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The Maximum Entropy Theory of Ecology, or METE, is a
theoretical framework of macroecology that makes a va-
riety of realistic ecological predictions about how species
richness, abundance of species, metabolic rate distributions,
and spatial aggregation of species interrelate in a given re-
gion. In the METE framework, “ecological state variables”
(representing total area, total species richness, total abun-
dance, and total metabolic energy) describe macroecolog-
ical properties of an ecosystem. METE incorporates these
state variables into constraints on underlying probability
distributions. Themethod of Lagrangemultipliers andmaxi-
mization of information entropy (MaxEnt) lead to predicted
functional forms of distributions of interest. We demon-
strate how information entropy ismaximized for the general
case of a distribution, which has empirical information that
provides constraints on the overall predictions. We then
show how METE’s two core functions are derived. These
functions, called the “Spatial Structure Function” and the
“Ecosystem Structure Function” are the core pieces of the
theory, from which all the predictions of METE follow (in-
cluding the Species Area Distribution, the Species Abun-
danceDistribution, and variousmetabolic distributions). Pri-
marily, we consider the discrete distributions predicted by
METE.We also explore the parameter space defined by the
METE’s state variables and Lagrange multipliers. We aim
to provide a comprehensive resource for ecologists who
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2 BRUMMER ANDNEWMAN

want to understand the derivations and assumptions of ba-
sic mathematical structure ofMETE.
K E YWORD S

information entropy, information theoretics, macroecology,
metabolic theory, scaling, species abundance distribution,
species-area relationship

1 | THE MAXIMUM ENTROPY THEORY OF ECOLOGY1

Many of the central questions of macroecology ask how patterns of species richness, abundance, and body size arise2

from ecosystems, how these patterns scale over increasing area, and how they interrelate [1]. Manymacroecological dis-3

tributions that quantify aspects of community structure, such as the Species-Area Relationship, the Species Abundance4

Distribution [2], size-density relationships [3, 4, 5], and the allometric scaling of metabolic rates of biological organisms5

within a community [6, 7, 8] have been studied independently, revealing general properties that may be universal across6

ecosystems. TheMaximum Entropy Theory of Ecology, orMETE [9, 10, 11], is a theoretical framework of macroecology7

that that makes a variety of realistic ecological predictions about the diversity and structure of ecological communities8

[12, 13, 14, 15, 16, 17, 18, 19, 20]. These predictions relate species richness and abundance to metabolic rate distri-9

butions and spatial aggregation of species in a given region. Because METE makes a set of interrelated predictions10

about community structure, it has the potential to unify disparate parts of macroecology into a single mathematical11

framework.12

The underlying mathematics of METE relies on a method termed “MaxEnt”: the maximization of information13

entropy. MaxEnt uses the method of Lagrange multipliers to find probability distributions that underlie statistical14

phenomena. ForMETE, theMaxEntmethod is applied to problems involvingmeasurable "ecological state variables"15

that describemacroecological properties of an ecosystem.16

In this paper, we will first demonstrate how information entropy is maximized for the general case of a distribution,17

which has empirical information that provides constraints on the overall predictions. We then introduce the ecological18

state variables A0, S0, N0, E0, representing total area, total number of species, total abundance, and total metabolic19

energy of an ecological system, and use them with the method of information entropy maximization to show how20

METE’s two core functions are derived. These functions, called the “Spatial Structure Function” and the “Ecosystem21

Structure Function” are the core pieces of the theory, from which all the predictions of METE follow (including the22

Species-Area Distribution, the Species Abundance Distribution, and various metabolic distributions). Primarily, we23

consider the discrete distributions predicted byMETE. These derivations are not provided in their entirety in Harte24

(2011)[10], but are the derivations that will produce the core distributions of the Spatial Structure Function and the25

Ecosystem Structure Function as presented in that work.26

In the process of constructing the core structure functions, we derive the Lagrangemultipliers that arise from the27

MaxEnt process, and characterize the ecosystems modeled byMETE.We investigate the parameter space of these28

Lagrangemultipliers, and evaluate some of the simplifying assumptions that have been used previously to estimate the29

Lagrangemultiplier values.30

We aim to provide a comprehensive resource for ecologists whowant to understand the derivations and assump-31

tions of basic structure of METE. We hope that by providing explicit derivations of METE, we will encourage other32

ecologists tomodify the framework, apply it to their own systems, andmake progress in this valuable area of research.33
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BRUMMER ANDNEWMAN 3

2 | INFORMATION ENTROPY MAXIMIZATION: A PRIMER34

In this section we the present equations that are necessary for information entropy maximization. We then use35

these equations to derive the form of the probability distribution that will result for the simplest case of a discrete,36

1-dimensional distribution. This chain of logic will be applied to the constraints that characterizeMETE in subsequent37

sections.38

2.1 | Writing down the constraints39

As observed byHaegeman and Etienne (2010) [21], probability distributions with higher information entropy encode40

less information. Therefore, a probability distribution that corresponds to empirical data without imputing any addi-41

tional information will maximize information entropy. This is also true of a probability distribution that conforms to a42

constraint (as, for example, a constraint on the value of themean) withoutmaking additional assumptions or adding43

other information. In this sense, maximum information entropymethods give themost impartial estimate of the shape of44

the underlying probability distribution for an observable. MaxEnt also gives the least biased estimators of themoments45

of a distribution (which include the range, mean, and variance) [22], meaning that there is no difference, for example,46

between the estimatedmean and the empirical mean of a distribution. This feature ofMaxEnt is by design, where the47

moments of a probability distribution are constrained by the empirical values of thosemoments.48

Here we present the primary equations that regularly occur in information entropy maximization. The general49

expression for k constraints on themean value of a distribution of interest is expressed as:50

n=N∑
n=1

fk (n)p(n) = 〈fk (n)〉 (1)

A second constraint provides for the normalization of the probability distributions, and is expressed as:51

n=N∑
n=1

p(n) = 1 (2)

The procedure of maximizing entropy (discussed in Box 5.1 of Harte, 2011) results in a particular form of the52

probability distribution and partition function, proven by Jaynes [22] to result in the least-biased probability p(n) that53

satisfies the “constraint equation" of Eq. (1) and the normalization constraint of Eq. (2),54

p(n) = 1

Z
e

−

k=K∑
k=1

λk fk (n)
(3)

where Z is the partition function that serves to normalize the probability distribution, and is expressed as,55
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4 BRUMMER ANDNEWMAN

