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Abstract. Using a joint statistical analysis, we test a four-dimensional FLWR

model embedded in a five-dimensional bulk based on the Nash-Greene embedding

theorem. Performing a Markov Chain Monte Carlo (MCMC) modelling, we combine

observational data sets as those of the recent Pantheon type Ia supernovae, Baryon

Acoustic Oscillations (BAO) and the angular acoustic scale of the Cosmic Microwave

Background (CMB) to impose restrictions on the model and correlating the model

parameters to mimick an equation of state. From statistical classifiers as the Akaike

Information Criterion (AIC) and Bayesian Information Criterion (BIC), we use the

Jeffreys’ scale and find a strong evidence favoring a statistically consistence with a

dynamical Dark energy (CPL parameterization) and a relative consistence with both

ΛCDM and wCDM models. Moreover, we find that the transition redshift used as

a cosmic discriminator with the best fit zt = 0.634 ± 0.014 at 1-σ C.L. with a range

scenario for late time sharp transitions.
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1. Introduction

The true mechanism behind the accelerated phase of the universe remains an open

question. After more than 20 years since the very first evidences of the cosmic

accelerated expansion, one of the pivotal directions of investigations is about to unravel

whether the dark energy equation of state (EoS), with the main fluid parameter w(z),

is restricted to the value w0 = −1, as suggested by observations [1], in conformity with

the very popular ΛCDM model, or if there exists any deviations from that value leading

to dynamical dark energy models. Even though its success, the ΛCDM model lacks of

an underlying physical understanding, since the Cosmological constant Λ and the Cold

dark matter (CDM) are problems of their own [2, 3, 4, 5, 6, 7, 8]. Hence, an equation of

state plays a fundamental role to confront a model to the observational data commonly

performed with statistical methods. Interestingly, it has been suggested that the dark

energy equation may have a late-time phase transition [9, 10, 11] with z & 1. This

induces to an interesting scenario departing from the non-dynamical ΛCDM cosmology

since at high redshifts the constraints are weaker [10, 12, 13, 14, 15, 16, 17, 18].
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The theoretical background in this paper concerns the possibility that the universe

might be embedded in extra dimensions and dark energy can be explained as a geometric

outcome from the extrinsic curvature. Most of these extra dimensional models have

been Kaluza-Klein or/and string inspired, such as, for instance, the Arkani-Hamed,

Dvali and Dimopolous (ADD) model [19], the Randall-sundrum model [20, 21] and

the Dvali-Gabadadze-Porrati model (DPG) [22]. Differently form these models and

variants, we investigate how the embedding as a prior mathematical structure can

be suited for construction of a physical theory, keeping no relation with brane or

string proposals. Several authors have been explored this possibility in many contexts

[23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34].

This paper aims at investigating in a late-time transition redshift on how the

cosmological parameters, mainly on the current matter density Ωm0 and the physical

baryon density 100Ωbh
2, are accommodated in the presented model under this

assumption and whether the current surveys on dark energy constrain the parameters

to favor or not a phase transition over some popular models as the ΛCDM, quintessense

(wCDM) [35, 36] and Chevallier-Polarski-Linder (CPL) [37, 38] parameterisations. To

analyse the background data, we perform the Markov Chain Monte Carlo (MCMC)

sample technique with a modified code from [39, 40] using the joint likelihood of

kinematical probes as of the Cosmic Microwave Background (CMB) Planck 2015 data

[1], the largest dataset Pantheon SnIa [41] with redshift ranging from 0.01 < z < 2.3 that

guarantees a low and intermediate redshift data, the Hubble parameter as a function of

redshift (H(z))[42, 43, 44, 45, 46, 47] and Baryonic Acoustic Oscillations (BAO) from

points of the joint surveys 6dFGS [48], SDDS [49], BOSS CMASS [50], WiggleZ [51],

MSG [52] and BOSS DR12 [53].

The paper is organized as follows: in the second section, we make a review on

the theoretical framework. The third section presents the cosmological analysis and

outcomes by using the Akaike Information Criterion [54] and Bayesian criteria [55] on

the resulting contours confidence regions. In the final section, we conclude with our

final remarks and prospects.

2. The theoretical framework

2.1. The D-dimensional equations

We start with a summary of main elements of a gravitational model based on the

mathematical background of the theory of dynamical embeddings. The first mechanism

is the defined by the gravitational action functional. Thus, in the presence of confined

matter fields on a four-dimensional space with thickness l embedded in a D-dimensional

ambient space (bulk), we define

S = − 1

2κ2
D

∫ √
|G|RdDx−

∫ √
|G|L∗mdDx , (1)

where κ2
D is the fundamental energy scale on the embedded space, R denotes the Ricci
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scalar of the bulk and L∗m is the confined matter lagrangian. The normal radii l is the

smallest value of the curvature radii obtained from the relation

det(gµν − lakµνa) = 0 . (2)

In a geometrical sense, the term ya = la represents a displacement of the embedded

space along the extra-dimensions.

