

Social-Ecological Experiments to foster agroecological transition

Sabrina Gaba^{1,2,3} & Vincent Bretagnolle^{2,3}

¹ USC 1339, Centre d'Etudes Biologiques de Chizé, INRA, F-79360 Villiers-en-Bois, France

² Centre d'Etudes Biologiques de Chizé, UMR 7372, CNRS & Univ. La Rochelle, F-79360 Villiers-en-Bois, France

³ LTSER « Zone Atelier Plaine & Val de Sèvre », CNRS, F-79360 Villiers-en-Bois, France

11

12

13 Corresponding author:

14 Sabrina Gaba

15 Centre d'Etudes Biologiques de Chizé, F-79360 Villiers-en-Bois, France

16 Tel. 0033 549099601

17 sabrina.gaba@inra.fr

10

1

20

21

1 **Abstract**

2 Sustainable agriculture is essential to provide food security for a growing world population
3 without further sacrificing the integrity of the environment. To make progress towards
4 agricultural sustainability we must consider ecological and socioeconomic processes within
5 the agricultural socio-ecosystem and involve stakeholders in the research process.

6 We propose an innovative experimental approach for examining how natural regulation of
7 ecosystems may provide an alternative to increasing external inputs in agriculture while
8 improving the socio-economic welfare of farmers. These “social-ecological experiments” go
9 further to participatory action research by not only involving stakeholders in the research
10 process but also by manipulating simultaneously socioeconomic and ecological processes
11 under real field conditions to give a faster route to sustainability.

12 Social-ecological experiments are undertaken in real field conditions, explicitly involving
13 stakeholders, and help untangle the drivers of social-ecological dynamics under various land
14 management and farming practices. Social-ecological experiments are distinct from adaptive
15 management and scenario-planning approaches as they highlight the interactions between
16 ecological and social processes, manipulate the social and ecological processes shaping the
17 system and show causal links between patterns and processes. As an example, we describe
18 a social-ecological experiment for reducing herbicide use.

19 Social-ecological experiments offer great opportunities for increasing stakeholders’
20 acceptance of environmental policies implemented through adaptive management. These
21 experiments may help to identify management practices that optimize multiple objectives,
22 deliver a portfolio of ecosystem services and satisfy key stakeholders.

23

24 **Keywords:** agroecology, biodiversity, ecosystem services, post-normal science, socio-ecological
25 systems, sustainability, stakeholders

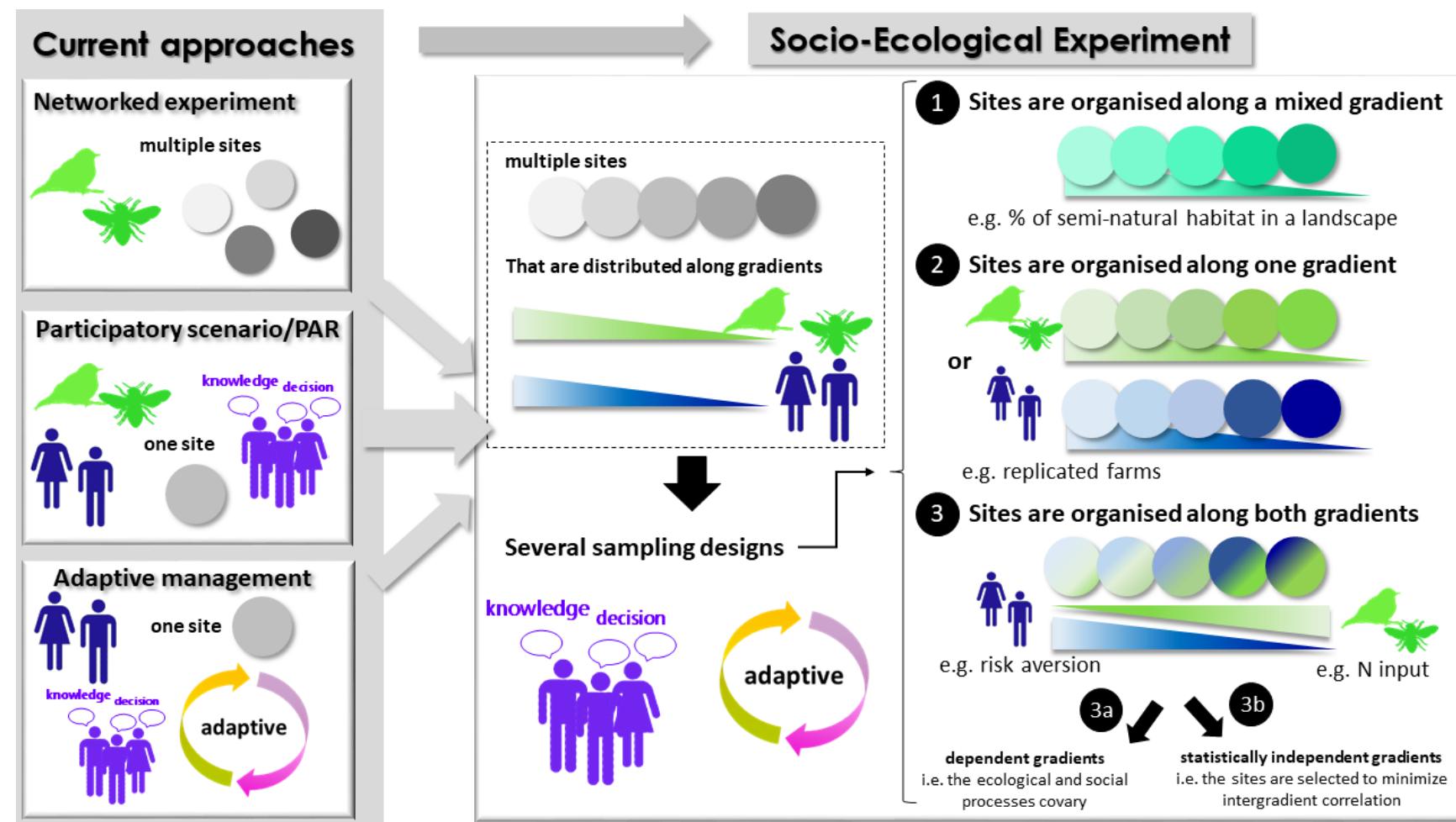
1 **The multiple challenges of sustainable agriculture: moving from concept**
2 **to practice**