Z =
n=N∑
n=1

e

−

k=K∑
k=1

λk fk (n)
(4)

Generally, when onewants to use the tools ofMaxEnt, onewill need to have data fromwhich constraints on the56

distributions can be inferred (such as average values). Then a process of algebra and numerics will begin during which57

one solves for the Lagrange multipliers λk . Once the Lagrange multipliers have been determined, then the form of58

the probability distributions can be inferred (or graphed). For examples using Eqs. (1)-(4) see Appendix A.1. Eqs. (3)59

and (4) are written here for reference, as wewill use them repeatedly. In the next section we derive Eqs. (3) and (4) by60

maximizing the Shannon information entropy.61

2.2 | Themethod of Lagrangemultipliers and optimization62

Herewe derive the generic probability distribution p(n) for several specific scenarios of a discrete variable with one63

constraint (beyondnormalization), and adiscrete variablewithmultiple constraints. Thesewill serve as simpler examples64

for deriving the core distributions, or structure functions ofMETE.65

What does it mean for us to “maximize fairness” using variational calculus? While the explicit form of the probability66

distribution is unknown, we have information about some of its properties. We know that no matter what the form67

of the probability distribution is, it should be properly normalized (that is, the sum of the probabilities of all possible68

outcomes equals to one). This gives us our zeroth constraint, which for a single discrete variable takes the form of69

Nmax∑
n=Nmin

p(n) = 1 (5)

Next, wewill likely have some information about an aggregatedmeasurement of the variable in our system. This70

information constitutes our additional constraint or constraints. Letting f (n) represent ameasured value corresponding71

to n , and assuming that the aggregated measurement we have is the mean value of f (n), then we can express our72

knowledge regarding this measurement of an observable quantity that represents some aggregated or average value73

using themathematical definition of an average.74

Nmax∑
n=Nmin

f (n)p(n) = 〈f (n)〉 (6)

Thus, the definition itself constitutes our constraint.75

Lastly, the final piece of information that we have is the functional form of “fairness”, the quantity which wewant to76

maximize subject to the abovementioned constraints. This quantity is expressed as the Shannon form of information77

entropy [23]:78

I = −
Nmax∑
n=Nmin

p(n) ln(p(n)) (7)

Tomaximize “fairness” subject to our constraints, we employ the tools of variational calculus and themethod of79
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BRUMMER ANDNEWMAN 5

undetermined Lagrangemultipliers. A concrete example of this is given in Appendix A.1. We begin by constructing the80

function Æ, which is an expression that incorporates themaximization of information entropy and the constraints we81

want to incorporate. The constraints are written in such a way so that each constraint is independent of the other, and82

each term inside the square brackets is zero.83

Æ = −
Nmax∑
n=Nmin

p(n) ln(p(n)) + λ0


Nmax∑
n=Nmin

p(n) − 1

+ λ1



Nmax∑
n=Nmin

f (n)p(n) − 〈f (n)〉


(8)

In this way, we can incorporatemultiple constraints without changing the overall value of the equation. Whenwe84

perform the “extremization” step to find local optima, the presence of the constraints will change the overall distribution85

of the probabilities. Maximizing Æwill subsequently maximize “fairness" subject to the additional constraints, thus we86

seek to solve for the p(n) that results from ∂Æ/∂p(n) = 0. Differentiating Æ and setting it equal to zero results in,87

0 = −
�ln(p(n)) + 1�

+ λ0(1) + λ1f (n) (9)

Note that we can drop the summations at this point. Solving for p(n) yields,88

p(n) = k exp {λ1f (n)} (10)

where k = exp {λ0 − 1}. Imposing our normalization constraint∑n p(n) = 1, we have89

∑
n

k exp {λ1f (n)} = 1 (11)

Since k is independent of n , we can factor it out of the summation and solve for it to find,90

k =
1∑

n exp {λ1f (n)} (12)

The expression ∑
n exp {λ1f (n)} comes up so often that it is given its own variable representation Z , the partition91

function, which will eventually just turn out to be a real-valued number,92

Z =
∑
n

exp {λ1f (n)} (13)

Thus, we can express the probability p(n) as,93

p(n) = 1

Z
exp {λ1f (n)} = exp {λ1f (n)}∑

n exp {λ1f (n)} (14)

To find the explicit form of p(n), one needs further information in the form of data. Having data, it is then possible to use94

the constraint equations to numerically solve for the undetermined Lagrangemultipliers, and thus identify the form of95

the probability distribution p(n).96
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6 BRUMMER ANDNEWMAN

3 | THE STRUCTURE OF METE97

In this section, we introduce and discuss the ecological state variables common to macroecology, as used by METE.98

We apply theMaxEntmethod to these ecological state variables to derive the core distributions ofMETE, namely the99

Spatial Structure Function, and the Ecosystem Structure Function [10, 11].100

3.1 | A state variable theory101

Much of macroecology is concerned with detecting patterns in ecosystems, either at large scale, or as an emergent102

property of scaling over larger aggregates of individuals, species, area, or time [24]. To detect these patterns, we103

must work with variables that are sufficiently coarse that they capture average conditions of some larger phenomena104

that is beingmodeled, or sufficiently aggregated that they apply across systems and capture certain generalities. For105

example, we may examine average abundance of all individuals in an area. The “average” may refer to an average of106

repeatedmeasurements in different plots or subplots, for example, which can smooth out heterogeneity andmodel107

average conditions on a landscape. The “aggregated” nature of abundance refers to something slightly different, in108

that abundancemeasuredwill be a result of multiple processes, such as birth, death, emigration, and immigration [25].109

Abundance therefore represents an “aggregate”metric of all of these processes. Similarly, “species” as an observablemay110

have an average value whenmeasured in many similar sized plots, but is itself an aggregate measure of biodiversity that111

ignores (or “coarse grains”) genetic variation among individuals, and processes such as hybridization. These variables112

are easily measured and compared across ecological systems, and have an overall generality and transferability that113

make them interesting at large scales.114

Within METE, variables representing total area, total number of species, total abundance, and total metabolic115

energy of an ecological system are central to the definitions of the core probability distributions. These ecological116

state variables are represented as A0, S0, N0, and E0, respectively. They are static (not time-dependent), and can be117

used tomodel macroecological distributions of interest, such as the Species-Area Relationship, the Species Abundance118

