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Abstract 

The combination of artificial intelligence algorithms and numerical methods has recently become 

popular in the prediction of macroscopic and microscopic hydrodynamics parameters of bubble 

column reactors. The multi inputs and outputs machine learning can cover small phase interactions 

or large fluid behavior in industrial domains. This numerical combination can develop the smart 

multiphase bubble column reactor with the ability of low-cost computational time. It can also 

decrease case studies for the optimization process when big data is appropriately used during 

learning. There are still many model parameters that need to be optimized for a very accurate 
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artificial algorithm, including data processing and initialization, the combination of inputs and 

outputs, number of inputs and model tuning parameters. For this study, we aim to train four inputs 

big data during learning process by an adaptive neuro-fuzzy inference system or adaptive-network-

based fuzzy inference system  (ANFIS) method, and we consider the superficial gas velocity as 

one of the input variables, while for the first time, one of the computational fluid dynamics (CFD) 

outputs named gas velocity is used as an output of the artificial algorithm. The results show that 

the increasing number of input variables improves the intelligence of the ANFIS method up to 𝑅 =

0.99, and the number of rules during learning process has a significant effect on the accuracy of 

this type of modeling. The results also show that propper selection of model parameters results in 

more accuracy in prediction of the flow characteristics in the column structure.               

 

Keywords: machine learning, computational fluid dynamics (CFD), hybrid model, adaptive 

neuro-fuzzy inference system (ANFIS), artificial intelligence, big data, prediction, forecasting, 

optimization, hydrodynamics, fluid dynamics, soft computing, computational intelligence, 

computational fluid mechanics     

 

1. Introduction 

As multiphase contactors and reactors, bubble columns have an extensive application in chemical, 

biochemical and petrochemical industries(Masood & Delgado, 2014; Masood, Khalid, & Delgado, 

2015; Rabha, Schubert, & Hampel, 2013; Şal, Gül, & Özdemir, 2013). Bubble columns have 

various advantages including simple structure for phase interactions (liquid-gas or liquid-gas-solid 

interactions),  high transfer rates of mass and heat and compactness during operation and 

maintenance and the simple structure of sparging mechanism (Kumar, Degaleesan, Laddha, & 
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Hoelscher, 1976; Pino et al., 1992; Shah, Kelkar, Godbole, & Deckwer, 1982). In reaction 

engineering, three-phase bubble column reactors have an extensive application. For instance, to 

manufacture industrially valuable bioproducts, gas-liquid-solid interaction reactors are the 

frequency used in biochemical applications (Essadki, Nikov, & Delmas, 1997; Lopez de 

Bertodano, Lahey Jr, & Jones, 1994; Sokolichin & Eigenberger, 1994). To understand better about 

complex behavior of mas and heat transfer rate, hydrodynamic characteristics such as gas-liquid 

interactions, bubble coalescence, and break-up, it is required to investigate design parameters and 

optimization of the process in bubble column reactors (Dhotre, Ekambara, & Joshi, 2004; Krishna 

& Van Baten, 2003; Maalej, Benadda, & Otterbein, 2003; S. Wang et al., 2003).  

 

These type of reactors are produced in different shapes such as cylindrical and rectangular and 

different sizes, and they are a suitable domain for phase interactions such as liquid-gas, liquid-gas, 

and solid reactors. (Behkish, Men, Inga, & Morsi, 2002; Cho, Woo, Kang, & Kim, 2002; H. Li & 

Prakash, 2002; Michele & Hempel, 2002; Ruzicka, Zahradnık, Drahoš, & Thomas, 2001). The gas 

distributors are also located at the bottom of the domain and sparge gas phase as a dispersed phase 

into the matrix phase as liquid phase or liquid-solid phase. When there are solid materials in the 

matrix (continuous phase), bubble column reactors are broadly called a slurry bubble column 

reactors (Bouaifi, Hebrard, Bastoul, & Roustan, 2001; Deen, Solberg, & Hjertager, 2000; Luo, 