3 The main societal challenge for the coming decades is to meet the food requirements of a
4 growing world population without further sacrificing the integrity of local landscapes and the
5 global environment (Godfray et al., 2010; Phalan, Balmford, Green, & Scharlemann, 2011) or
6 increasing social inequalities (Pretty & Bharucha, 2014). Sustainable agricultural systems rely
7 on multifunctional landscapes as well as transforming the conventional agriculture system;
8 both will require technological and institutional innovation (Berthet et al., 2018; Tittonell, 2014),
9 which may be made difficult given the pressures arising from climate change, finite resources
10 and economic volatility. Most alternative approaches to current agricultural models (e.g.
11 organic farming, eco-agriculture, agro-ecology, or ecological intensification) are based on
12 ecosystem services, assuming that ecological regulation processes can replace part of, or all
13 chemical inputs (Bommarco, Kleijn, & Potts, 2013; Garnett et al., 2013). Such a new paradigm
14 has stimulated the framing of several conceptual frameworks (Dendoncker et al., 2018; Gaba,
15 Fried, Kazakou, Chauvel, & Navas, 2014; Therond, Duru, Roger-Estrade, & Richard, 2017)
16 and theoretical propositions (Altieri, 1983; Gliessman, 2016; Tittonell, 2014; Wezel et al.,
17 2009). Although these provide key information and guidelines to determine the best pathways
18 towards agroecological transition, they do not offer operational solutions for food security (Loos
19 et al., 2014), limiting their use by decision-makers (Pywell et al., 2015). A key lock remains:
20 moving from top-down global analyses to local and farmer-centered approaches (Altieri, 2004;
21 Loos et al., 2014; MacMillan & Benton, 2014), i.e. the translation of concepts into practical
22 strategies for natural resource management.

23 Agroecosystems are socio-ecological systems (SES) (Fischer et al., 2017) whose social and
24 ecological dynamics involve multiple interactions between continuously changing human and
25 natural components that span nested spatial and temporal scales (Redman & Kinzig, 2003).
26 Ecological and social processes, however, often act at different spatial scales, resulting in
27 scale mismatches (Cumming, Cumming, & Redman, 2006). Field or farm scales, at which

28 farmers make management decisions, are rarely biologically meaningful scales, while market
29 access and the local organization of the economy influence the landscape organization. Such
30 interactions between humans and the environment feed into the complex dynamics between
31 farming systems and the global environment, with feedbacks and cross-scale interactions. For
32 instance, land use creates complex spatio-temporal mosaics of habitats that affect broader-
33 scale processes such as the nitrogen cycle or water regulation. Human actions, through
34 farming practices and landscape management, are thus significant drivers of ecosystem
35 dynamics. They create new systems in which external inputs and mechanical intervention
36 improve (fertilization and irrigation) or replace (pesticide use) ecological processes, while land
37 use changes disturb the natural flows of biodiversity and matter. These human actions are
38 moreover diverse, as no two farmers cultivate their fields in exactly the same way (Gaba et al.,
39 2016; Lechenet et al., 2014), resulting in a wide range of management strategies that may
40 interact differently with ecological processes. Given the multiple scales, the diversity of
41 stakeholders and the many different interactions between social and ecological processes, the
42 agricultural SESs dynamics are highly uncertain and complex. Global change and human use
43 of agricultural SES are creating novel social ecological conditions and associated problems
44 that are difficult to understand and solve. Solving these wicked problems with complex causes
45 and consequences calls for a new research posture, shifting from mono-disciplinary local-scale
46 approaches to adaptive, participatory and transdisciplinary landscape scale strategies
47 (Angelstam et al., 2013, 2018). This new research posture allows accounting for various and
48 diverging viewpoints, through explicit involvement of stakeholder knowledge, and effective
49 cooperation between science and society (Spangenberg, Görg, & Settele, 2015). This requires
50 moving from classical normal science posture to a novel approach that remains “constantly in
51 the fuzziness of the science in the making” (Barnaud & Antona, 2014) and actively involves
52 decision makers and stakeholders in knowledge co-construction and problem-solving
53 (Funtowicz & Ravetz, 1994). Such posture may also help to unlock the socio-economic barriers
54 and thus foster agroecological transition, while dealing in the same time with climate change,
55 natural resource depletion, and worldwide economic and social disorder. The main objective

56 of this paper is to present a new research approach, that we name “social-ecological
57 experiments”. In the context of sustainable farming, these experiments explicitly involve
58 farmers and enable to assess, simultaneously in real conditions, how ecological and social
59 processes affect the SES dynamic in a context of uncertainty. Such experiments are (i) based
60 on hypotheses arising from a combination of ecological predictions and stakeholder objectives,
61 (ii) tackle the diversity of stakeholders and the complexity of the system and (iii) promote social
62 learning and the integration of knowledge by multiple stakeholders, facilitating the transition
63 toward sustainable agriculture. We first examine how this new approach is related to existing
64 ones. Then we describe the main features for formalizing and applying this multidimensional
65 and transdisciplinary approach to real-case studies, by providing as well a working example.


