] as shown in Table 1.

The set of C−1
i j denotes the inverse covariance matrix

with the covariant matrix Ci j given by

Cwigglez
i j = 10−3

 6.400 2.570 0.000
2.570 3.969 2.540
0.000 2.540 5.184

 (68)

and the resulting total matrix Ctot
i j

Ctot
i j = 10−3

σ2
1 0 0 ...

0 Cwigglez
i j 0 ...

0 0 ... σ2
N

 (69)

where the set of σ2’s denote the N-variances.
For the CMB data, we used the Planck2018 released [2]

with χ2 statistics

χ
2
CMB = XT

Planck2018C−1
CMBXPlanck2018 , (70)

where the covariant matrix for the parameters for R, lA,Ωb0h2

is given by

XPlankc2018 =

 R−1.7502
lA−301.471
ωb−0.02236

 (71)

where ωb = Ωb0h2. The quantities R and lA are the shift pa-
rameters defined as the scale distance and acoustic scale, re-
spectively, as

R =

√
Ωm0

c
dA(zCMB)(1+ zCMB) , (72)

lA =
πdA(zCMB)(1+ zCMB)

rs(zCMB)
, (73)

where the angular distance dA is given by Eq.(66) and the
related redshift at recombination zcmb is given by

zCMB = 1048[1+0.00124(Ωbh2)−0.738][1+g1(Ωm0h2)g2 ] , (74)

and the parameters (g1,g2) are defined as

g1 =
0.0783(Ωbh2)−0.238

1+39.5(Ωbh2)0.763 ; g2 =
0.560

1+21.1(Ωbh2)1.81 . (75)

The comoving sound horizon rs(z) is given by

rs(z) = c
∫

∞

z

cs(z′)
H(z′)

dz′ , (76)

and the related sound speed cs

cs(z) =
1√

3(1+ R̄b/(1+ z))
, (77)

with R̄b = 31500Ωb0h2(TCMB/2.7K)−4. Moreover, the in-
verse of the covariant matrix C−1

CMB for the parameters for
la,R,Ωb0h2 is given by C−1

CMB = σiσ jC, with σi = (0.0046,
0.090, 0.00015) for the normalized covariance matrix given
by

C =

 1.00 0.46 −0.66
0.46 1.00 −0.37
−0.66 −0.33 1.00

 (78)
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Table 1 A compilation of the Hubble function H(z) data used in the current analysis [32]. The relatives error points are denoted by the σH column.

redshift H(z) σH redshift H(z) σH

0.07 69 19.6 0.57 96.8 3.4
0.09 69.0 12.0 0.593 104.0 13.0
0.12 68.6 26.2 0.60 87.9 6.1
0.12 68.6 26.2 0.68 92.0 8.0
0.179 75.0 4.0 0.73 97.3 7.0
0.199 75.0 5.0 0.781 105.0 12.0
0.2 72.9 29.6 0.875 125.0 17.0
0.27 77.0 14.0 0.88 90.0 40.0
0.28 88.8 36.6 0.9 117.0 23.0
0.35 82.7 8.4 1.037 154.0 20.0
0.352 83.0 14.0 1.3 168.0 17.0
0.3802 83.0 13.5 1.363 160.0 33.6
0.4 95.0 17.0 1.43 177.0 18.0
0.4004 77.0 10.2 1.53 140.0 14.0
0.4247 87.1 11.2 1.75 202.0 40.0
0.44 82.6 7.8 1.965 186.5 50.4
0.44497 92.8 12.9 2.34 222.0 7.0
0.4783 80.9 9.0
0.48 9 7.0 62.0

Similarly, in this paper, the BAO datasets are used from
the conjunction of probes on SDSS [68–70], 6dFGS [71],
IRAS [72, 73], 2MASS [72, 74], 2dFGRS [75], GAMA [76],
BOSS[77], WiggleZ [78], Vipers [79], FastSound [80], BOSS
Q [81] and additional points from the 2018 SSSD-IV [82–
84]. The related χ2 statistics for WiggleZ is given by