Lee, Lau, Yang, & Fan, 1999; Shimizu, Takada, Minekawa, & Kawase, 2000). Bubble columns 

have an extensive application in different industries such as chemical, biochemical and 

pharmaceutical, where the interaction of different phases are very crucial, or the chemical reactions 

during production are sometimes required (Degaleesan, Dudukovic, & Pan, 2001). For instance, 

they are also used in biochemical processes including biological wastewater treatment as well as 
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fermentation (Prakash, Margaritis, Li, & Bergougnou, 2001; Shah et al., 1982). They also have an 

extensive application for large-scale aerobic fermentations in the bioprocessing industry (Doran, 

1995; Masood & Delgado, 2014; Şal et al., 2013). Furthermore, they are utilized for performing a 

range of reactions in the chemical industry (Anabtawi, Abu-Eishah, Hilal, & Nabhan, 2003; Maalej 

et al., 2003; Shah et al., 1982).  

 

There has been a strong interest in modeling bubble columns by (CFD) since their industrial 

applications are diverse (Krishna, Urseanu, Van Baten, & Ellenberger, 1999; Rampure, Kulkarni, 

& Ranade, 2007; Sanyal, Vásquez, Roy, & Dudukovic, 1999). There have been various numerical, 

experimental, and mathematical approaches developed to estimate and measure the flow pattern 

and bubbles dynamics (Besbes, El Hajem, Aissia, Champagne, & Jay, 2015; Islam, Ganesan, & 

Cheng, 2015; W. Li, Zhong, Jin, Lu, & He, 2014; Liu & Hinrichsen, 2014; Masood & Delgado, 

2014; Masood et al., 2015; McClure, Aboudha, Kavanagh, Fletcher, & Barton, 2015; M Pourtousi, 

Sahu, & Ganesan, 2014; H. Wang et al., 2014; Xiao, Yang, & Li, 2013; Xing, Wang, & Wang, 

2013; Thomas Ziegenhein, Rzehak, Krepper, & Lucas, 2013; T Ziegenhein, Rzehak, & Lucas, 

2015). Nevertheless, there are a number of difficulties in making a complete prediction for the 

fluid structure and the interaction between phases during the bubbling process.(K. Chau & Jiang, 

2002) Besides, the optimization of bubble column reactors for different operational conditions 

(superficial gas velocity, pressure, and temperature of continuous phase size of the reactor and 

time of mixing process) is required expensive computational time and efforts. The measurement 

of fluid properties for each node in a 3D bubble column requires very fine mesh in the 

computational methods and also causes the disturbance in experimental methods. Additionally, 

The significant disadvantage of the computational methods for simulating the large reactor (more 
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than 2 m) with several operational parameters/inputs is computation time and computer 

capability(K.-w. Chau, 2017; Faizollahzadeh Ardabili et al., 2018; Simonnet, Gentric, Olmos, & 

Midoux, 2007, 2008; Tabib, Roy, & Joshi, 2008). Due to these disadvantages, soft computing 

approaches, particularly the ANFIS method has been developed for estimating the fluid properties 

in the column for different conditions which have not been experimented in the lab or simulated 

by numerical methods (Burns, Frank, Hamill, & Shi, 2004; Cheng & Chau, 2002; Moazenzadeh, 

Mohammadi, Shamshirband, & Chau, 2018; Pfleger & Becker, 2001; M Pourtousi, Sahu, Ganesan, 

Shamshirband, & Redzwan, 2015; Taherei Ghazvinei et al., 2018; Yaseen, Sulaiman, Deo, & 

Chau, 2018). These algorithms are used to mimic the hydrodynamics of the bubble column reactor 

for a specific condition. However, they cannot feel the exact physics, and they are capable based 

on their understanding (training data)(Panella & Gallo, 2005; M. Pourtousi, Zeinali, Ganesan, & 

Sahu, 2015; Ryoo, Dragojlovic, & Kaminski, 2005; Schurter & Roschke, 2000).    