66 **Existing approaches to foster agroecological transitions**

67 Experiments have been widely used in agricultural sciences to establish causal links between
68 patterns and processes, for example between yield and insect-pollination (Bommarco, Marini,
69 & Vaissière, 2012; Perrot, Gaba, Roncoroni, Gautier, & Bretagnolle, 2018). They provided
70 important insights within the efficiency-substitution-redesign model (Hill & MacRae, 1995) in
71 making best use of resources within existing system configurations, using new technologies
72 and practices to replace existing ones that may be less effective on both productivity and
73 sustainability grounds, and designing agricultural systems that ensure food production while
74 limiting negative impacts on the environment. However, the way in which they are usually
75 designed and implemented limits their ability to foster agroecological transition for the following
76 reasons. Many experiments have been conducted in enclosures, such as greenhouses or
77 experimental fields, to control the environment and exclude exogenous sources of variation, in
78 particular human variation in farming practices. This is also the case for long-term field
79 experiments such as the broadbalk winter wheat or park grass experiments in Rothamsted,
80 UK (Johnston & Poulton, 2018), Leibniz Centre for Agricultural Landscape Research (ZALF)
81 in Müncheberg, Germany (Dalchow, Bork, & Schubert, 1998), which provide important insights
82 to improve agricultural practices such as tillage or weed control and enhance the

83 understanding of ecosystem functioning. Other field experiments have been set up for testing
84 the whole cropping systems (Debaeke et al., 2009; Hossard et al., 2014), and hence have
85 been limited to comparisons of complete cropping systems rather than controlling the variation
86 of each individual factor. These experiments rely on a simplification view of the agroecosystem
87 and are usually conducted with few replicates (Sebilo, Mayer, Nicolardot, Pinay, & Mariotti,
88 2013), impeding the generalization of the outcomes. Even the use of networks of such
89 experiments, which may be an option for exploring field-scale or farm-scale systems, still fails
90 to take account of the landscape and socioeconomic context and rarely cover a period long
91 enough for evaluating the sustainability of land management practices (Lechenet, Makowski,
92 Py, & Munier-Jolain, 2016). Finally, they rarely incorporate stakeholder knowledge into the
93 research process, barely record human factors (behaviours, practices and decisions), and
94 when farmers are included, they are often considered as research subjects or passive
95 components of the system under investigation (Pretty, 1995).

96 Participatory action research (PAR), conversely, involves farmers through transdisciplinary
97 research. PAR has been developed successfully in several networks worldwide (see Méndez,
98 Caswell, Gliessman, & Cohen, 2017). Such participatory approaches that make the most of
99 the expertise of farmers, other stakeholders and scientists (Méndez et al., 2017) are
100 increasingly seen as a way to address the multiple and often conflicting social, environmental,
101 and economic sustainability goals related to sustainable agriculture (Cramb, 2000). PAR
102 encompass participatory rural appraisal (Menconi, Grohmann, & Mancinelli, 2017),
103 participatory scenario building (Oteros-Rozas et al., 2015), participatory mapping (McCall,
104 2003), and participatory modelling (Matthews, Gilbert, Roach, Polhill, & Gotts, 2007). Such
105 collaborative work is very useful for creating knowledge that can be put into practice. However,
106 the innovative agroecological practices resulting from PAR often remains site specific, making
107 general recommendations for a sustainable management difficult (Cramb, 2000). Furthermore,
108 this approach does not explicitly link social and ecological variables, limiting our understanding
109 of the feedback between human intervention and ecosystem functioning (**Figure 1**) and is not

110 an experimental approach in the strict sense as true experiments involve the manipulation of
111 some system characteristics to assess their effects on the system. We argue that combining
112 an experiment and a participative dimension could be a powerful mean for promoting
113 agroecological knowledge and supporting the agroecological transition. This calls for a new
114 type of research that explicitly relies on experiments as a means of learning about the system
115 functioning, and includes adaptive management approaches wherein farmers and researchers
116 implement and monitor specific actions to identify the management practices that optimize
117 multiple objectives, deliver a portfolio of ecosystem services and satisfy the social demands of
118 key stakeholders.

1

2 **Figure 1:** Socio-ecological experiments to investigate socio-ecological systems. The figure shows the components of a SES experiment in comparison with three approaches used for creating

3 knowledge that can be put into practice. Socio-ecological experiments account for social () and ecological () processes in multiple sites in a transdisciplinary and adaptive way.
 4 Networked experiments rely on multiple sites (e.g., NutNet; www.nutnet.umn.edu), but do not involve stakeholder and social processes, contrary to adaptive management or participatory
 5 processes (i.e. participatory scenario or participatory action research (PAR)). The later however usually involve a single site. Socio-ecological experiments gather the strength of these
 6 approaches and go further, by including multiple sites, ensuring for sufficient genericity. The multiple sites should be spatially organized over gradients. In its simplest form (**1**), the sites are
 7 distributed along one gradient that covers a given range of situations (e.g., a landscape gradient that result from interacting social and ecological processes). More accomplished version (**3**)
 8 involves both ecological and social gradients, which, in the best case scenario (**3b**), may be statistically independent (i.e. low correlation) by design, therefore allowing higher statistical power
 9 in the analysis.