χ
2
WiggleZ = (Āobs− Āth)C−1

WiggleZ(Āobs− Āth)
T , (79)

where Āobs = (0.447,0.442,0.424) denotes the set of ob-
servational values for data vectors at z = (0.44,0.60,0.73)
as compared with the theoretical predictions Āth = (z, pi)

which is defined as

Āth = dV (z)

√
Ωm0H2

0

cz
, (80)

with the dilation scale

dV (z) =
1

H0

[
(1+ z)2dA(z)2 cz

E(z)

]1/3
. (81)

Moreover, the inverse of the covariant matrix C−1
WiggleZ

C−1
WiggleZ =

 1040.3 −807.5 336.8
−807.5 3720.3 −1551.9
336.8 −1551.9 2914.9

 . (82)

Likewise, χ2 statistics on SDSS data is such as

χ
2
SDSS = (d̄obs− d̄th)C−1

SDSS(d̄obs− d̄th)
T . (83)

where dobs denotes the observable distance and dth is theo-
retical distance, respectively. The distance dobs = (0.1905,

0.1097) is calculated at z= 0.2 and z= 0.35, and dth is given
by

d̄th =
rs(zd)

dV (z)
, (84)

where the related comoving sound horizon rs(z) and sound
speed cs(z) were given previously by Eqs.(76) and (77), re-
spectively. In addition, the drag redshift zdrag is given by

zdrag =
1291(Ωmh2)0.251

1+0.659(Ωmh2)0.828 [1+b1(Ωmh2)b2 ] , (85)

where b1 = 0.313(Ωmh2)−0.419[1 + 0.607(Ωmh2)0.674] and
b2 = 0.238(Ωmh2)0.223. The inverse of the covariant matrix
C−1

SDSS is given by

C−1
SDSS =

(
30124 −17227
−17227 86977

)
. (86)

All data is combined in the total χ2
BAO as the sum of the

individual χ2 of each dataset.
For the Pantheon supernova type Ia data the theoretical

distance modulus µth(z) is given by

µth(z) = 5log10(dL(z))+µ0, (87)

where µ0 = 42.38− 5log10 h. The luminosity distance dL
related to Hubble expansion rate is given by

dL(z|s,µ0) = (1+ z)
∫ z

0

du
E(u|s)

, (88)
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Table 2 A summary of best-fit values of the background parameters calculated by using MCMC chains with the resulting χ2 values. The χ2
b f

denotes the χ2 best-fit values from MCMC and χ2
red refers to reduced χ2 from the value of the minimum best-fit of χ2 and the related degree of

freedom.

Model Ωm0 100Ωb0h2 h σ8 model parameters χ2
b f

ΛCDM 0.317± 0.006 2.234± 0.015 0.674± 0.004 0.758± 0.028 w =−1 1087.82
wCDM 0.312± 0.008 2.233± 0.015 0.679± 0.008 0.760± 0.028 w=−1.023± 0.033 1087.40
β -model 0.316± 0.006 2.233± 0.014 0.674± 0.004 0.761± 0.028 β0=0.001± 0.009 1087.86

Table 3 A summary of mean values of background parameters calculated by using MCMC chains with the main parameters.

Model Ωm0 100Ωb0h2 h σ8 model parameters

ΛCDM 0.316± 0.006 2.235± 0.015 0.674± 0.004 0.761± 0.028 w =−1
wCDM 0.312± 0.007 2.234± 0.015 0.680± 0.008 0.759± 0.028 w =−0.993±0.027
β -model 0.3180± 0.006 2.236± 0.014 0.672± 0.004 0.761± 0.029 β0=0.010± 0.008

0.30 0.31 0.32 0.33 0.34 0.35
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0.75
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0.85

Ωm

σ
8

0.30 0.31 0.32 0.33 0.34
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0.0220
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0.0224

0.0226

0.0228

Ωm

Ω
b
h
2

Fig. 1 Contour regions at 1-σ , 2-σ and 3-σ at 68.3%, 95.4% and 99.7% C.L, respectively, in the (σ8−Ωm) and (100Ωb0h2−Ωm) planes. The
black points represent the mean values of the parameters in the MCMC chains. The blue point denotes the relate Planck2018 data and the red
points denote the CMB Planck2015 data in respect to the related quantities.
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0.000