   

The pattern of a neural network for the learning process and the fuzzy logic framework for decision 

are both combined in the ANFIS structure(J.-S. Jang, 1996; Panella & Gallo, 2005). One of the 

most remarkable characteristics of this structure is its capability for learning complex relationships 

according to the pattern data(K.-W. Chau & Albermani, 2002; K. Chau & Albermani, 2003; Chen 

& Chau, 2016; Lei, He, Zi, & Hu, 2007; Nabavi-Pelesaraei, Bayat, Hosseinzadeh-Bandbafha, 

Afrasyabi, & Chau, 2017; Schurter & Roschke, 2000; Yun et al., 2008). This model categorizes 

the domain into different regions for modeling nonlinear and complex case studies (Ben-Nakhi, 

Mahmoud, & Mahmoud, 2008; Lei et al., 2007; Varol, Avci, Koca, & Oztop, 2007; Varol, Koca, 

Oztop, & Avci, 2008). A general local model is then extended for each local region according to 

linear functions or even adjustable factors(J.-S. Jang, 1993, 1996; J.-S. R. Jang, Sun, & Mizutani, 
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1997). This feature of the model enables the method to thoroughly learn the process and predict 

the missing local nodes in the prediction domain (Avila & Pacheco-Vega, 2009; Yun et al., 2008).  

 

The ANFIS approach has been employed in several papers to learn data from CFD database and 

then predict the bubbling flow including flow pattern, amount of gas, and turbulent kinetic 

energy(Abd Fatah et al., 2015; Azwadi, Zeinali, Safdari, & Kazemi, 2013; W.-c. Wang, Chau, Qiu, 

& Chen, 2015; Zeinali, Mazlan, Fatah, & Zamzuri, 2013). Moreover, this model was applied for 

predicting the microscopic parameters including bubble formation, detachment and rising. 

Pourtousi et al. (Mohammad Pourtousi, 2012; M. Pourtousi et al., 2015) recommended the new 

integration of the CFD data-set with artificial algorithms such as ANFIS method for prediction of 

the fluid flow recognition in the bubble column reactor. They trained their CFD database and 

simulated the new flow pattern, including turbulent kinetic energy liquid pattern and the interface 

of the dispersed and continuous phase in the reactor (M Pourtousi et al., 2015; M. Pourtousi et al., 

2015). This study aims to use the methodology of Pourtousi et al. (Mohammad Pourtousi, 2012; 

M. Pourtousi et al., 2015) in the prediction of gas velocity in the bubble column reactor. 

Additionally, the different pattern of input parameters has been examined for various tuning 

parameters of the ANFIS method.            

     

 

 

2. Methodology 

2.1. Geometrical structure 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 7 May 2019                   doi:10.20944/preprints201905.0079.v1

https://doi.org/10.20944/preprints201905.0079.v1


 

In this research, an industrial two-phases reactor with 2.6m was utilized. The ring sparger is 

embedded at the end of the bubble column reactor, and the diameter of the orifice hole is 0.7 mm. 

2.2. CFD  

In CFD, the single size eulerian-eulerian approach has been employed for simulating the 

homogeneous bubble column reactor hydrodynamics. The continuity equation is the first equation 

to be considered which is employed for calculating the volume of available gas or volume of the 

available liquid. The continuity equation is presented as:  

∂

∂t
(ρkϵk) + ∇(ρkϵkuk) =  0                                                        (1)  

The momentum transfer calculation is provided, and the amount of gas and liquid phase can be 

calculated by this equation. The momentum transfer calculation is written as: 

∂

∂t
(ρkϵkuk) + ∇(ρkϵkukuk) = −∇(ϵkτk) − ϵk∇p + ϵkρkg + MI,k         (2)  

For interactions between the main liquid and gas phase, the total interfacial force defines the main 

forcing scheme for the accurate dynamics of bubbles, and the total force between bubbles and 

matrix phase is expressed as: 

MI,L = −MI,G = MD,L + MTD,L               (3) 

All forcing schemes between gas bubbles and liquid phase and the 𝑘 − 𝜖 turbulence model are 

consistent with Tabib et al (Tabib et al., 2008). 