The matter energy momentum tensor occupies a finite hypervolume with constant

radius l along the extra-dimensions. The variation of Einstein-Hilbert action in eq.(1)

with respect to the bulk metric GAB leads to the Einstein equations for the bulk

RAB −
1

2
GAB = α?TAB , (3)

where α? = 8πG∗ is energy scale parameter and G∗ is the bulk “gravitational constant”.

The tensor TAB is the energy-momentum tensor for the bulk [25, 26, 29]. To generate

a thick embedded space-time is important to perturb the related background and can

be done using the confinement hypothesis that depends only on the four-dimensionality

of the space-time [56, 57, 58], even though any gauge theory can be mathematically

constructed in a higher dimensional space.

In order to obtain a more general theory based on embeddings to elaborate a

physical model, Nash’s original embedding theorem [59] used a flat D-dimensional

Euclidean space, later generalized to any Riemannian manifold including non-positive

signatures by Greene [60] with independent orthogonal perturbations. This choice of

perturbations facilitates to get to a differentiable smoothness of the embedding between

the manifolds, which is a primary concern of Nash’s theorem and satisfies the Einstein-

Hilbert principle, where the variation of the Ricci scalar is the minimum as possible.

Hence, it guarantees that the embedded geometry remains smooth (differentiable)

after smooth (differentiable) perturbations. With all these concepts, let us consider a

Riemannian manifold V4 with a non-perturbed metric ḡµν being locally and isometrically

embedded in a D-dimensional Riemannian manifold Vn. The embedded space-time V4 is

endowed with the local coordinates xµ = {x0, ..., x3} whereas the extra-dimensions in the

bulk space can be defined with the coordinates xa = {x4, ..., xD−1} andD = 4+n. Hence,

the bulk local coordinates can be denoted by the set {xµ, xa}. All these definitions allow

us to construct a differentiable and regular map X : V4 → Vn satisfying the embedding

equations

XA
,µXB

,ν GAB = ḡµν , (4)

XA
,µ η̄

B
a GAB = 0 , (5)

η̄Aa η̄
B
b GAB = ḡab , (6)

where the set of XA(xµ, xa) : XA = {X 0...XD−1} denotes the non-perturbed embedding

function coordinates, the metric GAB denotes the metric components of VD in arbitrary

coordinates and η̄Aa denotes a non-perturbed unit vector field orthogonal to V4.

Concerning notation, capital Latin indices run from 1 to n. Small case Latin indices
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refer to the extra dimension considered. All Greek indices refer to the embedded space-

time counting from 1 to 4. Those sets of equations represent, respectively, the isometry

condition in Eq.(4), the orthogonality between the embedding coordinates X and η̄ in

Eq.(5), and also, the vector normalization η̄Aa and ḡab = εaδab with εa = ±1 in which

the signs represent the signatures of the extra-dimensions. Hence, the integration of

the system of equations Eqs.(4), (5) and (6) assures the configuration of the embedding

map X .

The second fundamental form, or more commonly, the non-perturbed extrinsic

curvature k̄µν of V4 is by definition the projection of the variation of η̄ onto the tangent

plane :

k̄µν = −XA
,µη̄

B
,νGAB = XA

,µν η̄
BGAB , (7)

where the comma denotes the ordinary derivative.

If one defines a geometric object ω̄ in V4, its Lie transport along the flow for a

small distance δy is given by Ω = Ω̄ + δy£η̄Ω̄, where £η̄ denotes the Lie derivative with

respect to η̄. In particular, the Lie transport of the Gaussian veilbein {XA
µ , η̄

A
a }, defined

on V4 gives straightforwardly the perturbed coordinate ZA(xµ, ya) := ZA such as

ZA,µ = XA
,µ + δya £η̄X

A
,µ = XA

,µ + δya η̄Aa,µ (8)

ηAa = η̄Aa + δyb [η̄a, η̄b]
A = η̄Aa . (9)

It is worth mentioning that Eq.(9) shows that the normal vector ηA does not change

under orthogonal perturbations. However, from Eq.(7), we note that in general η,µ 6= η̄,µ.

