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Abstract: This paper briefly reviews the state of the art in artificial intelligence including 
inductive and deductive methods. Deep learning and ensemble machine learning lie in 
inductive methods while automated reasoning implemented in deductive computer 
languages (Prolog, Otter, and Z3) is based on deductive methods. In the inductive 
methods, intelligence is inferred by pseudorandom number for creating the 
sophisticated decision trees in Go (game), Shogi (game), and quiz bowl questions.  
This paper demonstrates how to wisely use the pseudorandom number for solving 
coin-weighing puzzles with the deductive method. Monte Carlo approach is a general 
purpose problem-solving method using random number. The proposed method using 
pseudorandom number lies in one of Monte Carlo methods. In the proposed method, 
pseudorandom number plays a key role in generating constrained solution candidates 
for coin-weighing puzzles. This may be the first attempt that every solution candidate is 
solely generated by pseudorandom number while deductive rules are used for verifying 
solution candidates. In this paper, the performance of the proposed method was 
measured by comparing with the existing open source codes by solving 12-coin and 
24-coin puzzles respectively.  
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1. Introduction 

Artificial intelligence has been used for solving intractable problems. Machine 
learning [1] has been outperforming world human champions in games including Chess 
[2], Go [3], Shogi [4], and Quiz bowl questions [5,6] respectively. With the advent of the 
GPU (graphic processing unit), massive GPUs cores allow artificial intelligence to 
experience over 100 years of human trainings within several weeks. The sophisticated 
inductive methods have defeated human champions of Go, Shogi, and quiz bowl 
questions respectively in the year of 2017.  

There are two types of artificial intelligence methods: inductive and deductive 
methods. The inductive methods including ensemble machine learning and artificial 
neural network computing including deep learning with statistical syllogisms are all 
based on statistics. As long as the statistics is based on inductive reasoning and/or 
statistical syllogisms, the machine learning's conclusion is inherently uncertain. In other 
words, inductive reasoning allows for the possibility that the conclusion is false, even if 
all of the premises are true. Definition of inductive reasoning here is more nuanced than 
simple progression from particular/individual instances to broader generalizations. 
Monte Carlo approach is a general purpose problem-solving using random number. Any 
inductive method with random number can be called “Monte Carlo method.” The more 
random numbers are used in the system, it is getting the smarter. 

Contrarily, deductive reasoning is a logical process in which a conclusion is based on 
the concordance of multiple premises (rules) that are generally assumed to be true. 
Prolog [7], Otter [8], and Z3 [9] are famous deductive computer languages respectively. 
In order for artificial intelligence to behave like human's inference, the conventional 
machine learning (inductive reasoning) and deductive reasoning should be merged or 
fused. 

Through our experiences of AI projects [10-15], we realize that intelligence is truly 
inferred by pseudorandom number in artificial intelligence. This paper attempts to show 
how puzzles can be solved by intelligence using pseudorandom number for generating 
constrained solution candidates of coin-weighing puzzles. For solving the coin-weighing 
puzzles, pseudorandom number plays a key role in generating constrained solution 
candidates and every solution candidate can be checked or validated by deductive rules 
for solution verification. 

The proposed method is therefore simply composed of two components: one 
generating constrained solution candidates solely by using pseudorandom number and 
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the other based on deductive rules for verifying generated solution candidates. 
In this paper, the performance of the proposed method was measured by comparing 

with the existing open source codes by solving 12-coin and 24-coin puzzles respectively. 
The machine with Intel(R) Core(TM) i7-6600U CPU @ 2.6GHz and 16 GB memory was 
used for all evaluations in this paper. 
 
2. What is the coin-weighing puzzle? 

According to Wikipedia, a balance puzzle or weighing puzzle is a logic puzzle about 
balancing items—often coins or balls—to determine which holds a different value, by 
using a balance scale a limited number of times. In 12-coin-3-weighing puzzle, twelve 
coins are given where eleven of which are identical. If one is different, we don't know 
whether it is heavier or lighter than the others. The balance may be used three times to 
determine if there is a unique (counterfeit or fake) coin to isolate it and determine its 
weight relative to the others. Therefore, in the 12-coin-3-weighing puzzle, we have to 
isolate a single counterfeit coin by three weighings using the balance. In this paper, we 
have examined the proposed algorithm for solving 12-coin-3-weighing and 
24-coin-4-weighing puzzles respectively. 
 