Distribution, and variousmetabolic rate distributions, bothwithin a species and across an entire community. The “ASNE”119

version ofMETE has been the subject of themost study [10], but other constraints featuring additional state variables120

are possible. In one case, METE has been extended to include higher taxonomic constraints [26].121

In the following sections, we will demonstrate how the state variables and their ratios are used in the MaxEnt122

procedure to constrain patterns of individuals over area for the Spatial Structure Function, and patterns of metabolic123

requirement (or body size) across individuals and abundances per species through the Ecosystem Structure Function.124

3.2 | The Spatial Structure Function125

This distribution goes bymultiple names among practitioners, including the “Pi distribution” (informally), the “Species-126

level spatial abundance distribution” or SSAD [14, 27], and the Spatial Structure Function (SSF) [28], which is howwe127

will refer to it here. The SSF is a by-species prediction of the clustering of individuals over space, and is defined as the128

“probability that n individuals of a species are found in a cell of areaA if it has n0 individuals inA0” [10]. We derive this129

distribution before the Ecosystem Structure Function for pedagogical reasons, as it is a one-dimensional distribution for130

a discrete variable. This variable is the the abundance of a single species, n , at a given scale,A, whereA is a smaller area131

within the total area under consideration, A0. The variables that are used to constrain the system are A, A0, and the132

abundance of a single species at the total spatial scale, n0. The derivation of the spatial structure function will follow133

exactly the general approach provided in the previous section. We represent this function as Π(n `A, n0,A0). To ensure134
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BRUMMER ANDNEWMAN 7

that the spatial structure function is properly normalized, we express our zeroth constraint as,135

n0∑
n=0

Π(n) = 1 (15)

where we have dropped the conditional variablesA, n0, andA0 for notational convenience. Note also that the lower136

limit on the summation is set to n = 0. This is because n represents the per-species abundance, and it is possible for a137

species that has n0 individuals to have zero abundance in an areaA.138

Our additional constraint comes from the simultaneous definition andmeasurement of the average value of the139

per-species abundance n̄ . From measurement, n̄ = n0A/A0. From definition, n̄ = ∑n0
0 nΠ(n). Combining these two140

expressions gives us our other constraint,141

n0∑
n=0

nΠ(n) = n0A

A0
(16)

Now, as wewant tomaximize “fairness”, or information entropy related to the spatial structure function subject to the142

above two constraints, we construct the function Æ in the form,143

Æ = −

n0∑
n=0

Π(n) ln(Π(n)) − λ0


n0∑
n=0

Π(n) − 1

− λΠ



n0∑
n=0

nΠ(n) − n0A
A0


(17)

From here wemaximize Æ by evaluating the expression ∂Æ/∂Π(n) = 0. This results in,144

0 = −
�ln(Π(n)) + 1�

− λ0(1) − λΠn (18)

From here we can solve for Π(n) to arrive at,145

Π(n) = k exp{−λΠn} (19)

where k = exp{−(λ0 + 1)}. Imposing our zeroth normalization constraint, we canwrite,146

n0∑
n=0

k exp{−λk n} = 1 (20)

Since k is independent of n , we can factor it out of the summation and rewrite as,147

k =
1∑n0

n=0 exp{λΠn}
(21)

Conventionally this normalization constant is defined as 1/Z and denoted as the partition function, where,148

Z =

n0∑
n=0

exp{−λΠn} (22)
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8 BRUMMER ANDNEWMAN

This brings us to the following expression compact expression for the Spatial Structure Function,149

Π(n) = 1

Z
exp{−λΠn} (23)

In order to actually calculate, or graph, the spatial structure function for a given set of values A0, n0, and A, we must150

first calculate the Lagrange multiplier λΠ using our constraint equation relating the measured average per-species151

abundance n̄ = n0A/A0 to the definition of the average per-species abundance n̄ = ∑n0
n=0 nΠ(n). This time, substituting152

our known expression for Π(n), we have,153

n0∑
n=0

n

Z
exp{−λΠn} = n0A

A0
(24)

Recalling that Z is independent of n , it can be pulled out of the summation. Furthermore, substituting our definition of154

Z , but usingm as a dummy index instead of n to avoidmixing up our indices, we canwrite,155

∑n0
n=0 n exp{−λΠn}∑n0
m=0 exp{−λΠm}

=
n0A

A0
(25)

In principle, the above expression allows one to solve for the Lagrangemultiplier λΠ . However, analytical solutions for156

λΠ are intractable, thus onemust resort to numerical methods. We graph the parameter space of the state variables157

A0, n0, n and λΠ in Figure 1.158

3.3 | The Ecosystem Structure Function159

The Ecosystem Structure Function (ESF) is the second ofMETE’s core distributions. Unlike the SSF, it does not have160

a simple definition, but can be described as a kind of “container function” that describes the probability space of how161

abundances are assigned to species and howmetablolic energy is partitioned over individuals in a community. The162

ESF is the distribution fromwhich the Species Abundance Distribution, Species Area Relationship, andMetabolic Rate163

Distributions [14, 18] can eventually be derived. Constrained by empirical values measured from real systems, the ESF164

produces actual predictions of these probability distributions. For an in-depth discussion of the definition of theMETE165

ESF, see Bertram et al. (2019) [29].166

As the ESF R (n, ε), depends on one discrete variable n , and one continuous variable ε, we will this time need to167

integrate of ε in addition to summing over n . Thus, our normalization constraint now takes the form of,168

N0∑
n=1

∫ E0

ε=1
R (n, ε)dε = 1 (26)

Our additional constraints are aggregated measures of variables n and nε, that is f1(n) = n , and f2(nε) = nε. The169

measures themselves are the ratiosN0/S0 and E0/S0 , that is 〈f1(n)〉 = N0/S0 , and 〈f2(nε)〉 = E0/S0 . This gives us the pair170
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BRUMMER ANDNEWMAN 9

of constraints,171

N0∑
n=1

∫ E0

ε=1
nR (n, ε)dε = N0

S0
(27)