2.2.1. Grid 

In this study, the non-uniform meshes are used for CFD analysis in the bubble column reactor. 

This mesh structure is similar to that of the study conducted by Laborde-Boutet et al. (Laborde-

Boutet, Larachi, Dromard, Delsart, & Schweich, 2009). 
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2.3. ANFIS 

The ANFIS approach is a useful tool which can be used to predict physical and biological 

phenomena that are found in nature. In various studies such as a study conducted by Takagi and 

Sugeno, the ANFIS approach has been described (Takagi & Sugeno, 1985). To start the learning 

process, learning data is first categorized at several levels of membership formations (MFs). As 

indicated in Figure 1, according to AND law, the first feedback from the learning step multiplies. 

The function ith rule can be defined as follows: 

𝑤𝑖 = 𝜇𝐴𝑖(𝑥) 𝜇𝐵𝑖(𝑦)𝜇𝑐𝑖(𝑧)𝜇𝑑𝑖(𝑣𝑎𝑠)                       (4) 

Where wi refers to the output of learning feedback and μAi, μBi , μCi and μdi also express the input 

of learning feedback. 

Figure 1 

In the third step of learning, the relative firing strengths of each rule are defined according to the 

following formula. The weight fraction of each layer is specified by: 

𝑤𝑖̅̅ ̅ =
𝑤𝑖

∑(𝑤𝑖)
               (5) 

Where  is normalized firing strengths. In the fourth step of learning, Takagi and Sugeno (Takagi 

& Sugeno, 1985) used the if-then rule function. The mesh formula in the ANFIS can be modified 

as follows: 

𝑤𝑖̅̅ ̅𝑓𝑖 = 𝑤𝑖̅̅ ̅(𝑝𝑖𝑥 + 𝑞𝑖𝑦 + 𝑟𝑖𝑧 + 𝑆𝑖𝑣𝑎𝑠 + 𝑡𝑖)                          (6) 

In the above formula pi , qi , ri, , si and ti are parameters related to "if-then rules". 

 

iw
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3. Result and discussion 

Simulation of a cylindrical bubble column (BCR) reactor by CFD resulted in various fluid 

parameters as the output of the CFD. From among such CFD outputs, coordinates in x, y, and z-

direction, as well as superficial air velocity and air velocity could be mentioned. In this study, the 

information generated by the CFD will be investigated using ANFIS method.  

In the study implementing the ANFIS method, part of the CFD output is used as input and the rest 

as output. The description of the system studied here is as follows; there are four inputs used in 

this study with coordinates in x-direction used as input 1, coordinates in y-direction used as input 

2, and coordinates in z-direction used as input 3, while superficial air velocity was taken as input 

4. This is while air velocity is the only output studied in this research. The following conditions 

are presumed for the initiation of the learning process by machine learning (ANFIS): 

• A maximum of 600 for an epoch. 

• A total of 5000 data.  

• 65% as the value for p which indicates the percentage of data (from the whole data) used 

in the training process.  

• 65% of the data used in training, and 100% of the data used in the testing process.  

• gbellmf type chosen as the type of membership functions (MFs) 

 

With the abovementioned assumptions and considering one input, being coordinates in the x-

direction, and air velocity as output, training, and testing processes were carried out for each 

number of membership functions (2, 4, 6, and 8) separately. As shown in figures 2 (a and b), 

R(Regression) amounts to 0.52 at best which indicates ANFIS methods are devoid the proper 
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intelligence and changing the number of members functions led to no significant improvement in 

the intelligence of ANFIS method.  