3. Inductive methods and the role of pseudorandom number 

Inductive methods are all based on statistics. In statistics, random number plays a 
key role in generating solutions. In order to avoid the reproducibility problems in 
inductive methods, researchers must use pseudorandom number instead of true 
physical random number. Deep learning or ensemble method is classified into inductive 
reasoning, stochastic reasoning, or statistical reasoning. Since stochastic (statistical) 
reasoning schemes are all based on random numbers, generating random numbers are 
to change the result of deep learning or that of ensemble method. Many of artificial 
intelligence researchers are not aware of the importance of a pseudorandom number 
seed. Before running an artificial intelligence (deep learning or ensemble method) 
program, the pseudorandom number seed must be fixed. Without fixing the 
pseudorandom number seed, the result may be changed. In other words, the 
reproducibility problems of the artificial intelligence (deep learning) can be eliminated by 
fixing the pseudorandom number’s seed. In Python language, the following commands 
can make pseudorandom number, numpy pseudorandom number, or backend 
tensorflow random number predictable respectively: 

random.seed(8) 
numpy.random.seed(8) 
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tensorflow.set_random_seed(8) 
 
4. Deductive methods using Prolog, Otter, Z3, Perl 

The deductive reasoning is the process of reasoning from one or more inference 
rules. There are three kinds of reasoning: modus ponens (the law of detachment), 
modus tollens (the law of contrapositive), and the law of syllogism. The law of syllogism 
takes two inference rules. In other words, we deduced the final rule by combining the 
hypothesis of the first rule with the conclusion of the second rule.  

We have examined the performance of the open source program in Prolog developed 
by John Fletcher and that of Z3 open source program by Ren Yamada (coauthor) for 
solving 12-coin-3-weighing and 24-coin-4-weighing puzzles. We have also tested an 
open source Perl program developed by Jim Mahoney. We could not find any open 
source program in Otter for solving coin-weighing puzzles. 
 
4.1 Prolog (SWI-Prolog) 

The open source program in Prolog language is given in the following site: 
https://binding-time.co.uk/index.php/The_Counterfeit_Coin_Puzzle 
In the Prolog program, there are three deductive rules that make a coin known_true: 
1. if it is not_heavy and not_light - having been on both the comparatively lighter and 

heavier sides of imbalances; 
2. if it was excluded from an imbalance; 
3. if it was included in a balanced weighing. 
 
The Prolog program uses a generate-and-test method as follows: 
1. Create the set of all possible counterfeits: 12 coins  2 weights; 
2. Devise a procedure that can identify the first counterfeit coin; 
3. Show that the same procedure works for every other counterfeit coin. 

 
In the original Prolog program, a single error (length) must be fixed. The modified Prolog 
source codes are available at the following site: 
https://github.com/ytakefuji/coin-weighing/blob/master/prolog.pl 
https://github.com/ytakefuji/coin-weighing/blob/master/misc.pl 
 
We have measured the computation time by the following command: 
$ time swipl -s prolog.pl -g go -t halt 
real    0m0.231s 
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4.2 Z3 (Microsoft) 

Z3 is a theorem prover from Microsoft Research. Two Z3 programs named 
12coins_z3.py and 24coins_z3.py were developed by Ren Yamada (coauthor): 
https://github.com/ytakefuji/coin-weighing/blob/master/12coins_z3.py 
https://github.com/ytakefuji/coin-weighing/blob/master/24coins_z3.py 
 
$ time python 12coins_z3.py 
real    0m0.678s 
$ time python 24coins_z3.py 
real    0m3.812s 
 
12coins_z3.py is given as follows: 
----------------------- 
# -*- coding: utf-8 -*- 

from z3 import * 

 

def weigh(c_p,l,s,val): 

    a = [] 

    for i in val: 

        a_l = If(Distinct(i[:4]+[c_p]),0,l) 

        b_l = If(Distinct(i[4:8]+[c_p]),0,l) 

        a.append(2 + a_l - b_l) 

    return 100*a[0]+10*a[1]+a[2] 

 

def search_rules(): 

    s = Solver() 

    val = [[Int("val[%d,%d]" % (i,j)) for j in range(8)] for i in range(3)] 

 

    for i in range(3): 

        for j in range(8): 

            s.add(1 <= val[i][j], val[i][j] <= 12) 

    for i in range(3): 

        tmpList = [] 

        for j in range(8): 

            tmpList.append(val[i][j]) 
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        s.add(Distinct(tmpList)) 