Likewise, it occurs that the so-called third geometrical form, or more commonly, the

torsion vector, Aµab does not change under orthogonal perturbations. To see how it

works, we take Eq.(13) and rewrite Eq.(5) as

gµb = ZA,µηBb GAB = δyaAµab , (10)

where ZA are a set of perturbed coordinates. The Eq.(10) results from a generalization

of the Gauss-Weingarten equations

ηAa,µ = Aµacg
cbηAb − k̄µρaḡρνZA,ν . (11)

then,

Aµab = ηAa,µη
B
b GAB = η̄Aa,µη̄

B
b GAB = Āµab , (12)

that ratifies that the torsion vector does not alter under perturbations. In geometric

language, the presence of a torsion potential tilts the embedded family of submanifolds

with respect to the normal vector ηAa . If the bulk has certain killing vectors then Aµab
transforms as the component of a gauge field under the group of isometries of the bulk

[24, 61, 62]. It is worth noting that the gauge potential can only be present if the

dimension of the bulk space is equal or greater than six (n ≥ 2) in accordance with

Eq.(12) since the torsion vector fields are antisymmetric under the exchange of extra

coordinate a and b.
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To describe the perturbed embedded geometry, we set a perturbed coordinates ZA
needed to satisfy the embedding equations similar to Eqs.(4), (5) and (6) as

ZA,µZB
,νGAB = gµν , ZA,µηBb GAB = gµb, η

A
a η

B
b GAB = gab . (13)

where gab = εaδab with εa = ±1. Thus, with the Eqs.(13) and using the definition from

Eq.(7), one obtains the perturbed metric and extrinsic curvature of the new manifold

as written as

gµν = ḡµν − 2yak̄µνa + δyaδyb
[
ḡσρk̄µσak̄νρb + gcdAµcaAνdb

]
, (14)

and the related perturbed extrinsic curvature

kµνa = k̄µνa − δyb
(
gcdAµcaAνdb + ḡσρk̄µσak̄νρb

)
. (15)

Taking the derivative of Eq.(14) with respect to y coordinate, one obtains Nash’s

deformation condition

kµνa = −1

2

∂gµν
∂ya

. (16)

The meaning of this expression is twofold. It can be realized in a pictorial view under the

basic theory of curves, i.e., one gets a congruence of curves (or orbits) orthogonal to the

embedded space V4. Moreover, the parameter y is time-like or not, and it is irrelevant

the sign of its signature. A similar expression was obtained years later in the ADM

formulation by Choquet-Bruhat and York [63]. In fact, the physical interpretation of

Eq.(16) means that it localizes the matter in the embedded space-time imposing on it a

geometric confinement. In other words, it holds true for any perturbations resulting from

n-parameter families of embedded submanifolds denoted by ya, and the matter remains

confined to the resulting perturbed metric that can bend and/or stretch without ripping

the manifold (embedded space-time), which can be a valuable feature for a quantization

process.

In addition, the integrability conditions for equations in Eq.(13) are given by the

non-trivial components of the Riemann tensor of the embedding space expressed in the

Gaussian frame {ZAµ , ηAa } known as the Gauss-Codazzi-Ricci equations. This guarantees

to reconstruct the embedded geometry and understand its properties from the dynamics

of the four-dimensional embedded space-time. Consequently, we can define a Gaussian

coordinate system {ZA,µ, ηAa } for the bulk in the vicinity of V4 in such a way

GAB =

(
gµν + gabAµaAνb Aµa

Aνb gab

)
(17)

where the perturbed metric gµν is given by Eq.(14).

The expression in Eq.(17) is the metric of the bulk with D ≥ 6 or at least two extra-

dimensions. This resembles the non-Abelian Kaluza-Klein metric and the quantity Aµa
plays the role of the Yang-Mills potentials where Aµa = xbAµab. We emphasize that for

just one extra-dimension, the torsion vector does not exist and for two extra-dimensions

it turns to the usual Maxwell field, which means that the non-Abelian part of Aµa is
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lost in a six dimensional bulk. This means that the resulting force is the ordinary

electromagnetic one in the case of two extra dimensions [27, 28, 62, 64].

As proposed in [24, 25, 26, 65], one obtains the induced field covariant equations

of motion taking Eq.(3) in the frame defined in Eq.(17). In the background for a 4-

D observer in the embedded space, we have the following set of equations denoted by

Eqs.(18), (19) and (20):

Gµν +Qµν = 8πGNTµν , (18)

where the quantity Tµν denotes the stress energy tensors for ordinary intrinsic matter

(including Yang-Mills fields).

The second equation involves relations with extrinsic terms k̄αβa and Aµab

∇∗ν k̄a −∇∗µk̄µaν = 8πGNTaν , (19)

where the term ∇∗µk̄αβa denotes ∇∗µk̄αβa := k̄αβa;µ − Aµabk̄bαβ and the semicolon denotes

the covariant derivative. Moreover, the third equation is denoted as

R + k̄µνmk̄
µνm − k̄ak̄a = −16πGNηabTab , (20)

where ηab = εaδab with εa = ±1. The quantities GN , Taν , Tab denote the induced

gravitational Newton’s constant, the stress energy tensors projections of TAB on the

cross and normal directions of the space-time, respectively.