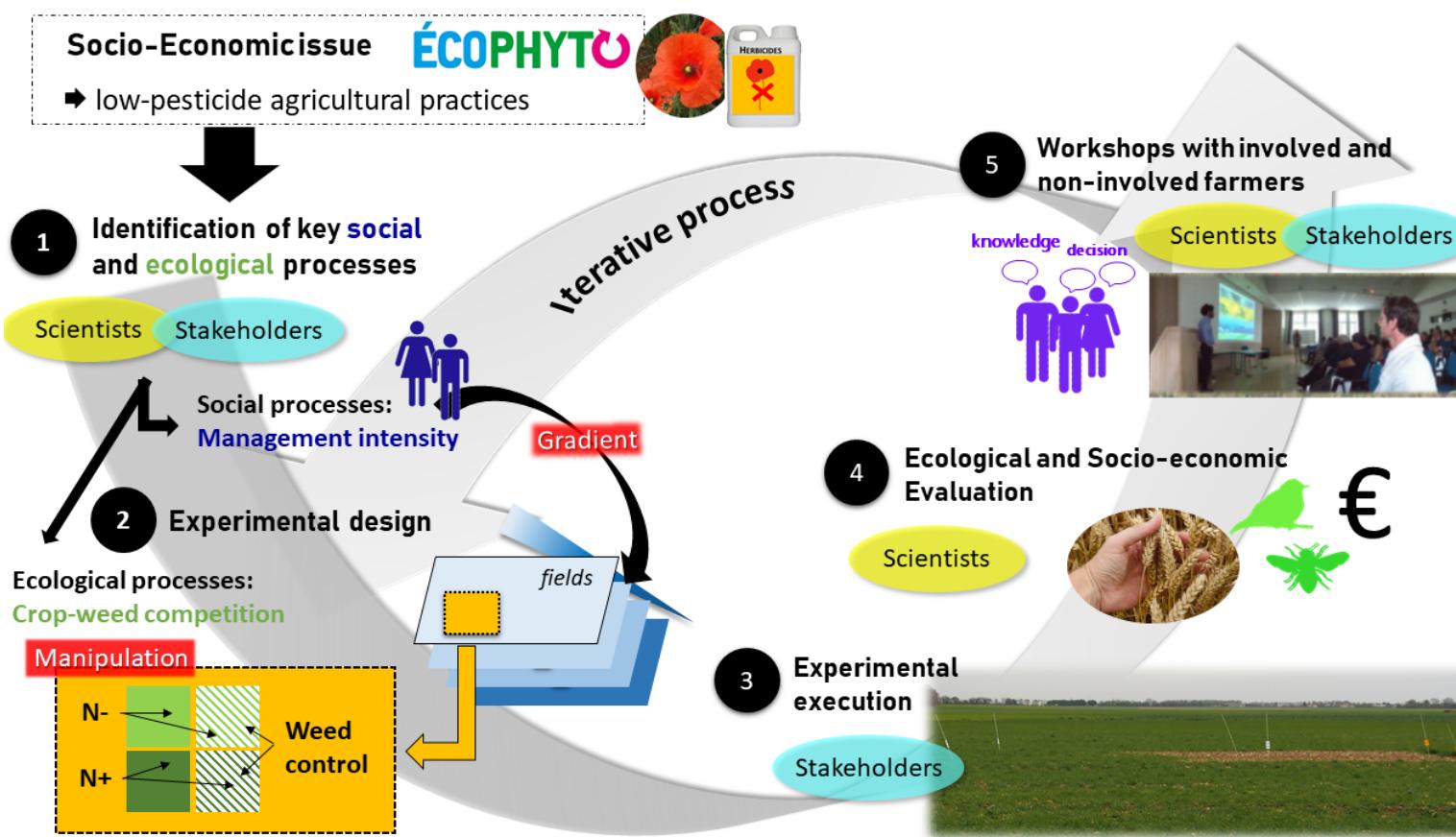
1 **Designing social-ecological experiments**

2 We refer to this new type of research as social-ecological experiments, a research that aims
3 at identifying the best management actions, through an iterative process, considering the
4 inherent uncertainty and complexity of the SES. Social-ecological experiments are related to
5 adaptive management (Garibaldi et al., 2017), scenario planning (Oteros-Rozas et al., 2015;
6 Peterson, Cumming, & Carpenter, 2003), and PAR. Their originality lies in making explicit use
7 of gradients of ecological, socio-economic components, or both, to investigate how
8 management actions affect the interaction of ecological and social processes, and ultimately
9 the delivery of a bundle of ecosystem services ([Figure 1](#)). In this approach, each experimental
10 unit (field, farm or landscape) represents a particular intersection of ecological and social
11 processes. Setting up an experimental design over multiple sites allows overcoming the
12 difficulties and the ethical issues related to the manipulation of social parameters to capture
13 the variability and the unpredictability of human decisions and actions (see details below).
14 Moreover, by covering a wide range of pedoclimatic conditions, landscapes, past management
15 history and farm socio-economic characteristics, it examines a variety of possible adaptive
16 pathways to sustainability and ensures for generalization of the outcomes. Below, we describe
17 the main features for formalizing and applying this multidimensional and transdisciplinary
18 approach ([Figure 2](#)), and illustrate it with a working example.