Figure 2(a) 

Figure 2(b) 

 

Increasing the number of inputs was studied as a way of increasing the system intelligence, and 

coordinates in x and y directions were taken as inputs and air velocity as output, meanwhile, the 

testing and training processes were carried out separately for numbers of membership functions 

(2, 4, 6, 8). Figures 3(a and b) shows an increase in the value of R from 0.52 to 0.76 which is an 

indication of improvement in the ANFIS method. When the number of membership functions is 

4, the best value for R (R= 0.76) is reported, which is a proper rise but still not adequate, and there 

is a need for more investigation. That is why changing the membership functions; including 

gbellmf, gaussmf, gauss2mf, trimf, dsigmf, psigmf, pimf, with the number of membership 

functions being 4 was studied.  

Figure 3(a) 

Figure 3(b) 

 

Training and testing processes were conducted separately for each type of MFs, and in the training 

process, 65% of the data was used. For the testing process, however, the sum of all data used in 

the training process plus the remaining 35% were evaluated by the ANFIS method.  
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According to figures 4 (a and b), there was no considerable improvement in system intelligence.  

Considering the fact that two inputs ultimately resulted in an increase of R to 0.75, it was decided 

to increase the number of inputs from 2 to 3 in order to enhance the system intelligence. 

Coordinates in x, y, and z directions were considered inputs while air velocity was the output.  

Figure 4(a) 

Figure 4(b) 

 

Having two as the number of membership functions, the learning process was also carried out. 

This increase in the number of inputs led to a substantial enhancement in the intelligence of the 

ANFIS method, and R-value rose to 0.92. The appropriate increase in the intelligence of the ANFIS 

method took place when the number of (MFs) was 2. Moreover, increasing the number of 

membership functions to 4 also demonstrated acceptable results and R rose to 0.992 (see figures 5 

(a and b)). 

Figure 5(a) 

Figure 5(b) 

 

In the rest of this research, one of the air superficial velocity parameters was particularly added to 

the system as input number 4. Under the new circumstances, with the position of meshes (nodes) 

and superficial air velocity as input parameter and air velocity as an output parameter, the learning 
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process was performed separately with the number of (MFs) being 2 and 4 (see figures 6(a and 

b)). 

Figure 6(a) 

Figure 6(b) 

 

With 2 as the number of membership functions, R amounted to 0.97, whereas with the number of 

MFs being 4 R rose to 0.998 which is perfectly suitable for the ANFIS method, and represents a 

proper agreement between the ANFIS outputs and CFD outputs (See figures 7(a, b, c, d, e and f)). 

Figure 7(a) 

Figure 7(b) 

Figure 7(c) 

Figure 7(d) 

Figure 7(e) 

Figure 7(f) 

 

The use of air superficial velocity as input led to particularly suitable results, and with this 

intelligence in the ANFIS method, parts of BCR can also be predicted (Figure 8). 

Points can be predicted that had no participation in the learning process, and this indicates the 

considerable ability of the machine learning in prediction (see figures 9 (a, b, c, d, e, and f)). 
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Combining machine learning (ANFIS method) and CFD means a substantial reduction in the time 

required for making calculations, and also obviates the need for complex CFD.  

Figure 8 

Figure 9(a) 

Figure 9(b) 

Figure 9(c) 

Figure 9(d) 

Figure 9(e) 

Figure 9(f) 

 

 

 

 

 

 

 

 

4. Conclusions  

 

In this study, the machine learning method of ANFIS is combined with CFD data to predict the 

macroscopic parameters such as gas velocity in the multiphase reactor. Four input parameters are 
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elected as inputs of the multiphase reactor for the learning process, and then one output such as gas 

velocity is also considered in the input parameters. To understand the behavior of AI in learning 

CFD data, the different number of inputs, number of rules and membership functions have been 

examined. This study shows that one of the main advantages of artificial intelligent modeling is a 

combination of input with output parameters, and also replacement of outputs with inputs matrix. 