N0∑
n=1

∫ E0

ε=1
nεR (n, ε)dε = E0

S0
(28)

Now, the function Æ that wewill want tomaximize takes the form of,172

Æ = −

N0∑
n=1

∫ E0

ε=1
R (n, ε) ln(R (n, ε))dε − λ0



N0∑
n=1

∫ E0

ε=1
R (n, ε)dε − 1



− λ1



N0∑
n=1

∫ E0

ε=1
nR (n, ε)dε − N0

S0


− λ2



N0∑
n=1

∫ E0

ε=1
nεR (n, ε)dε − E0

S0


(29)

As before, wemaximize Æ by evaluating ∂Æ/∂R = 0. This results in,173

0 = −
�ln(R (n, ε)) + 1�

− λ0 [1] − λ1 [n] − λ2 [nε] (30)

Solving for R (n, ε) gives,174

R (n, ε) = k exp{−λ1n − λ2nε} (31)

where k = exp{−(1 + λ0)}. Using our normalization condition to define Z we have,175

Z =

N0∑
n=1

∫ E0

ε=1
exp{−λ1n − λ2nε}dε (32)

This allows us to express the full form of the ecosystem structure function as,176

R (n, ε) = exp{−λ1n − λ2nε}∑N0
m=1

∫ E0
ε′=1

exp{−λ1m − λ2mε′}dε′
(33)

where we have replaced n withm and ε and ε′ in the denominator to ensure there is no confusion over which variables177

belong in the numerator or denominator.178

At this point we can simplify the expression for Z by performing the integral over ε′. Factoring out the term in Z179

independent of ε′ we have,180

Z =

N0∑
m=1

exp{−λ1m}
∫ E0

ε′=1
exp{−λ2nε′}dε′ (34)
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10 BRUMMER ANDNEWMAN

After integrating, we have181

Z =

N0∑
m=1

exp{−λ1m}
λ2m

[exp{−λ2m} − exp{λ2mE0}] (35)

Andwith further simplification,182

Z =
1

λ2

N0∑
m=1

1

m
[exp{−mβ} − exp{−mσ}] (36)

where β = λ1 + λ2 and σ = λ1 + E0λ2.183

From here we can examine the constraint Eqs. 27 and 28. In particular, now that we have an explicit form for the184

structure function, we can perform the integrals in the constraint equations to fix the values of the unknown Lagrange185

multipliers in terms of themeasured quantitiesN0, E0, and S0. Upon substitution of our expression for R (n, ε) into Eq.186

27we have,187

N0
S0

=
1

Z

N0∑
n=1

∫ E0

ε=1
n exp{−n(λ1 + λ2ε)}dε (37)

Factoring from the integral the term independent of ε,188

N0
S0

=
1

Z

N0∑
n=1

n exp{−nλ1}
∫ E0

ε=1
exp{−nλ2ε}dε (38)

Upon integration,189

N0
S0

=
1

Z

N0∑
n=1

n exp{−nλ1}
[ exp{−nλ2} − exp{−nλ2E0}

nλ2

]
(39)

Andwith further simplification,190

N0
S0

=
1

Zλ2

N0∑
n=1

[exp{−nβ} − exp{−nσ}] (40)

where β = λ1 + λ2 and σ = λ1 + E0λ2.191

Turning our attention now to constraint Eq. 28, upon substitution of R (n, ε) we have,192

E0
S0

=
1

Z

N0∑
n=1

∫ E0

ε=1
nε exp{−n(λ1 + λ2ε)}dε (41)

Factoring from the integral the term independent of ε,193

E0
S0

=
1

Z

N0∑
n=1

n exp{−nλ1}
∫ E0

ε=1
ε exp{−nλ2ε}dε (42)
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After integrating by parts we have,194

E0
S0

=
1

Z

N0∑
n=1

n exp{−nλ1}
[ exp{−nλ2} − E0 exp{−nλ2E0}

nλ2
+
exp{−nλ2} − exp{−nλ2E0}

(nλ2)2
]

(43)

Andwith further simplification,195

E0
S0

=
1

Z

N0∑
n=1



exp{−nβ} − E0 exp{−nσ}
λ2

+
exp{−nβ} − exp{−nσ}

nλ22


(44)

where β = λ1 + λ2 and σ = λ1 + E0λ2.196

Substituting in our expression for Z , we canwrite the integrated versions of the constraint equations in full as,197

N0
S0

=

∑N0
n=1

�
e−nβ − e−nσ

�

∑N0
m=1

[
e−mβ−e−mσ

m

] (45)

E0
S0

=

∑N0
n=1

�
e−nβ − E0e

−nσ
�

∑N0
m=1

[
e−mβ−e−mσ

m

] +
1

λ2
(46)

The values of λ1 and λ2 are often difficult to calculate by conventional means, so some approximations were used in198

Harte (2011). With the use of meteR [28], these approximations are no longer necessary. However, we consider them in199

more depth in Appendix B.200

4 | RELATIONSHIPS BETWEEN STATE VARIABLES AND LAGRANGE MULTI-201

PLIERS202

By using the MaxEnt approach with the METE ecological state variables, we derive three Lagrange multipliers: λΠ203

associatedwith the Spatial Structure Function, and λ1 and λ2, associatedwith the Ecosystem Structure Function. We204

graph these, along with the ecological state variables in their respective constraints, in Figure 1. Examining λ1 in panel205