19 ***Context and background***

20 Agriculture is currently facing wicked problems: environmental and health consequences of
21 pesticide use is one of the most controversial topic involving citizen, farmers, science and
22 policy. In France in 2007, a societal demand toward innovative solutions for reducing
23 pesticides use was strongly expressed, giving birth to the National Ecophyto Plan in 2008. One
24 of the core purpose of Ecophyto was to identify, innovate and then disseminate the best low-
25 pesticide agricultural practices (Lechenet, Dessaint, Py, Makowski, & Munier-Jolain, 2017).
26 Ecophyto has, however, failed to reduce herbicide use, which has actually increased over the
27 past 10 years. Farmers generally wish to maintain their levels of weed control to keep short-

28 term yields and profits, prevent the build-up of the weed seed bank, and maintain appearances
29 (Doohan, Wilson, Canales, & Parker, 2010). Moving to low-pesticide agriculture practices is
30 therefore a difficult problem to come to grip with. Next we present the different steps of the
31 SES experiment approach and illustrate how such approach can help providing knowledge
32 and implement agroecological management actions.


33 ***The implementation***

34 The **first step** of the socio-ecological experiment process consists in the identification of key
35 social and ecological processes related to plausible alternative management options (here,
36 reducing the use of herbicides) based on scientific and farmers knowledge. In our case study,
37 crop competition, i.e. an ecological process, may be a suitable alternative to herbicide use. In
38 arable fields, the density of crop plants is much higher than that of weed plants and as crop
39 species are strong competitors in high input environments, crops can control weeds through
40 competition (Gaba, Caneill, Nicolardot, Perronne, & Bretagnolle, 2018). The competitive ability
41 of the crop however varies with the crop variety (Andrew, Storkey, & Sparkes, 2015), crop
42 density (Kristensen, Olsen, & Weiner, 2008) and agricultural practices such as fertilizer
43 amounts, all of them being related to farmers' decision. Consequently, the efficiency of crop
44 competition to partially replace herbicides interacts with these social factors as they result from
45 human decision-making. Here the social component is obtained through a well-designed
46 selection of experimental units, that are chosen to cover a full range of management practices
47 and intensities, which are generally related to farmers' decision-making process (e.g. risk
48 aversion, (Moschini & Hennessy, 2001)). In practice, this requires *a prior* knowledge of their
49 variability in the study area. In our example ([Figure 2](#)), the sites are selected to cover a
50 management intensity gradient as a proxy of human decision-making, using data from farm
51 surveys (i.e. pesticides use, nitrogen application, tillage, ...) conducted in the study area during
52 previous research projects (Bretagnolle et al., 2018; Gaba et al., 2018). If there are no such
53 data or prior knowledge, data on social factors under study should be collected before the start
54 of the experiment. The selection of experimental units identifies the group of farmers who

55 should be involved in the experiment. Involvement can occur using either one-to-one or group
56 meetings during which the experiment process is discussed. Due to their intrinsic variability, a
57 critical feature of the experiment, the number of farmers involved in the experiment should be
58 high enough (at least 30) to test the effects of different treatments thoroughly.

59 ***The design***

60 The experimental design is implemented by the farmers themselves, in each experimental unit
61 (field or farm) along the social gradient ([Figure 2](#)). The design first consists in identifying the
62 management practices that should most interact with (or affect) the ecological process under
63 study. The management practices may be to sow mixed crop, reduce pesticides or nitrogen,
64 or modify the crop sequence. In each field, different levels of changes in management practices
65 (e.g. intensity of pesticides pressures, monocultures vs. mixed crop, ...) are implemented in
66 several plots, while, in the rest of the field, the farmers use their standard practices as a control.
67 In this way, the ecological processes under study are manipulated by the farmers in each
68 experimental unit. Examining the outcome along the gradient of socio-economic component
69 allows capturing the effect of management, accounting for the interaction between the
70 ecological and social processes. The number and kind of treatments, including the “control”
71 treatments, are discussed between the farmers and scientists ([Figure 2](#)). The implementation
72 of the treatments should be driven by the farmers to reflect human variability in decisions,
73 interventions and actions. In our example, the importance of competition can be manipulated
74 by varying the level of fertilizer (i.e. related to the resource available for the plants) and/or of
75 herbicides (i.e. related to the abundance of weed plants) along the gradient of farming intensity
76 (defined by the intensity of agrochemical use). When reducing fertilizer or herbicide use, the
77 farmers decide themselves to either skip an application or reduce the quantity applied in each
78 application. This allows accounting for the farmer’s decision when assessing the effect of
79 management actions.