Those set of equations are the results from the integrability conditions of the

embedding given by the Gauss-Codazzi-Ricci equations. From Nash-Green theorem, the

solutions of these equations were obtained by a differentiable process [24]. The first two

equations are known, respectively, by the gravi-tensor equation (a modified Einstein’s

equations by the appearance of the extrinsic curvature) as in Eq.(18) and gravi-vector

equation as in Eq.(19). In summary, they reflect the meaning of a dynamical embedding:

the pseudo-Riemann curvature of the embedding space acts as a reference for the

pseudo-Riemann curvature of the embedded space-time. Moreover, the projection of

the Riemann tensor of the embedding space along the normal direction is given by

the tangent variation of the extrinsic curvature as shown by Eq.(19) that is the trace

of Codazzi equation composed by the extrinsic terms k̄αβa, Aµab. The last equation is

known as gravi-Scalar equation and serves as a constrain on the torsion vector fields

Aµab.

The quantity Qµν is denoted by

Qµν = ḡcd
(
ḡρσk̄µρck̄νσd − k̄µνdḡαβk̄αβc

)
−1

2

(
k̄λφck̄

λφ
d − ḡ

αβk̄αβdḡ
γδk̄γδc

)
ḡµν ,(21)

and is independently conserved quantity in the sense that Qµν ;ν = 0 which means that

this geometric new term does not exchange gravitational energy with ordinary matter

resembling the quintessence in the dark energy problem. The conservation of Qµν holds

true for perturbed quantities of gµν and kµνa.
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2.2. The background cosmological model

To the present cosmological application, we consider a four-dimensional metric

embedded in a five-dimensional bulk to make a proper comparison with the most of

cosmological models in literature. In this framework, the set of equations are simplified.

The torsion vector Aµab does not exist in five-dimensions and Eq.(19) turns to a

homogeneous equation and Eq.(20) provides only a relation of consistence between Ricci

scalar and extrinsic scalar quantities (no a priori information is gained).

To obtain the embedded four-dimensional equations, one can take Eq.(18) written

in the Gaussian frame embedding veilbein {XA
µ , η

A
a }. This reference frame is composed

by a regular and differentiable coordinate {XA
µ } and a unitary normal vector {ηAa }.

Accordingly, one can obtain the set of the embedded four-dimensional field equations

Rµν −
1

2
Rgµν −Qµν = −8πGTµν , (22)

k ρ
µ;ρ − h,µ = 0 , (23)

where the semi-colon denotes a covariant derivative. The Tµν tensor is the four-

dimensional energy-momentum tensor of a perfect fluid, expressed in co-moving

coordinates as

Tµν = (p+ ρ)UµUν + p gµν , Uµ = δ4
µ ,

where Uµ is the co-moving four-velocity. Moreover, the deformation tensor Qµν is

simplified and can given by

Qµν = gρσkµρkνσ − kµνH −
1

2

(
K2 − h2

)
gµν , (24)

where we denote h = gµνkµν and h2 = h.h is the mean curvature. The term K2 = kµνkµν
is the Gaussian curvature. It follows that Qµν is conserved in the sense of Noether’s

theorem

Qµν
;ν = 0 . (25)

Moreover, we work with a spatially Friedman-Lemâıtre-Robertson-Walker (FLRW)

geometry with line element expressed in coordinates (r, θ, φ, t) in such a way

ds2 = −dt2 + a2
[
dr2 + f 2

κ(r)
(
dθ2 + sin2 θdϕ2

)]
, (26)

where f(r)κ = sin r, r,sinh r. Since the FLRW geometry can be locally embedded in five-

dimensions, it can be regarded as a four-dimensional hypersurface dynamically evolving

in a flat five-dimensional bulk whose Riemann tensor RABCD is

RABCD = 0 , (27)

where GAB denotes the bulk metric components in arbitrary coordinates. Hence, with a

flat dimensional bulk, concerning our cosmological applications, we are not considering

the appearance of the cosmological constant Λ.

Using Eq.(26), one obtains a solution for Eq.(23) that is given by

kij =
b

a2
gij, i, j = 1, 2, 3, k44 =

−1

ȧ

d

dt

b

a
,
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where the extrinsic bending function b(t) = k11 is function of time. The dot symbol

denotes an ordinary time derivative. This arbitrariness follows from the confinement of

the four-dimensional gauge fields, which produces the homogeneous equation as shown

in Eq.(23).

Denoting the usual Hubble parameter by H = ȧ/a and the extrinsic parameter

B = ḃ/b, one obtains

kij =
b

a2
gij, k44 = − b

a2
(
B

H
− 1), (28)

K2 =
b2

a4

(
B2

H2
− 2

B

H
+ 4

)
, h =

b

a2
(
B

H
+ 2) (29)

Qij =
b2

a4

(
2
B

H
− 1

)
gij, Q44 = −3b2

a4
, (30)

Q = −(K2 − h2) =
6b2

a4

B

H
, (31)

where in Eq.(30), we have denoted i, j = 1..3, with no sum in indices. For simplicity,

we denote the expansion parameter as a(t) = a and the bending function as b(t) = b.