(A), we see the greater influence of log(N0) than S0 on the overall value of the Lagrangemultiplier λ1 , and a compression206

of λ1 values at lowN0. This may correspond toMETE’s own stated limitations, and its requirement thatN » 1 [10]. In207

panel (B), we can see a near-linear relationship on the log-log scale between λ2 and log(E0), while S0 does not affect208

its value as greatly over this range of values. In panel (C), λΠ is clearly non-linear in both the state variableA0, and the209

smaller area under consideration,A.210

The METE Lagrange multipliers represent all the possible relationships between N0, S0, and E0, and METE’s211

predicted relationships of n , A, and A0. The graph of λΠ is interesting because it appears that very different values212

of λΠ may be obtained by varying the ratio of A to A0 slightly, and this may in turn suggest that it does not have the213

properties wewould desire in ametric describing clustering. It has been demonstrated that the SSF does not always214

produce reliable predictions for clustering of individuals of a species within a a given area [16, 27], and this area ofMETE215

could be extended andmodified in future work. Further investigations of the relationships of λ1 and λ2 with data from216

varied ecosystemsmay also allow us to investigate patterns of diversity, abundance, body size, and the relationships217

between thesemacroecological variables in newways. These kinds of parameter space representations are also useful218

in generating hypotheses about changing ecosystems, andwhat new distributions are expected as one ormore state219
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12 BRUMMER ANDNEWMAN

variable changes.220

In Figure 2, we graph the parameter space that is defined by the ESF through the Lagrangemultipliers λ1 and λ2. In221

this graph, the boundaries of the defined parameter space become interesting. High values of λ1 always correspond to222

one ormore “singleton species,” or species with a single individual, whereN0 = S0. This can only happenwhen a single223

individual is measured in order to estimate the values ofA0, N0, S0, and E0 (that is, small numbers of measurements), or224

in cases where there are themost species possible given the number of individuals present (extreme diversity). These225

cases therefore represent theoretical limits of possible outcomes of measurement. We expect that most real systems226

will havemanymeasurements of species with more than one individual, and will fall into the range of low λ1 values. The227

behavior of the lower values of the graphmay therefore beworth investigating further.228

F IGURE 1 The relationship between theMETE’s Lagrangemultipliers λ1, λ2, and λΠ , and the ecological state
variables in themathematical constraints that produce them. Values for each λ were generated withmeteR [28], and a
surface was interpolated to aid in visualization. In panel (A), we see the greater influence of log(N0) than S0 on the
overall value of the Lagrangemultiplier λ1, and a compression of λ1 values at low N0. In panel (B), we can see a
near-linear relationship on the log-log scale between λ2 and log(E0), while S0 does not affect its value as greatly over
this range of values. In panel (C), we see a highly non-linear relationship between λΠ , the state variableA0, and the
smaller area under consideration,A.

5 | SUMMARY229

In this paper, we provide an in-depth look at themathematical derivations underlying theMaximum Entropy Theory of230

Ecology, orMETE. These derivations fill a gap for those researchers whowould like to see the explicit chain of logic that231

produces the core structure functions ofMETE, fromwhich the predictions ofMETE follow. In presenting this theory,232
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F IGURE 2 The parameter space of ecosystems as defined by theMETE Lagrangemultipliers λ1, corresponding to
the constraint on N0

S0
, and λ2, corresponding to the constraint on E0

S0
. The highest values of λ1 for any value of λ2

correspond to values of N0S0 = 1 (shown in purple), or situations where there is only one individual per species (smallnumbers of measurements or high diversity). Most real ecosystems and empirical systemswithmore than a few
individuals are expected to fall closer to the low λ1 values for any given λ2 value (shown in green).

we take a different pedagogical approach than is employed in Harte (2011) [10]. Namely, we provide a general case of a233

discreteMaxEnt problem in one dimension. We then give worked examples of constraints onmoments beyond just the234

mean of a distribution (in Appendix A). From there, we first construct the simpler Spatial Structure Function, which is a235

discrete probability distribution, and thenwork through the logic of the Ecosystem Structure Function, which contains236

more constraints, and has a combination of discrete and continuous variables.237

Wedo not cover the applications ofMETE to testing theory against empirical data, which has been done extensively238

elsewhere [9, 12, 10, 13, 11, 14, 15, 16, 17, 18, 19, 20], however, we explicitly show theMaxEnt process and how it is239

applied to the ecological state variables ofMETE to produce the core structure functions fromwhich all the predictions240

ofMETE derive.241

Finally, we discuss the three Lagrange multipliers that result from applying the MaxEnt procedure to METE’s242

ecological state variables, and how these Lagrangemultipliers characterize the system being studied. We investigate (in243

Appendix B) some of the simplifying approximations that were previously used to evaluate the Lagrangemultipliers and244

assess their realism.245

The equations presented here should make it easier for other researchers to make advances in MaxEnt-based246

macroecology, and METE in particular, either by investigating new state variables, or new functional forms of the247

mathematical constraints. The Lagrangemultipliers, graphed for the first time here, form a parameter space that may be248

useful to further studies involving comparisons between ecosystems and across scales.249
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SUPPLEMENTARY MATER IAL312

A | EXAMPLES APPLYING MAXENT TO KNOWN DISTRIBUTIONS313

A.1 | A Fair 3-Sided Die Constrained by theMean314

Consider the case of a 3-sided die with sides labelled 1, 2, and 3. Suppose we perform an experiment (that is, rolling a315

die), andmeasure the result (that is, reading and recording the outcome of the roll in the form of the number on the316

face-up side). After performing enough of these experiments, we can determine that the long-term average value of the317

rolls is to equal 2, by adding up all the outcomes and then dividing by the number of rolls. We take note that this is also318

the true average of a fair die, where all outcomes are equally probable. Because we chose a fair die in the first place,319

we are not surprised that our empirical outcomematches the outcome for a fair die. However, we are interested in320

determining the probability distribution that is associated with rolling any die, fair or not. This mathematical approach321

will allow us to find our empirical average and figure out what the probabilities of each outcome are, whether or not we322

have a fair die. To work through the logic, wewill use the tools presented in the form of equations Eqs. (1, 3, 4).323

First, we start bywriting Eq. [1], and substituting in the values corresponding to our problem. Note that we have324

only one constraint (knowledge of the empirical mean), so K = 1, and all sums over k vanish. Thus, fk (n) becomes f (n).325

Next, we can only make three possible observations, corresponding to the values on the three sides of the dice. So326

f (1) = 1, f (2) = 2, and f (3) = 3. Finally, assuming that we have performed this experiment and have amean value for f (n)327

to calculate from the possible observations, we canwrite that 〈f (n)〉 = (3 + 2 + 1)/3 = 2. So, Eq. (1) becomes,328

1p(1) + 2p(2) + 3p(3) = 2 (47)