1

2 **Figure 2:** The five stages of a social-ecological experiment for the case study in Box 2. Stakeholders involvement is shown by a blue dot ; whereas scientists involvement is
 3 indicated by an orange dot . This social-ecological experiment for weed control in winter cereal fields was run with farmers in the LTSER “Zone Atelier Plaine & Val de Sèvre”
 4 over two years. The social process investigated was the weed control intensity. We used one-to-one meetings to engage 14 farmers who had been selected to reflect a full
 5 gradient of management intensity using our farm survey database. The experimental design and practical implementation were drawn up in collaboration with these farmers.
 6 They selected fields and implemented the design in their own way. In each field, herbicide use, nitrogen fertilization and crop presence were manipulated, separately and in
 7 combination. Crop presence was used to quantify the effect of crop competition on weed biomass. We surveyed the weeds and harvested weeds and crop plants to estimate
 8 weed biomass and crop yield. Information about yields and farming practices (pesticide and fertilizer use, ploughing, weed control) was collected by interviews with each farmer.
 9 We analysed the data, and the yields and profits were discussed in workshops with the 14 farmers as well as other farmers from the study area. After the workshops, we updated
 10 the design of the experiment as requested by the participants and nine new farmers were recruited for a total of 23 farmers the second year.

1 ***The variables***

2 During the experiment, scientists should measure some parameters, the variables. These
3 variables should reflect the stakeholders' goals in terms of production (expected yield) and
4 monetary value. These goals should be identified during face-to-face meeting or workshops.
5 To assess the success in achieving the multiple objectives of sustainable agriculture (e.g., soil
6 and water quality, flagship species conservation), the full set of variables should include: (i)
7 biodiversity indicators for key types of organisms such as plants, pollinators and pest enemies;
8 (ii) long-term and short-term crop yields, as well as economic return; (iii) ecological functions
9 such as soil properties that contribute to sustaining yields and reducing the long-term variability
10 of yields; (iv) the farm infrastructure and the farmers' practices during the cropping season
11 and, if relevant, during the preceding years; and (v) the benefits to different stakeholders,
12 including yields and other economic and cultural goods, in a multifunctional agriculture
13 perspective. In our working example ([Figure 2](#)), the weeds and harvested crop plants are
14 surveyed to estimate weed biomass and crop biomass, as proxies to estimate the importance
15 of competition. Information about farming practices (pesticide and fertilizer use, ploughing,
16 weed control) is collected by interviews with each farmer. In the process, farmers directly
17 involved in the experiment can assess the extent to which the biodiversity and ecosystem
18 services satisfy their needs and can be asked to indicate the value that they would attribute to
19 each of the ecosystem services.

20 ***The outcomes***

21 After data analysis, the results of the experiment are presented and discussed in workshops
22 with the participation of the farmers involved in the experiment and other farmers from the
23 study area ([Figure 2](#)). These workshops provide a general overview of the results of the
24 experiment which, up to this point, has been seen as an individual case by each farmer
25 involved. The farmers and scientists can also discuss the pros and cons of the experiment and
26 comment on the results. These workshops make it easier to transfer the knowledge gained
27 from the experiment to farmers who were not involved, encouraging them to become involved

28 in future research. Social-ecological experiments are not, therefore, a rigid, linear
29 methodology, but a flexible and adaptive concept. This is particularly important for those
30 experiments that need to be run over several years (to account for the unpredictability of
31 environmental and market conditions). For long-term experiments, the process becomes
32 iterative with modifications to the design, after the workshops, to account for each participant's
33 needs. Our social-ecological experiment concept may, therefore be seen as a first step toward
34 adaptive governance (Folke, Hahn, Olsson, & Norberg, 2005).

35 **Research infrastructures for social-ecological experiments**

36 We finally argue that dedicated research infrastructures are required for such large-scale,
37 spatially explicit social-ecological experiments. Long Term Socio-Ecological Research
38 (LTSER) platforms have been set up to investigate socio-ecosystems (Angelstam et al., 2018)
39 and produce the knowledge required to support sustainable regional development (Berthet et
40 al., 2018; Bretagnolle et al., 2019). In such platforms, stakeholders (farmers, practitioners,
41 managers and policy-makers) work with scientists from various disciplines to improve the
42 knowledge of socio-ecological interactions within their social-ecological system. This
43 transdisciplinary collaboration in the design and execution of the experiments facilitates the
44 involvement of the local community in research projects (Berthet et al., 2018). Since the results
45 from a socio-ecosystem experiment apply directly to the socio-ecosystem studied, a network
46 of participatory experiments could cover a range of landscapes, as well as a range of
47 socioeconomic conditions and provide a research infrastructure for social-ecological
48 experiments. Networked experiments of this kind were recently proposed for the restoration of
49 degraded forest land (Gellie et al., 2018).

50 **Conclusion**

51 Social-ecological experiments as described here represent a novel methodology distinguished
52 by its particular metrics and experimental units, both reflecting a combination of social and
53 ecological processes, its aim of delivering a bundle of ecosystem services over the long term,