0.005

0.010

0.015

0.020

0.025

0.030

σ8

β 0

0.30 0.31 0.32 0.33 0.34
0.00

0.01

0.02

0.03

0.04

Ωm

β 0

Fig. 2 Marginalized β0 with σ8 and Ωm parameters in the left and right panels, respectively.
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Fig. 3 One-dimensional PDF likelihood of the cosmological parameters for the cosmological parameters in the β -model used in this study. The
vertical dashed lines indicate the CMB Planck 2018 values. The panel also shows the degeneracies for the β0 values.
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Fig. 4 Numerical solution of Matter density evolution. The right panel shows the comparisons of ΛCDM, GR quintessence and β -model with the
mean values in Table 3. The left panel shows in logarithm scale the comparison with these models by the ratio δi/δmΛCDM .

where s denotes the model parameters. As a prior, we adopt
the density parameter value of visible baryonic matter Ωb0 =

2.236/100h2. Accordingly, the χ2 statistics is

χ
2
SnIa(s|µ0) =

n

∑
i=1

[
µth,i(s,µ0|zi)−µobs,i(zi)

]
σ2

µi
, (89)

where n = 1048 is the number of events of the Pantheon
SNIa data [40], the distance modulus obtained from obser-
vations is denoted by µobs,i(zi), and σµi is the total uncer-
tainty of the observational data.

4.2 Results and discussions

In Fig.(1), we present the obtained 3σ -contour plots. The
black points mark the obtained mean values from MCMC
chains. The left panel presents a (σ−Ωm) contour that shows
a mild (reduced) tension at 2-σ (blue points mark CMB
Planck2018 data) in comparison with the 3-σ tension form
CMB Planck2015 (red points) between low redshift data
H(z) and the Planck probe. In the right panel, it is shown
the (100Ωb0h2−Ωm) plane that pinpoints a mild increase of
tension in the 100Ωb0h2 values in Planck2015 but an inter-
esting better accommodation of the baryonic luminous mat-
ter parameter with the values from Planck2018 data within
the 1-σ contour. An important matter is shown in Fig.(3) that
exhibits the PDF behaviour of the main parameters. The de-
generacies found in the marginalization of β0 and the mild
degeneracy in the related σ8 values may decrease the ob-
tained 2-σ tension in σ8 contour. Moreover, in Fig.(2), we

present the marginalization of β0-parameter in respect to the
σ8 and Ωm parameters where the mean values (black points)
are settled in 1-σ region in both cases.

In Fig.(4) is shown the behaviour of the growth evolution
of the β -model (Eq.(61)) in comparison with ΛCDM and
GR quintessence. The adopted values were from the mean
values in Table 3 from MCMC chains. In the left panel, it
is shown that the resulting curves from the models are in-
distinguishable. A relative comparison between the models
is shown the right panel a close proximity of the behaviour
of growth of ΛCDM and the β -model with almost indis-
tinguishable slight upper values that favor the curves of the
latter. For the GR quintessence, it presents lower values as
compared to the previous ones starting from the early uni-
verse around a ∼ 0.2. In the Fig.(5) we obtain the percent-
age relative difference between the aforementioned model
in what concerns the evolution of Hubble function. In the
left panel, it shows in linear scale that the percentage differ-
ence between β -model with ΛCDM and GR quintessence
reaches no more than 1% in early times and tends to close
equivalence in present time, with mild fluctuations in the
range a∼ 0.6−0.8. Those fluctuations are clearer in the cen-
tral panel with the spikes in the curves due to the degenera-
cies on the parameter that leads to a mild signature on the
baryonic luminous matter. Moreover, to reinforce the phe-
nomenological distances between the models, we apply the
Om(z) diagnosis [55] as a null test, by using the formula

Om(z) =
E(z)2−1
(1+ z)3−1

. (90)
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Fig. 5 The percentage relative difference %diff(H−H j) between the β -models, ΛCDM and GR quintessence for the mean values in Table 3 in
linear (left panel) and logarithm (central panel) scales. In the right panel, it is shown Om(z) diagnosis.