 

    all_weigh = [weigh(i//2+1,-2*(i%2)+1,s,val) for i in range(24)] 

    s.add(Distinct(all_weigh)) 

 

    r = s.check() 

    print r 

    if r == sat: 

        m = s.model() 

        for i in range(3): 

            for j in range(8): 

                print m[val[i][j]].as_long(), 

                if j != 7 : print ",", 

            print "" 

        for i in range(24): 

            for j in val: 

                a = 0 

                if i//2+1 in [m[k].as_long() for k in j[:4]]: 

                    a = -2*(i%2)+1 

                elif i//2+1 in [m[k].as_long() for k in j[4:8]]: 

                    a = 2*(i%2)-1 

 

                if a == 0: print "=", 

                elif a == 1: print ">", 

                elif a == -1: print "<", 

            print ",", 

        print "" 

 

search_rules() 

―――――――――― 
 
4.3 Perl 
odd.pl is a perl open source program developed by Jim Mahoney: 
https://www.perlmonks.org/?displaytype=displaycode;node_id=474643 
 
$ time ./odd.pl 12 3 
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real    0m0.241s 
$ time ./odd.pl 24 4 
real    0m58.129s 
 
 
4.4 The proposed method 
In the proposed method, pseudorandom number is wisely used for generating 
constrained solution candidates. 12coins.py and 24coins.py are available respectively at: 
https://github.com/ytakefuji/coin-weighing/blob/master/12coins.py 
https://github.com/ytakefuji/coin-weighing/blob/master/24coins.py 
In Python, 12 coins are defined by: 
coins = [0,1,2,3,4,5,6,7,8,9,10,11] 
Pseudorandom number is wisely used for generating a solution candidate (B) by: 
a candidate of three weighings (B) where the function of sample(coins,8) is equivalent 
to picking 8 coins from 12 coins: 
B=[b1,b2,b3] 
b1=sample(coins,8) 
b2=sample(coins,8) 
b3=sample(coins,8) 
“8” in sample function means that the total of 8 coins including 4 coins on the right and 4 
coins on the left are placed on the balance respectively. The function of “sample” in 
Python is imported by random number library: 
from random import sample 
 
 
$ time python 12coins.py  
real    0m0.074s 
 
$ time python 24coins.py 
real    0m0.969s 
 
The computation time of open source codes for solving 12-coin and 24-coin puzzles is 
summarized in the following table. The proposed method outperforms the existing open 
source programs in 12-coin-3-weighing and 24-coin-4-weighing puzzles respectively. 
 
Computation time comparison for 12-coin and 24-coin puzzles 
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 Prolog Perl Z3 New method 
12-coin-3-weighing 0.231s 0.241s 0.678s 0.074s 
24-coin-4-weighing - 58.129s 3.812s 0.969s 
 
 
 
This paper shows how to convert classic coin-weighing puzzles into nonlinear encoding 
problems with AI inference embedded. Intelligence can be inferred by pseudorandom 
numbers in machine learning as we mentioned. Without human intelligence, coin 
weighing puzzles can be solved by a simple AI inference program with 39 lines of source 
code in Python language as long as the goal of a puzzle is clearly defined by human. The 
goal means that we must determine how many weighings of a balance scale are used 
and how many sets of coins are chosen. 
 
The proposed nonlinear encoding program is composed of two components: determining 
how many experiments and how many coins per experiment. In the coin weighing 
puzzles, weighing two sets of coins using a balance scale creates three states per 
experiment: left (left side heavier), right (right side heavier), and balanced. The goal is to 
identify a counterfeit coin and to determine if it is heavier or lighter by three weighings. 
Weighing coins using a balance can encode three states so that weighing coins by three 
times can generate 27 possible ways: 3x3x3 = 27. Using 27 possible ways, we must 
distinguish a fake coin among 12 coins. 
 
The experimental design can be fixed as follows: an experiment using 8 coins which are 
randomly selected from 12 coins is repeated three times. In other words, in three 
experiments, the total number of 24 coins (=8x3) must be selected. The pseudorandom 
number plays a key role in generating three experiments where 8 coins are randomly 
generated per experiment. One experiment contains 8 coins where they are divided into 
two groups: 4 coins on the left side and 4 coins on the right side of the balance scale. 
The proposed pseudorandom inference can alleviate us to create a set of complex logic 
or rules for finding solutions. In the conventional methods, algorithms must be created 
by algorithm experts. In the proposed methods, all we need to do is to define 
experimental design and create constraints for coding the requirements to find 
solutions.  
 