54 and its transdisciplinary approach. This is a departure from conventional top-down scientific
55 methodologies, since it alternatively provides a mechanism for bottom-up creation of scientific
56 knowledge and for sharing this knowledge with a wider society. It is important to appreciate
57 that socio-ecological experiments are complementary to participatory action research. They
58 recognise the links between the biophysical and social systems, the diversity of knowledge
59 and values and the complexity of the systems. This makes them part of the post-normal
60 science movement (Funtowicz & Ravetz, 1994), as similar approaches have already been
61 suggested (Janssen, Holahan, Lee, & Ostrom, 2010) and advocated (Rommel, Villamayor-
62 Tomas, Müller, & Werthmann, 2015). This approach has two main advantages: experiments
63 can be improved continuously through real time adaptive management (Walters, 1986), and
64 their results are available to decision makers (in this case, farmers) by their direct involvement
65 (Lang et al., 2012). Evidence-based results from such experiments can provide a useful
66 contribution to effectively implementing local context dependent policies and, at the same time,
67 encourage more stakeholders to become involved in experiments assessing sustainable
68 management strategies. Continuous discussions with, and the involvement of, stakeholders
69 also encourages the adaptive management of the experimental design. Because stakeholders
70 are directly involved in the experiment in its very first stages, the design of the experiment
71 should minimise risks for the participants; then, as the experiment evolves, higher risk
72 strategies may be tested based on the earlier results. Social-ecological experiments have,
73 however, some limitations that should be accounted for in the future. For instance, it is difficult
74 to rule out extrinsic variables driving the observed patterns, such as past management
75 strategies. In addition, human decision processes and behaviour are in our framework
76 considered as hidden parameters. However, the keystone of this approach is to consider the
77 variety of possible adaptive pathways to sustainability, taking account of the diversity of human
78 behaviour and multiple uncertainties and relying on the stakeholders to adapt and respond to
79 the challenges they are facing. We therefore believe that the benefits outweigh the limitations.

80 By dealing with the combination of social and ecological processes in real conditions, these
81 experiments are ideal for (i) acquiring and quantifying valuable information on the complex
82 social-ecological interface, (ii) supporting collaborative knowledge production which facilitates
83 both learning and sharing experience as the stakeholders are directly involved in the
84 experiments, and (iii) increasing acceptance of policy changes based on the results. Politicians
85 and decision-makers need practical, scientifically sound, evidence-based information from the
86 real world for managing land sustainably. Extending larger-scale and real-world studies and
87 experiments to understand and manage both the social and ecological components of
88 agroecosystems is clearly the next step for achieving sustainable agriculture. Further research
89 should therefore explore how to move from long-term monitoring research sites to a network
90 of long-term social-ecological experiments accounting for the characteristics of each different
91 SES. To foster food production transformation, we also encourage further studies to set up
92 sociological experiments throughout the food production chain that involve different categories
93 of stakeholders (farmers, residents, cooperatives, food producers, consumers) in the
94 experimental process.

95 **Authors' contributions**

96 SG and VB conceived the ideas. The preparation of the manuscript was a joint undertaking
97 and both of the authors gave final approval for publication.

98 **Acknowledgements**

99 This work was partly funded partly by ANR AGROBIOSE (ANR-13-AGRO-0001), the
100 Pollinisateurs project funded by French Ministry of Environment, and the 2013–2014
101 BiodivERsA/FACCE-JPI joint call for research proposals (project ECODEAL), with the French
102 research funds ANR, BMBF, FORMAS, FWF, MINECO, NWO and PT-DLR. We thank Elsa
103 Berthet for her comments on a previous version of the manuscript. We are grateful to the
104 LTSER Zones Atelier Network for valuable discussions. SG and VB are respectively funded
105 by INRA and CNRS.

106 **Data accessibility**

107 Data have not been archived because this article does not contain data.

108 **References**

109 Altieri, M. A. (1983). *Agroecology: the scientific basis of alternative agriculture*. *Agroecology: the scientific basis of alternative agriculture*. (Altieri, M.). CRC Press.

111 Altieri, M. A. (2004). Linking ecologists and traditional farmers in the search for sustainable agriculture. *Frontiers in Ecology and the Environment*, 2(1), 35–42. doi:10.1890/1540-9295(2004)002[0035:LEATFI]2.0.CO;2

114 Andrew, I. K. S., Storkey, J., & Sparkes, D. L. (2015). A review of the potential for competitive cereal cultivars as a tool in integrated weed management. *Weed Research*, 55(3), 239–248. doi:10.1111/wre.12137

117 Angelstam, P., Andersson, K., Annerstedt, M., Axelsson, R., Elbakidze, M., Garrido, P., ... Stjernquist, I. (2013). Solving problems in social-ecological systems: Definition, practice and barriers of transdisciplinary research. *Ambio*, 42(2), 254–265. doi:10.1007/s13280-012-0372-4

121 Angelstam, P., Manton, M., Elbakidze, M., Sijtsma, F., Adamescu, M. C., Avni, N., ... Yamelynets, T. (2018). LTSER platforms as a place-based transdisciplinary research infrastructure: learning landscape approach through evaluation. *Landscape Ecology*, 1–24. doi:10.1007/s10980-018-0737-6

125 Barnaud, C., & Antona, M. (2014). Deconstructing ecosystem services: Uncertainties and controversies around a socially constructed concept. *Geoforum*, 56, 113–123. doi:10.1016/j.geoforum.2014.07.003

128 Berthet, E. T., Bretagnolle, V., Lavoie, S., Sabatier, R., Tichit, M., & Segrestin, B. (2018). Applying ecological knowledge to the innovative design of sustainable agroecosystems. *Journal of Applied Ecology*, 56(1), 44–51. doi:10.1111/1365-2664.13173

131 Bommarco, R., Kleijn, D., & Potts, S. G. (2013). Ecological intensification: Harnessing ecosystem services for food security. *Trends in Ecology and Evolution*, 28(4), 230–238. doi:10.1016/j.tree.2012.10.012

134 Bommarco, R., Marini, L., & Vaissière, B. E. (2012). Insect pollination enhances seed yield, quality, and market value in oilseed rape. *Oecologia*, 169(4), 1025–1032. doi:10.1007/s00442-012-2271-6

137 Bretagnolle, V., Benoit, M., Bonnefond, M., Breton, V., Church, J. M., Gaba, S., ... Fristz, H. (2019). Action-orientated research and framework: insights from the French LTSER network. *Ecology and Society*.