Since the dynamics equations for the extrinsic curvature are not complete in

five-dimensions, motivated by the lack of uniqueness of the function b(t), and being

the extrinsic curvature independent rank-2 field, one can derive the Einstein-Gupta

equations [29, 66] in a form

Fµν = 0 , (32)

where they are defined as a copy (concerning its structure) of the usual Riemannian

geometry. Hence, once can define a “f-Riemann tensor”

Fναλµ = ∂αΥµλν − ∂λΥµαν + ΥασµΥσ
λν −ΥλσµΥσ

αν ,

Υµνσ =
1

2
(∂µ fσν + ∂ν fσµ − ∂σ fµν) ,

Υµν
λ = fλσ Υµνσ.

that were constructed from a “connection” associated with kµν and

fµν =
2

K
kµν , and fµν =

2

K
kµν , (33)

in such a way that the normalization condition fµρfρν = δµν applies.

2.3. The modified Friedmann equation

Taking Eq.(26) in Eq.(32), ones obtains the contribution B
H

= 1 ±
√
|4η0a4 − 3, and

with the results from Eqs.(22), (23) and (25), the Friedmann equation modified by the

extrinsic curvature can be written as(
ȧ

a

)2

=
8

3
πGρ+ α0a

2β0−4eγ
±(t) , (34)

where α0 denotes an integration constant and its value is set to 1 without loss of

generality. Concerning the total energy ρ, we denote ρ = ρmat + ρrad, which are the
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matter and radiation energy densities. The γ-exponent in the exponential function in

Eq.(34) is defined as γ±(t) = ±
√
|4η0a4 − 3| ∓

√
3 arctan

(√
3

3

√
|4η0a4 − 3|

)
and the

relation of expansion scale factor with redshift is given by a = 1
1+z

. The parameter β0

inflicts on the magnitude of the deceleration parameter q(z) in function of the redshift

z and the parameter η0 measures the width of the transition phase redshift zt from a

decelerating to accelerating regime. Moreover, we can write Friedman equations as

H(z) = H0

√
Ωm(z) + Ωrad(z) + Ωext(z)e±γ(z) , (35)

where H(z) is the Hubble parameter in terms of redshift z and H0 is the current value of

the Hubble constant. The matter density parameter is denoted by Ωm(z) = Ω0
m(1 + z)3,

Ωrad(z) = Ω0
rad(1 + z)4 with Ω0

rad = Ω0
mzeq and the term Ωext(z) = Ω0

ext(1 + z)4−2β0γ0

stands for the density parameter associated with the extrinsic curvature. The upper

script “0” indicates the present value of any quantity. The equivalence number for the

expansion factor aeq given by

aeq =
1

1 + zeq
=

1

(1 + 2.5× 104Ωmh2(Tcmb/2.7)−4)
(36)

where zeq is the equivalence redshift. The CMB temperature we adopt the value

Tcmb = 2.7255K and h = 0.67. The complete form for Hubble parameter as in Eq.(35)

has been investigated in a sequence of studies [29, 31, 32, 34, 67].

The transition redshift can be found from the deceleration parameter in a form

q(z) =
1

H(z)

dH(z)

dz
(1 + z)− 1 . (37)

Hence, we can write

q(z) =
3

2

[
Ω m(z) + Ωrad(z) + γ∗Ω ext(z)

Ω m(z) + Ωrad(z) + Ω ext(z)

]
− 1 , (38)

where γ∗ = 1
3

[
4− 2β0 ± 2

√
| 4η0
(1+z)4

− 3|
]
.

Analyzing the form of the γ±(z), an estimative for the magnitude of the width of

the transition redshift zd can given by the constraint

zd = |
(

4

3
|η0|
)(1/4)

− 1| ≤ 1 . (39)

In this work, we investigate an initial late-time transition redshift zt ∼ 1 since the

constraint of Eq.(39) imposes a small value the parameter η0 ∼ 0. Thus, the Hubble

function in Eq.(35) can be analytically expanded in a Mclaurin-Puiseux series with

η0 → 0 truncating at second order, i.e, eγ(x(a)) ∼ 1 +
√

3
3
x(a)3/2 +O(x5/2). Considering

only the linear terms, it gives roughly eγ(z) ∼ γ0(z + 1)−4, which γ0 is a constant (with

the η0 parameter included). The convergence of eγ(a) is in compliance with the Walsh

theorem on convergence of analytic approximations [68].

The current extrinsic contribution Ω0
ext is given by the normalization condition for

redshift at z = 0 that results in

Ω0
ext =

2

η0

(
1− Ω0

m − Ω0
rad

)
. (40)
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Hence, we can write the dimensionless Hubble parameter E(z) = H(z)
H0

as

E2(z) = Ω0
m(1 + z)3 + Ω0

rad(1 + z)4 +
(
1− Ω0

m − Ω0
rad

)
(1 + z)−2β0 . (41)

3. Observational constraints: analysis and results

3.1. Cosmological data

The methodology used to handle the data relies on the Markov Chain Monte Carlo

(MCMC) technique based on the Metropolis-Hasting algorithm. We perform our

analysis using the joint likelihood of the CMB Planck 2015 data [1], Pantheon SnIa

[41], the Hubble parameter as a function of redshift (H(z))[42, 43, 44, 45, 46, 47] and

Baryonic Acoustic Oscillations (BAO) from points of the joint surveys 6dFGS [48],

SDDS [49], BOSS CMASS [50], WiggleZ [51], MSG [52] and BOSS DR12 [53].