This can be read as “the sum of the probabilities of a particular outcome of a roll times the value of that roll equals329

the empirical average of all outcomes on repeated trials.” Next, we can substitute our problem-specific values into the330

definitions of the probability distribution p(n) and the partition function Z . Doing somakes Eq. (3) take on the form:331

p(n) = 1

Z
e−λn (48)

for generic values of n , or specifically,332

p(1) = 1

Z
e−λ

p(2) = 1

Z
e−λ2

p(3) = 1

Z
e−λ3 (49)

We have one Lagrange multiplier, here denoted as λ, and the probability of each outcome is expressed in terms333

of the partition function, as well as a term that involves the actual value of the outcome multiplied by the Lagrange334

multiplier. The partition function, which is defined in Eq. (4), takes on the form:335
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BRUMMER ANDNEWMAN 17

Z =
n=3∑
n=1

e−λn

Z = e−λ + e−λ2 + e−λ3 (50)

Remember that in the end, we seek the specific form of the probability distribution function, whichmeans that we336

have to solve for the Lagrangemultiplier, λ, that appears in both the probability distribution and the partition function.337

We can now substitute our specified version of the partition function into the specified versions of the probability338

distributions, and substitute those into the specified version of our constraint equation. Wewill do this step by step339

(and technically in reverse order), starting with substituting the probabilities into the constraint, or Eq. (49) into Eq. (48).340

This gives us,341

1

Z
e−λ +

2

Z
e−λ2 +

3

Z
e−λ3 = 2 (51)

Before substituting our partition function, Z , Eq. (50), into the constraint equation, Eq. (48), wewill first multiply342

both sides by the partition function, Z , to simplify the expression, giving,343

e−λ + 2e−λ2 + 3e−λ3 = 2Z (52)

Nowwewill substitute in the expression for the partition function, Z , to arrive at:344

e−λ + 2e−λ2 + 3e−λ3 = 2(e−λ + e−λ2 + e−λ3) (53)

Herewewill make an extra substitution, simply for convenience. The equation above is– at heart– a polynomial345

expression in e−λ . So, let’s substitute e−λ = x . Nowwewill be solving for x , and at the endwewill see what this tells us346

about λ. Making this substitution, and performing the necessary algebra, we have,347

x + 2x2 + 3x3 = 2x + 2x2 + 2x3

0 = x − x3

0 = x (1 − x2) (54)

Thus, we have found that the solutions for x are x = 0, x = 1, or x = −1. Recalling that wemade the substitution348

x = e−λ , this means that we really have e−λ = 0, e−λ = 1, or e−λ = −1. With these possibilities, wewill need to check if349

one of these possible solutions is the true answer. The other two solutions will prove to give non-sensible probability350

distributions (complex numbers or non-physical solutions) for the problem that we have specified. To find out which351

one of the three is correct we must examine the forms of the probability distributions that they yield. We could do352

this one of twoways. We could use natural logarithm rules to determine the exact possible values of λ, and substitute353
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back into the probability distribution and partition function formulas to find their forms. Or, since both the probability354

distribution and partition function formulas are functions of e−λ , we could simply substitute the various known values355

of 0, -1, or 1 for each occurrence of e−λ . Wewill do the latter, as it involves fewer steps.356

If e−λ = 0were the correct answer, then the partition function would take the form of Z = 01 + 02 + 03 = 0, and the357

probability distributions would take the form of p(n) = 0n/Z = 0/0. Dividing by zero is clearly a problem, so e−λ = 0 is358

not the correct answer. Alternatively, if e−λ = −1were the correct answer, then the partition function would take the359

form of Z = −11 + (−1)2 + (−1)3 = −1, and the probability distribution would take the form of p(n) = (−1)n/ − 1 = −(−1)n .360

This is also a problem, as it means that every probability for rolling an even number would be negative! So e−λ = −1 is361

also not the correct answer. Thismeans that e−λ = 1must be the correct answer. In this case, the partition function takes362

the form of Z = 11 + 12 + 13 = 3, and the probability distribution takes the form of p(n) = 1n/3 = 1/3. Remembering363

that we have a fair die, where fairmeans equal chances of rolling any number, we see that we have indeed found the364

correct answer.365

A.2 | A Fair 3-Sided Die Constrained by the Standard Deviation366

Herewe consider a case similar to that above, but with aminor variation. Wewill constrain the problemwith knowledge367

regarding the standard deviation of the rolls of the die, instead of knowledge regarding the mean value of the rolls368

of the die. It is still a fair three-sided die, andwewill still use the true value onewould get for the standard deviation369

of actual rolls so that we can check our answer against reality at the end. This problem is of interest to us for several370

reasons. First, it is possible to contrive a situationwhere all youmay know about your data is the standard deviation,371

and not the mean, yet you still want to determine the corresponding form of the probability distribution functions372

(perhaps you are reconstructing data from faded paper articles that originally reported both themean and the standard373

deviation). Second, As a recent example of the importance of understanding themoments of distributions, trait-driver374

theory (TDT) in macroecology suggests potential applications usingMaxEnt [30, 31]. In TDT, higher-order moments of375

trait distributions are connectedwith patterns of variability in the local environment and climate. While efforts to link376

MaxEnt with such environmental variables are ongoing, it may be that constraints based on higher-order moments will377

prove to be of use in the near future in forecasting how biological organisms will change in response to climate forcings.378

Finally, this problem is of interest because even thoughwe start with a different constraint equation than Eq. (1), we379

arrive at the same final result that themost fair distribution is the uniform distribution.380

To begin wewill point out that wewill still be using Eqs. (49) and (50) for the specified versions of the probability381

distributions and the partition function. However, wemust express the general form of our new constraint equation382

differently via the formula for the standard deviation of a distribution of data as,383

√√√√n=N∑
n=1

p(n)

*
,

m=N∑
m=1

fk (m)p(m)+
-
− fk (n)