Table 4 A summary of the obtained values of AIC for the studied models. The ΛCDM model is adopted as a reference.

Model AIC ∆AIC Evidence against the model

ΛCDM 1095.86 0 null
wCDM 1097.45 1.60 weak
β -model 1097.91 2.06 substantially weak

The right panel shows in the dashed red line the same val-
ues for Om(z) for any redshift as expected for ΛCDM. The
black and blue solid lines indicate Om(z) values higher (β -
model) and lower (GR quintessence), respectively, like that
of evolving dark energy models. We expect that a large per-
centage difference can be obtained with higher orders of
Mclaurin-Puiseux series that provides an interesting control
on growth density.

Another useful tool to analyse the model comparisons
refers to the level of statistical correlation between such mod-
els. Adopting the errors being as Gaussian, we use AIC sys-
tematic to classify the fit-to-data for small samples sizes
[67, 85]

AIC = χ
2
b f +2k

2k(k+1)
N− k−1

, (91)

where χ2
b f is the best-fit χ2 of the model, k represents the

number of the free parameters and N is the number of the
data point in the adopted dataset. The difference |∆AIC| =
AICmodel 2 − AICmodel 1 obeys the Jeffreys’ scale [86] that
measures the intensity of tension between two competing
models due to the lost information from the related fitting. In
general, the preferred model is that one with lesser values for
AIC. In comparison, higher values of AIC denote a higher
statistical distance and may indicate a statistically disfavor-
ing model. In Jeffreys’ scale for |∆AIC ≤ 2| tells that the
models are statistically consistent with a certain good level
of empirical support. For 4 < ∆AIC < 7 indicates a positive
tension against the model with a higher value of AIC. For
|∆AIC≥ 10| defines a strong empirical evidence against the
model with a higher AIC. Accordingly, we have obtained the

AIC and ∆AIC values shown in Table 4 that indicates some
weak evidence against β -model with a ∆AIC roughly ∼ 2.
This result reinforces the previous one and leads to the con-
clusion that the β -model favors statistical consistency with
ΛCDM and wCDM models at present time with mild fluc-
tuation at perturbation level.

5 Remarks

In this paper, we discussed the dark energy problem with
a proposal of a geometric model in a search of explana-
tion of the accelerated expansion. By construction, we used
the Nash-Green theorem to propose a geometric model with
a resulting modified Friedman equation from the influence
of the extrinsic curvature thought as a complement to Ein-
stein’s gravity. From background level, an asymptotic so-
lution valid in the range a = [0,1] was obtained using a
Mclaurin-Puiseux series of the Hubble function H(z) due
to the fact the parameter η0 → 0. At perturbation level, we
obtained the perturbed equations in the longitudinal Newto-
nian gauge. From the MCMC analysis, we obtained the re-
sulting contours from the analysis on (σ8−Ωm) plane with a
3-σ reduction on σ8 tension. In the (100Ωb0h2)−Ωm plane,
we obtained a reduction of the σ -distance within the 1-σ
contour as compared with the Planck2015 and Planck2018
data, in which the β -model is well accommodated to the lat-
ter dataset. The related PDF 1-dimensional plot shows the
degeneracies on the parameters and may improve the afore-
mentioned σ8 tension. Such situation does not happen in the
ΛCDM and wCDM usual contexts. From numerical solu-
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tions on growth and H(z) evolutions, it was shown a cer-
tain compatibility between the β -model with ΛCDM and
wCDM models with a percentage difference up to 1% at
early times. This small difference appears to be limited only
to the second Maclaurin-Puiseux expansion order. Moreover,
we applied the AIC classifiers that favour the ΛCDM model
but with a statistical compatibility with β -model with ∆AIC
roughly at∼ 2. As future prospects, we intend to investigate
that how the β -model may inflict changes in the Integrated
Sachs–Wolfe (ISW) contribution in comparison with the one
as predicted to ΛCDM with a lower peak of the second CMB
peak. Also, to investigate the behaviour of the viscosity pa-
rameter and growth index rate resulting from the β -model
in a search of a more realistic context. This process is in due
course and will be reported elsewhere.
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