To apply our χ2-statistics, we have a total of 1096 data points from the Pantheon set,

CMB, BAO and Hubble parameter with the number of point of 1048, 3, 9 and 36, respec-

tively. Hence, we use the background parameter vectors {Ωm0, 100Ωbh
2, β0, η1}, which

the adopted priors were {(0.001, 1), (0.001, 0.08), (−0.3, 1), (0.01, 0.5)}, respectively. For

convenience of notation, we denote the “normalized” parameter η1 = 100η0 heron. More-

over, to implement the MCMC chains, the joint analysis is defined by the product of

the particular likelihoods L for each data set

Ltot = LPantheon.LBAO.LCMB.LH(z) , (42)

and the sum of individual χ2 to get the related total χ2

χ2
tot = χ2

Pantheon + χ2
BAO + χ2

CMB + χ2
H(z). (43)

The adopted values for the H(z) data can be found in Table 1 of the ref.[40].

The related absolute magnitude M is given by

m(z) = M + 5 log10[
dL(z)

Mpc
] + 25 (44)

The luminosity distance DL is defined by

DL(z) =
H0dL(z)

c
(45)

as

m(z) = M̄(M,H0) + 5 log10(DL(z)) (46)

where M̄ is the magnitude zero point offset and depends on M and H0 as

M̄ = M + 5 log10(
c/H0

1Mpc
) + 25 (47)

The M̄ is model independent and its value comes from a specific good fit that can

be used directly to other fits of model parameters. Hence, the observed mi(zi) can

be translated to Dobs
Li (zi) and its value Dth

L (z) of a given model H(z;α1, ..., αn) can be

obtained by integrating

Dth
L (z) = (1 + z)

∫ z

0

dz′
H0

H(z′;α1, ...αn)
(48)
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Table 1. A compilation of the Hubble function H(z) data used in the

current analysis (in units of km.s1 Mpc1). The relatives error points are

denoted by the σH column. The references of the data points can be found

in Table 1 of the ref.[40].

redshift H(z) σH redshift H(z) σH
0.07 69 19.6 0.57 96.8 3.4

0.09 69.0 12.0 0.593 104.0 13.0

0.12 68.6 26.2 0.60 87.9 6.1

0.12 68.6 26.2 0.68 92.0 8.0

0.179 75.0 4.0 0.73 97.3 7.0

0.199 75.0 5.0 0.781 105.0 12.0

0.2 72.9 29.6 0.875 125.0 17.0

0.27 77.0 14.0 0.88 90.0 40.0

0.28 88.8 36.6 0.9 117.0 23.0

0.35 82.7 8.4 1.037 154.0 20.0

0.352 83.0 14.0 1.3 168.0 17.0

0.3802 83.0 13.5 1.363 160.0 33.6

0.4 95.0 17.0 1.43 177.0 18.0

0.4004 77.0 10.2 1.53 140.0 14.0

0.4247 87.1 11.2 1.75 202.0 40.0

0.44 82.6 7.8 1.965 186.5 50.4

0.44497 92.8 12.9 2.34 222.0 7.0

0.4783 80.9 9.0

0.48 9 7.0 62.0

The best fit values for the parameters α1, ..., αn are found by minimizing the quantity

χ2(a1, ..., an) =
N∑
i=1

(log10D
obs
L (zi)− log10D

th
L (zi))

2

(σlog10DL(zi))
2 + (∂log10DL(zi)

∂zi
σzi)

2
(49)

where σz is the 1σ redshift uncertainty of the data and σlog10DL(zi) is the corresponding

1σ error of log10D
obs
L (zi).

3.2. Results and discussions

In order to avoid an error-prone fit-to-data, we must correlate the parameters β0 and

η0. To this matter, we define a parameterization in a form

β(a) = −1− 2

3
β0 + η0(1− a) . (50)

To facilitate the analysis, the β0 parameter, that is a parameter originated from a

geometric part, is related to the fluid parameter w with the formula β0 = 3
2
(1 + w).

Accordingly, the values of β0 runs from -0.3 to 1 means roughly −1/3 ≤ w ≤ −1.2 in

fluid context and varies from a quintessence to a phantom fluid. The ΛCDM model
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corresponds to w = −1 or, equivalently, β0 = 0 in Eq.(50). We compare our results

with three phenomenological models to ascertain on how the β-model is constrained to

the available data. In table 1, we present the values of parameters of the ΛCDM model,

and wCDM and CPL parameterisations. In figures 1 and 2, the comparisons are made

with the models from left-to-right sequence in the panels.