2

= σk (n) (55)

where σk (n) is the standard deviation of our data corresponding to the k t h constraint. Note that, in Eq. (55),384

we have assumed that the mean value of our data, 〈fk (m)〉 can be expressed as
m=N∑
m=1

fk (m)p(m), which is the same385

starting expression we have in Eq. (1), and thusmay be the reasonwhy our approach is still consistent with the central386

assumptions ofMaxEnt.387

Continuing on as we did in the previous section, we will substitute everything we know into Eq. (55), starting388
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with the fact that σk (n) = √2/3 for a fair three-sided die (this can be calculated with the definition of the standard389

deviation and a known, equal probability distribution of all outcomes), and that K = 1 for only having one constraint,390

fk (n) = f (n) = n , fk (m) = f (m) = m , and N = M = 3. Doing so gives us,391

√√√√√n=3∑
n=1

p(n)


*.
,

m=3∑
m=1

mp(m)+/
-
− n



2

=

√
2

3
(56)

From here, the steps are quite similar as before, only the algebra is more tedious. Wewill start with squaring both392

sides of the equation andwriting out the summations explicitly to arrive at,393

p(1) �
p(1) + 2p(2) + 3p(3) − 1�2

+

p(2) �
p(1) + 2p(2) + 3p(3) − 2�2

+ (57)
p(3) �

p(1) + 2p(2) + 3p(3) − 3�2
=
2

3

Substituting p(n) = 1/Z e−λn = 1/Z xn , where we have alsomade the substitution of e−λ = x for simplification, we394

have,395

x

Z

[
x

Z
+ 2

x2

Z
+ 3

x3

Z
− 1

]2
+

x2

Z

[
x

Z
+ 2

x2

Z
+ 3

x3

Z
− 2

]2
+ (58)

x3

Z

[
x

Z
+ 2

x2

Z
+ 3

x3

Z
− 3

]2
=
2

3

Multiplying both sides of the above expression by Z 3 to remove all denominators entirely gives,396

x
[
x + 2x2 + 3x3 − Z

]2
+

x2
[
x + 2x2 + 3x3 − 2Z

]2
+ (59)

x3
[
x + 2x2 + 3x3 − 3Z

]2
=
2

3
Z 3

Now comes a lot of distributing and simplifying of terms. Starting with the left-hand-side, and recalling that397

Z = e−λ + e−λ2 + e−λ3 = x + x2 + x3, we arrive at,398

x
[
x2 + 2x3

]2
+ x2

[
−x + x3

]2
+ x3

[
−2x − x2

]2
=
2

3

[
x + x2 + x3

]3 (60)
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Expanding both sides of the expression gives,399

x4 + 5x5 + 6x6 + 5x7 + x8 =
2

3
x3 + 2x4 + 4x5 +

14

3
x6 + 4x7 + 2x8 +

2

3
x9 (61)

Collecting like terms, we have:400

2

3
x3 + x4 − x5 −

4

3
x6 − x7 + x8 +

2

3
x9 = 0 (62)

Assuming that x = 0 is not a solution that wewant (recall the discussion earlier regarding this possible solution) we401

can divide by x3 from both sides to yield,402

2

3
+ x − x2 −

4

3
x3 − x4 + x5 +

2

3
x6 = 0 (63)

We usedWolframAlpha online (https://www.wolframalpha.com/) to perform the factoring, and find that the above403

expression can be expressed as,404

1

3
(x − 1)2(x + 2)(2x + 1)(x2 + x + 1) = 0 (64)

These terms produce the five following solutions of x = −2, x = −1/2, x = 1, and x = −1/2 ± i√3/2. As discussed405

before, the solutions for negative values of x are invalid. The solutions x = −1/2 ± i√3/2will result in probabilities406

with non-real (imaginary) terms, so those will also be disregarded. This leaves us with x = 1, which generates the same407

uniform distribution of p(n) = 1/3 as we found in the earlier case for constraining only themean.408

A.3 | The Gaussian/Normal Distribution, or Using n and n2 as “Constraint Functions"409

Here we will show that when the “constraint functions" are fk (n) = n and fk (n) = n2, then the resulting probability410

distribution is Gaussian, or normal. What it means in an ecological context whenwe specify these constraint functions411

may not immediately be clear, but theremay be some interesting applications of this derivation, as in reconstructing412

data when publications specify the variance of ameasured distribution, but the underlying data have been lost. With413

or without a useful applied example, following throughwith themathematical derivation lends some insight into the414

behavior of the equations, so it is useful to proceed for that reason. Without specifying an actual problem, we can not415

solve explicitly for the Lagrangemultipliers. Instead, wewill investigate what happens to themathematical form of the416

probability distribution in Eq. (3) when substituting our constraint information.417

Aswe now have two constraints, K = 2, andwewill actually be summing over k from k = 1 to k = 2. Additionally,418

our fk (n) now have two forms, one being f1(n) = n and the other being f2(n) = n2. Thus, we could write down the set of419

constraint equations as,420
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n=N∑
n=1

np(n) = 〈n〉 (65)
n=N∑
n=1

n2p(n2) = 〈n2〉 (66)

However, for this specific example, we don’t actually know the values of 〈n〉 or 〈n2〉, so we will go straight to the421

probability distribution from here. Substituting our constraint functions into the general definition for the probability422

distribution in Eq. (3), we have,423

p(n) = 1

Z
e−(λ1n+λ2n2) (67)

We can extract more insight from this by re-writing the expression by completing the square. We begin by adding424

and subtracting by λ21/4λ22 , in the argument of the exponential,425

p(n) = 1

Z
e
−

(
λ1n+λ2n

2+
λ2
1

4λ2
2

−
λ2
1

4λ2
2

)
(68)

We can now factor the first three terms in the exponential to arrive at,426

p(n) = 1

Z
e
−

[(
λ1
2λ2

+λ2n
)2
−

(
λ1
2λ2

)2]

(69)

This is beginning to lookmore like the general form of a Gaussian distribution in n, aside from the pesky constant427

term in the argument of the exponential (λ1/2λ2)2. Fortunately, we can use the rules of exponents to rearrange terms428

and remove the second squared term from the argument in the exponential. We then get,429

p(n) = e

(
λ1
2λ2

)2
Z

e
−

(
λ1
2λ2

+λ2n
)2

(70)

Factoring the λ2 term in front of n gives,430

p(n) = e

(
λ1
2λ2

)2
Z

e
−

*.
,
n+

λ1
2λ2
2

+/
-

2

1/λ2
2 (71)