Randomly generated three experiments must distinguish 24 possible states (12 coins, 
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heavier or lighter per coin) until the requirements are all satisfied. In other words, the 
goal in encoding the problem is to generate three satisfactory experiments where 24 
possible states can be distinguished and encoded by 27 possible ways with three 
weighings.  
 
The simple program in Python is composed of only 39 lines for generating solutions. The 
source program to try 1000 times is composed of three components: generating 24 
states by green colored program, generating three experiments using pseudorandom 
number by blue colored program, and checking whether 24 states can be distinguished 
by three experiments (yellow colored program).   
 
In general, the program is composed of three components: defining the target states, 
generating experiments using pseudorandom number, and verifying the satisfactory 
conditions. In the program, if generated experiments do not satisfy the requirements, 
another pseudorandom number should be generated until the satisfactory conditions 
achieved.  
 
There are two types of random numbers: pure random number and pseudorandom 
number. The pure random number system always has reproducibility problems. This 
means that you may not always obtain the same result. The pseudorandom system with 
fixed seed used in the proposed method has no reproducibility problem since the 
generated random numbers are all predictable. 
 
In the program, the following array of 12x24 indicates 24 states. For example, [ 1.  0.  0.  
0.  0.  0.  0.  0.  0.  0.  0.  0.] means the first coin is heavier than others. [ 0.  0.  0.  
0.  0.  0.  0.  0.  0.  0.  0. -1.] shows the 12th coin is lighter than others. 12 states of 
yellow colored elements show 12 possible heavier states while green colored 12 
possible lighter states. The following array shows 24 states. 
 
[ 1.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.] 
[ 0.  1.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.] 
[ 0.  0.  1.  0.  0.  0.  0.  0.  0.  0.  0.  0.] 
[ 0.  0.  0.  1.  0.  0.  0.  0.  0.  0.  0.  0.] 
[ 0.  0.  0.  0.  1.  0.  0.  0.  0.  0.  0.  0.] 
[ 0.  0.  0.  0.  0.  1.  0.  0.  0.  0.  0.  0.] 
[ 0.  0.  0.  0.  0.  0.  1.  0.  0.  0.  0.  0.] 
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[ 0.  0.  0.  0.  0.  0.  0.  1.  0.  0.  0.  0.] 
[ 0.  0.  0.  0.  0.  0.  0.  0.  1.  0.  0.  0.] 
[ 0.  0.  0.  0.  0.  0.  0.  0.  0.  1.  0.  0.] 
[ 0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  1.  0.] 
[ 0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  1.] 
[-1.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.] 
[ 0. -1.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.] 
[ 0.  0. -1.  0.  0.  0.  0.  0.  0.  0.  0.  0.] 
[ 0.  0.  0. -1.  0.  0.  0.  0.  0.  0.  0.  0.] 
[ 0.  0.  0.  0. -1.  0.  0.  0.  0.  0.  0.  0.] 
[ 0.  0.  0.  0.  0. -1.  0.  0.  0.  0.  0.  0.] 
[ 0.  0.  0.  0.  0.  0. -1.  0.  0.  0.  0.  0.] 
[ 0.  0.  0.  0.  0.  0.  0. -1.  0.  0.  0.  0.] 
[ 0.  0.  0.  0.  0.  0.  0.  0. -1.  0.  0.  0.] 
[ 0.  0.  0.  0.  0.  0.  0.  0.  0. -1.  0.  0.] 
[ 0.  0.  0.  0.  0.  0.  0.  0.  0.  0. -1.  0.] 
[ 0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0. -1.] 
 
Three experiments are generated by Python program 12coins.py as follows: 
[6, 5, 10, 7, 9, 2, 3, 1]  
[10, 4, 3, 8, 12, 7, 9, 1] 
[12, 2, 6, 8, 11, 10, 3, 9] 
 
[6, 5, 10, 7, 9, 2, 3, 1] is the first experiment where 4 coins of 6, 5, 10, 7 and 4 coins of 9, 2, 
3, 1 should be placed on left side and right side respectively in the balance scale.  
 