In figure 1, we present the obtained σ-contours with 68, 3%, 95, 4% and 99, 7%

confidence levels (C.L.) in the (β0 − Ωm) plane. We refer to the present model as the

β0 model, for short, as intended to be in comparison with some popular models in

literature. In the first and second panels, we have the comparison with ΛCDM and

wCDM models and the marginalized β0 is within the 1-σ contour (black point). The

red points represent the models in comparison. The comparison with ΛCDM, the σ-

distance between the models reaches the limiting 1-σ border. In the case of wCDM,

the red point extrapolates and reaches the 3-σ contour leading to a statistical tension

between the models. A different pattern occurs in the figure 2, which may represent a

mild tension between low redshift data (H(z)) and the Planck probe [40, 69]. In terms

of a comparison with the accommodation of the baryonic luminous matter parameter

Ωbh
2 with the distribution of the matter density parameter Ωm, we have a well-behaved

predictions at 1-σ level for all models in the plane (Ωbh
2 − Ωm).

In order to classify the correlation between models, we adopt the errors being as

Gaussian. Thus, we use AIC systematic to classify the fit-to-data for small samples sizes

[70, 71]

AIC = χ2
bf + 2k

2k(k + 1)

N − k − 1
, (51)

where χ2
bf is the best fit χ2 of the model, k represents the number of the free parameters

and N is the number of the data point in the adopted dataset. The difference

|∆AIC| = AICmodel 2 − AICmodel 1 obeys the Jeffreys’ scale [72] that measures the

intensity of tension between two competing models. In general, higher values for |∆AIC|
denotes more tension between models, that means a higher statistical distance and the

models are not statistically compatible.

In summary, the Jeffreys’ scale can be set in the following: for |∆AIC ≤ 2|
the models are statistically consistent and equivalents. For 4 < ∆AIC < 7 and

|∆AIC ≥ 10| induces to growing tension between the models with positive evidence

and strong evidence against the equivalence of the models, respectively. Accordingly,

we have obtained the values for the β-ΛCDM with 1.93, and β-wCDM and β-CPL

with ∆AIC 1.79 and 0.11, respectively. This result leads to the conclusion that the

β-model favors CPL parameterization with a lower ∆AIC, even though it is shown that

the β-model is statistically consistent (weak tension) with ΛCDM and wCDM models.

Likewise, we apply BIC classifiers [55] that work well for independent homogeneous

distribution of datasets [71]. Unlike AIC methodology, the BIC method heavily penalizes

free parameters of a model. Thus, we use the following formula

BIC = χ2
bf + k lnN , (52)

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 22 August 2019                   



Late time sharp transitions in an embedded universe 13

0.305 0.310 0.315 0.320 0.325
-0.10

-0.05

0.00

0.05

Ωm

β
0

0.305 0.310 0.315 0.320 0.325
-0.10

-0.05

0.00

0.05

Ωm

β
0

0.305 0.310 0.315 0.320 0.325
-0.10

-0.05

0.00

0.05

Ωm

β
0

Figure 1. Contour regions at 1-σ, 2-σ and 3-σ at 68, 3%, 95, 4% and 99, 7% C.L. in

the (β0 − Ωm) plane. The points represent the mean values of the parameters in the

MCMC chain. The black points denote the β-model and the red points denote the

comparison models and from left-to-right, we have ΛCDM, wCDM and CPL models,

respectively.
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Figure 2. Contour regions at 1-σ, 2-σ and 3-σ at 68, 3%, 95, 4% and 99, 7% C.L. in

the (Ωbh
2 − Ωm) plane.
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Table 2. A summary of best-fit values background parameters calculated by using

MCMC chains with the main parameters and resulting χ2 values. The χ2
min denotes the

χ2 best-fit value from MCMC and χ2
tot refers to the value of the total χ2 from minimizing

all data. For the sake of convenience, we refer the present model in this paper as β-model

as shown below.

Model Ωm0 Ωb0h
2 DE parameters χ2

min χ2
tot

ΛCDM 0.3154± 0.0061 0.0222± 0.0001 w = −1 1809.67 1809.75

wCDM 0.3163± 0.0081 0.0223± 0.0015 w=-0.9927± 0.0268 1809.81 1809.75

CPL 0.3143± 0.0061 0.0223± 0.0001 w=-0.9998± 0.0008 1809.69 1809.75

wa=-0.0166± 0.0080

β-model 0.3144± 0.0023 0.0223± 0.0001 β0=-0.0059± 0.0245 1809.58 1809.80
η1=0.2884± 0.0055

Table 3. A summary of mean values of background parameters calculated

by using MCMC chains with the main parameters.