Nowwehave arrived at an expression that ismore easily recognizable as the general form for aGaussiandistribution431

in n. Comparing this expression to a general Gaussian distribution,432

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 7 May 2019                   doi:10.20944/preprints201905.0078.v1

Peer-reviewed version available at Entropy 2019, 21, 712; doi:10.3390/e21070712

https://doi.org/10.20944/preprints201905.0078.v1
https://doi.org/10.3390/e21070712


22 BRUMMER ANDNEWMAN

f (x `µ,σ2) = 1
√
2σ2π

e
−
(x−µ)2
2σ2 (72)

we can begin to infer what role the Lagrangemultipliers have in this scenario. Noting that the term λ1/2λ22 sits in the433

place of the distributionmean µ, we can conclude that the distributionmean is actually given by the specific combination434

of the Lagrange multipliers of λ1/2λ22 . Similarly, noting that the term 1/λ22 sits in the place of 2σ2, we can conclude435

specifically that the standard deviation of the distribution is given by σ = 1/√2λ2. Matching the overall prefactors tells436

us that the combination of the partition function and our left over constant from completing the square combine to437

normalize the distribution.438

A.4 | The Log-Normal Distribution, constraining log(n) and log2(n)439

Everything, or more immediately the results, from the above section can be copied and pasted here but replacing every440

instance of nwith log n and n2 with log2 n to give us a log-normal distribution.441

B | APPROXIMATIONS IN THE ORIGINAL VERSION OF METE442

Two common approximations that aremade to simplify the above formulas and provide for limited analytic solutions.443

With the R package “meteR” [28], it is no longer necessary tomake approximations to simplify the core equations of444

METE. However, in the original presentation of the theory, a number of important assumptions are used. We derive445

them here because they appear in the Harte (2011) [10], as well as various earlier publications exploring the predictions446

ofMETE. The steps and assumptions that go into deriving these approximations are worth testing and exploring, as they447

are likely sources of measurable error.448

B.1 | Approximation 1:∑ e−nβ ≈ 1/β449

The first approximation used throughout Harte (2011) is presented on pages (149-150) simplifies the relationships450

between the Lagrangemultipliers.451

∑
e−nβ ≈ 1/β (73)

The series∑ e−nβ is geometric in the variable e−β . So, as long as e−β , 0, then the series can be expressed exactly452

as,453

N∑
n=1

e−nβ =
e−β − e−β (N+1)

1 − e−β
(74)

Assuming that βN >> 1, then the second term in the numerator e−β (N+1) ≈ 0, giving,454

N∑
n=1

e−nβ ≈
e−β

1 − e−β
(75)
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Furthermore, assuming that β << 1, then e−β ≈ 1 − β , and we have,455

N∑
n=1

e−nβ ≈
1 − β

β
≈ 1/β (76)

In deriving the above expression, we made the simultaneous assumptions that β << 1 and Nβ >> 1. This can be456

expressed in the single expression as 1/N << β << 1. There are two steps at which these assumptions are employed,457

thus we could include higher order terms left over from their approximations to get a sense of the resultant order of458

error associatedwith their use. It should be clear that this approximation breaks down for small N . “SmallN ” will be459

defined in relation to β ; for example, if N = 10, then β must take on values greater (or much greater) than 0.1. Because β460

is defined to be λ1 + λ2, we can reference Figure 2 to see how likely a possibility this is for all combinations of λ1 and461

λ2. For single data points, this assumption will always break down, but for large data sets 1/N << β may indeed be a462

valid assumption. However, it should also be clear that β << 1will not hold over most of the parameter space that463

is possible for ecosystems (see Figure 2). That said, for all of the empirical data sets that have examined λ1 tends to464

be small (between 0.001 and 0.1), and β < 1, whichmay be sufficient for these approximations to hold, as advertised,465

approximately.466

The size of beta will predominately be influenced by λ1 in all cases, and it may be the case that the parameter space467

is more densely populated in the region where λ1 is small (as we begin to see in Figure 2)468

B.2 | Approximation 2:∑ e−nβ/n ≈ log(1/β )469

The series∑N
n=1 e

−nβ /n is a truncated series expansion for log(1 − x ). Specifically, for `x ` < 1,470

log(1 − x ) = −
∞∑
n=1

xn

n
(77)

Replacing x with e−β and breaking the series expansion into two summations, we have,471

log(1 − e−β ) = −
N∑
n=1

e−nβ

n
−

∞∑
n=N+1

e−nβ

n
(78)

Note that this expansion requires `e−β ` < 1, which is potentially in conflict with the assumption that β << 1 (an472

assumption used later in this approximation). This conflict is due to the case that the smaller the value β has, the closer473

that eβ is to one. Solving the above expression for the partial series expansion, we have474

N∑
n=1

e−nβ

n
= − log(1 − e−β ) + Ï *

,

e−β (N+1)
N + 1

+
-

(79)

Here, the "Ï" represents "order of magnitude of error," which allows us to quantify the error in the truncation of the475

series expansion. From our previous Approximation 1, we are simultaneously assuming that Nβ >> 1, thus wewill drop476

theÏ(e−β (N+1)/(N + 1) term to arrive at,477

N∑
n=1

e−nβ

n
≈ − log(1 − e−β ) (80)
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Now, expressing e−β as a series we have,478

N∑
n=1

e−nβ

n
≈ − log *

,
1 −

∞∑
m=1

(−β )m
m! +

-
(81)

Recalling again the assumption that β << 1, we can truncate the series expansion of e−β to e−β ≈ 1 + β , where we have479

dropped all terms involving higher powers of β . Doing so, we have480

N∑
n=1

e−nβ

n
≈ − log(β ) (82)

But, − log(β ) = 0 − log(β ) = log(1) − log(β ) = log(1/β ), thus,481

N∑
n=1

e−nβ

n
≈ log(1/β ) (83)

Because we have used the assumption that β << 1 to derive this result, and this assumption may not hold in many482

cases (see Appendix B.1), both approximations may introduce substantial sources of error in METE’s predictions in483

some cases, but may otherwise be useful in cases where the user wants to estimate the relative sizes of λ1 and λ2.484

We therefore suggest that calculations involving the Lagrange multipliers be done numerically, without the use of485

simplifying approximations, withmeteR [28] or a similar software.486
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