One solution is generated by 12coins.py as follows: 
[6, 5, 10, 7, 9, 2, 3, 1] [10, 4, 3, 8, 12, 7, 9, 1] [12, 2, 6, 8, 11, 10, 3, 9] 
    1      2     3     4      5     6      7      8     9     10     11    12 
H:['<<=', '<=>', '<><', '=>=', '>==', '>=>', '><=', '=>>', '<<<', '>><', '==<', '=<>'] 
L:['>>=', '>=<', '><>', '=<=', '<==', '<=<', '<>=', '=<<', '>>>', '<<>', '==>', '=><'] 
 
'>=<' indicates the result of three experiments: the first experiment shows the left side 
is heavier, the second balanced, and the third the right side is heavier. '>=<' concludes 
that coin#2 is lighter. 
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You can access to the following web service: https://nrich.maths.org/5796 for testing 
our result. 
 
Our result shows that the empirical average density of finding solutions in searching 
space is one per 180 trials. It takes 0.074 second per successful solution on laptop with 
Intel i7-6600U 2.6GHz. It takes 0.04 second per solution for 13-coin-3-weighing problem. 
In order to run Python programs on Windows or Mac, you must install numpy library. 
 
For 13-coin weighing puzzle, you can use the following solution generated by 13coins.py. 
In the 13-coin weighing puzzle, one coin cannot be distinguished whether it is heavier or 
lighter. In other words, three weighings can distinguish up to 25 states, not 26 states. 
 
[3, 2, 8, 9, 7, 12, 5, 1] [11, 4, 12, 3, 2, 10, 7, 5] [4, 8, 12, 1, 11, 6, 5, 3] 
   1      2     3     4      5     6     7     8      9    10     11    12    13 
H:[ '<=>', '><=', '>><', '=>>', '<<<', '==<', '<<=', '>=>', '>==', '=<=', '=><', '<>>', '==='] 

L:['>=<', '<>=', '<<>', '=<<', '>>>', '==>', '>>=', '<=<', '<==', '=>=', '=<>', '><<', '==='] 

 
 
5. Conclusion 
This paper attempts to show how to use pseudorandom number for solving 
coin-weighing puzzles. Pseudorandom number plays a key role in intelligence in artificial 
intelligence systems. The proposed method using pseudorandom number with deductive 
rules outperforms the existing open source codes in Perl, Prolog, and Z3 respectively. In 
the proposed method, pseudorandom number is solely used for generating constrained 
solutions candidates efficiently and the generated candidates are verified by the 
deductive rules. The deductive rules are built by mapping coin-weighing puzzles into 
coding problems. A single experiment using a balance encodes three states (the left 
heavier, the right heavier, and balanced). Three experiments give us 27=3x3x3 possible 
ways in coding. In the 12-coin-3-weighing puzzle, detecting a fake (heavier or lighter) 
coin among 12 coins must distinguish 24=12x2 states. The pseudorandom number 
generation can be combined with neural network constrained for narrowing searching 
space in order to further minimize the computation time in the future.  
  

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 8 May 2019                   doi:10.20944/preprints201905.0090.v1

https://doi.org/10.20944/preprints201905.0090.v1


------------Python program 12coins.py --------- 
import numpy as np 

coins = [0,1,2,3,4,5,6,7,8,9,10,11] 

H=np.zeros((12,12)) 

np.fill_diagonal(H,1) 

L=np.zeros((12,12)) 

np.fill_diagonal(L,-1) 

instance=np.append(H,L,axis=0) 

 

def checkRules(B): 

 for i in instance: 

  balance="" 

  for j in B: 

   if (i[j[0]]+i[j[1]]+i[j[2]]+i[j[3]])>(i[j[4]]+i[j[5]]+i[j[6]]+i[j[7]]): 

    balance += '>' 

   elif (i[j[0]]+i[j[1]]+i[j[2]]+i[j[3]])<(i[j[4]]+i[j[5]]+i[j[6]]+i[j[7]]): 

    balance += '<' 

   else: balance += '=' 

  rules.append(balance) 

  balance="" 

  if len(set(rules))==24: 

   break 

 

from random import sample,seed 

import random 

random.seed(8) 

for i in instance: 

 print(i) 

for i in range(1000): 

 b1=sample(coins,8) 

 b2=sample(coins,8) 

 b3=sample(coins,8) 

 B=[b1,b2,b3] 

 rules=[] 

 checkRules(B) 

 if len(set(rules))==24: 
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  for j in B: 

   j=[x+1 for x in j] 

   print(j) 

  print(rules,i,"¥n") 

-----------Python program------------- 
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