Model Ωm0 Ωb0h
2 h DE parameters

ΛCDM 0.3179± 0.0065 0.0223± 0.0001 0.6694± 0.0051 w = −1

wCDM 0.3163± 0.0081 0.0223± 0.0015 0.6717± 0.0074 w=-0.9927± 0.0268

CPL 0.3134± 0.0062 0.0222± 0.0001 0.6752± 0.0046 w=-0.9996± 0.0008
wa=-0.0166± 0.008

β-model 0.3149± 0.0097 0.0222± 0.0001 0.6730± 0.0082 β0=-0.0128± 0.0299
η1=0.2998± 0.0079

Table 4. A summary of the obtained values of AIC and BIC for the studied

models.

Model AIC ∆AIC Tension BIC ∆BIC Tension

ΛCDM 1817.71 1.93 weak 1837.67 6.91 growing

wCDM 1817.85 1.79 weak 1837.81 6.77 growing

CPL 1819.75 0.11 mild 1844.69 0.11 mild

β-model 1819.64 0 - 1844.58 0 -

where χ2
bf is the best fit χ2 of the model, k represents the number of the free parameters

and N is the number of the data point in the adopted dataset. Therefore, from Jeffrey’s

scale, a smaller ∆BIC values favor statistically better models (lower tension between two

comparison models). In these terms, we have similar results as those obtained from AIC,

with ∆BIC of the order of 0.11, except for the cases of ΛCDM and wCDM which the

comparison in BIC analysis gives the values 6.91 and 6.77 indicating a growing tension

between the models. Particulary, the tension is a little higher with the ΛCDM model,

that shows a non-preferable tendency for non-dynamical dark energy models, besides

the fact that the BIC analysis has a severe sensitivity on free parameters. The table III

shows a summary of AIC and BIC values for the models and the corresponding tension

between the models. In the figure 03, we present the marginalized η1 in the (η1 − Ωm)
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Figure 3. Contour regions at 1-σ, 2-σ and 3-σ at 68, 3%, 95, 4% and 99, 7% C.L. in

the (η1 − β0) plane. The point represents the mean values of the parameters in the

MCMC chain accommodated in the 1-σ contour.
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Figure 4. Right: Transition redshift as a function of the matter density parameter

for a spatially flat Universe with zt = 0.634 ± 0.014. Left: the behaviour of the β(z)

function in terms of redshift. In the minor panel, it shows an extrapolation of the

β(z) function for a remote future z ∼ −1. In both panels, the dash line represents the

β-model, and the thick line denotes ΛCDM.

well-accommodated in the 1-σ contour.

In the figure 04, it is shown the behaviour of the transition redshift zt in terms of

the matter distribution Ωm. Taking equation Eq.(38) and calculating the deceleration
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parameter q(z) = 0, we can find the transition redshift zt as

zt =

[
2(1 + β0)(1− Ωm0)

Ωm0

] 1
2β0+3

− 1 . (53)

The compatible value in accordance with Planck results[1] with zt = 0.634 ± 0.014 at

1-σ with a narrow window of the matter distribution Ωm = 0.3144±0.0023. This is also

in accordance with independent fits in literature as in, e.g., with zt = 0.64+0.11
−0.07 [73], and

BAO/CMB + SNIa constraints, with MLCS2K2 light-curve fitter it gives zt = 0.56+0.13
−0.10

and with SALT2 fitter, zt = 0.64+0.13
−0.07 with 68% C.L [74]. Moreover, in the left panel in

figure 04, we present the behaviour of the β(z) function in terms of redshift thats shows

a close concordance with ΛCDM what refers to the proximity to the value w = −1 for

the present day, as well as the wCDM and CPL parameterization, but for future and

intermediate redshifts it clearly show a dynamical aspect of the β model departing from

ΛCDM.

4. Remarks

In this paper, we discussed the dark energy problem with a proposal of a geometric

model for the accelerated expansion. By construction, we used the Nash-Green theorem

to propose a geometric model with a resulting modified Friedman equation from the

influence of the extrinsic curvature thought as a complement to Einstein’s gravity.

Starting from the possibility to relate one free parameter to the redshift transition

zt, we investigated the possibility that the equation of state undergoes to intermediate

redshifts zt . 1 eventually. In all cases, we applied the AIC and BIC classifies and

we found that the model favours the CPL parameterization in which is statistically

compatible. Interestingly, we obtained that the transition redshift acts like important

parameter in the acceleration expansion and may be used as a cosmic descriptor. This

transition occurred in zt = 0.634 ± 0.014 with a marginalized η1 for the best-fit. As

future prospects, we intend to investigate that the transition redshift range may inflict

changes in the ISW contribution as different as the one as predicted to ΛCDM with a

lower peak of the second CMB peak. Also, the evolution of the background with the

evaluation of the cosmological perturbations are import to investigate to confront the

behaviour of the viscosity parameter and growth index rate resulting from the β-model

to a realistic one. This process is in due course and will be reported elsewhere.
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