This replacement does not feel with smart method as it is data-based modeling, but we can 

understand the effect of outputs parameters on the input variables. The number of inputs has a 

significant impact on the accuracy of the method to capture the whole behavior of Fluid flow in the 

column. 

Additionally, the combination of numerical methods and AI algorithms enable us to reduce the 

computational time and number of simulation time during the optimization process. However, this 

type of modeling should be considered as an assistance tool besides the numerical method. This 

framework is also limited to the amount of data, and it can only show the process behavior based on 

the input data. For future study, we will specifically use more input data based on the clustering 

algorithm and parallel code implementation.                    

 

 

Abbreviation 
 

𝑔 [m s-2] Gravitational force  

𝑘 [m2 s-2] Turbulent kinetic energy for modelling of dispersed phase 

𝑀𝐼 [N m-3]  Interfacial force 

𝑀𝐷 [N m-3] Drag force for modelling of dispersed phase 

𝑃 [N m-2] The pressure in the reactor 

MFs  Membership functions  for ANFIS  

 

Greek Symbols 

  

 

𝜀 [m2 s-3] Turbulent energy dissipation rate per unit mass 

∈ [-] phase hold-up (-) 
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∈̅ [-] Average phase hold-up (-)  

𝜌 [kg m-3] Density of phases 

𝜇𝑇 [Pa s-1] Turbulent viscosity 

𝜏𝑘 [Pa] Shear stress of phase k 

𝜖𝑔 [-] The volume of the dispersed phase 

Subscripts   

𝐺  Dispersed phase 

𝐿  Matrix/Continuous phase 
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Figure1: Schematic of the ANFIS structure. 
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Figure 2(a): Training with using one input and different number of MFs (ANFIS method). 
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Figure 2(b): Testing with using one input and different number of MFs (ANFIS method). 
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Figure 3(a): Training with using two inputs and different number of MFs (ANFIS method). 
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Figure 3(b): Testing with using two inputs and different number of MFs (ANFIS method). 
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Figure 4(a): Training with using two inputs and different type of MFs (ANFIS method). 
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Figure 4(b): Testing with using two inputs and different type of MFs (ANFIS method). 
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Figure 5(a): Training with using three inputs and different number of MFs (ANFIS method). 
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Figure 5(b): Testing with using three inputs and different number of MFs (ANFIS method). 
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Figure 6(a): Training with using four inputs and different number of MFs (ANFIS method). 
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Figure 6(b): Testing with using four inputs and different number of MFs (ANFIS method). 
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Figure 7(a): Compare CFD output and ANFIS method prediction using inputs 1 and 2. 

 

 

 

 

Figure 7(b): Compare CFD output and ANFIS method prediction using inputs 1 and 3. 
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Figure 7(c): Compare CFD output and ANFIS method prediction using inputs 1 and 4. 

 

 

 

Figure 7(d): Compare CFD output and ANFIS method prediction using inputs 2 and 3. 
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Figure 7(e): Compare CFD output and ANFIS method prediction using inputs 2 and 4. 

 

 

 

 

 

Figure 7(f): Compare CFD output and ANFIS method prediction using inputs 3 and 4. 
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Figure 8: Points of the bubble column that were in the ANFIS learning process. 

 

 

 

 

Figure 9(a): Output prediction in Full intelligence of ANFIS method using inputs 1 and 2. 
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Figure 9(b): Output prediction in Full intelligence of ANFIS method using inputs 1 and 3. 

 

 

 

 

Figure 9(c): Output prediction in Full intelligence of ANFIS method using inputs 1 and 4. 
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Figure 9(d): Output prediction in Full intelligence of ANFIS method using inputs 2 and 3. 

 

 

 

 

 

Figure 9(e): Output prediction in Full intelligence of ANFIS method using inputs 2 and 4. 
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Figure 9(f): Output prediction in Full intelligence of A 
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