140 Bretagnolle, V., Berthet, E., Gross, N., Gauffre, B., Plumejeaud, C., Houte, S., ... Gaba, S. (2018). Towards sustainable and multifunctional agriculture in farmland landscapes: Lessons from the integrative approach of a French LTSER platform. *Science of The Total Environment*, 627, 822–834. doi:https://doi.org/10.1016/j.scitotenv.2018.01.142

144 Cramb, R. A. (2000). Processes influencing the successful adoption of new technologies by smallholders. In *Working with Farmers: The Key to Adoption of Forage Technologies*.

146 Cumming, G. S., Cumming, D. H. M., & Redman, C. L. (2006). Scale mismatches in social-ecological systems: Causes, consequences, and solutions. *Ecology and Society*, 11(1). doi:10.5751/ES-01569-110114

149 Dalchow, C., Bork, H.-R., & Schubert, P. (1998). *Forschung in Müncheberg/Mark. Bild- und*

150 Schriftzeugnisse zur Entwicklung seit 1928. Müncheberg.

151 Debaeke, P., Munier-Jolain, N., Bertrand, M., Guichard, L., Nolot, J.-M., Faloya, V., & Saulas, P. (2009). Iterative design and evaluation of rule-based cropping systems: methodology and case studies. A review. *Agronomy for Sustainable Development*, 29(1), 73–86. doi:10.1051/agro:2008050

155 Dendoncker, N., Boeraeve, F., Crouzat, E., Dufrêne, M., König, A., & Barnaud, C. (2018). How 156 can integrated valuation of ecosystem services help understanding and steering 157 agroecological transitions? *Ecology and Society*, 23(1), 1–13. doi:10.5751/ES-09843- 158 230112

159 Doohan, D., Wilson, R., Canales, E., & Parker, J. (2010). Investigating the Human Dimension 160 of Weed Management: New Tools of the Trade. *Weed Science*, 58(4), 503–510. 161 doi:10.1614/WS-D-09-00086.1

162 Fischer, J., Abson, D. J., Bergsten, A., French Collier, N., Dorresteijn, I., Hanspach, J., ... 163 Senbeta, F. (2017). Reframing the Food–Biodiversity Challenge. *Trends in Ecology and 164 Evolution*, 32(5), 335–345. doi:10.1016/j.tree.2017.02.009

165 Folke, C., Hahn, T., Olsson, P., & Norberg, J. (2005). Adaptive governance of social-ecological 166 systems. *Annual Review of Environment and Resources*. 167 doi:10.1146/annurev.energy.30.050504.144511

168 Funtowicz, S. O., & Ravetz, J. R. (1994). Uncertainty, complexity and post-normal science. 169 *Environmental Toxicology and Chemistry*, 13(12), 1881–1885. 170 doi:10.1002/etc.5620131203

171 Gaba, S., Caneill, J., Nicolardot, B., Perronne, R., & Bretagnolle, V. (2018). Crop competition 172 in winter wheat has a higher potential than farming practices to regulate weeds. 173 *Ecosphere*, 9(10), e02413. doi:10.1002/ecs2.2413

174 Gaba, S., Fried, G., Kazakou, E., Chauvel, B., & Navas, M.-L. (2014). Agroecological weed 175 control using a functional approach: A review of cropping systems diversity. *Agronomy for 176 Sustainable Development*, 34(1), 103–119. doi:10.1007/s13593-013-0166-5

177 Gaba, S., Gabriel, E., Chadoeuf, J., Bonneu, F., & Bretagnolle, V. (2016). Herbicides do not 178 ensure for higher wheat yield, but eliminate rare plant species. *Scientific Reports*, 6, 179 30112. doi:10.1038/srep30112

180 Garibaldi, L. A., Gemmill-Herren, B., D'Annolfo, R., Graeub, B. E., Cunningham, S. A., & 181 Breeze, T. D. (2017). Farming Approaches for Greater Biodiversity, Livelihoods, and Food 182 Security. *Trends in Ecology and Evolution*, 32(1), 68–80. doi:10.1016/j.tree.2016.10.001

183 Garnett, T., Appleby, M. C., Balmford, A., Bateman, I. J., Benton, T. G., Bloomer, P., ... 184 Godfray, H. C. J. (2013). Sustainable intensification in agriculture: Premises and policies. 185 *Science*, 341(6141), 33–34. doi:10.1126/science.1234485

186 Gellie, N. J. C., Breed, M. F., Mortimer, P. E., Harrison, R. D., Xu, J., & Lowe, A. J. (2018). 187 Networked and embedded scientific experiments will improve restoration outcomes. 188 *Frontiers in Ecology and the Environment*, 16(5), 288–294. doi:10.1002/fee.1810

189 Giessman, S. (2016). Transforming food systems with agroecology. *Agroecology and 190 Sustainable Food Systems*, 187–189. doi:10.1080/21683565.2015.1130765

191 Godfray, H. C. J., Beddington, J. R., Crute, I. R., Haddad, L., Lawrence, D., Muir, J. F., ... 192 Smaling, E. M. A. (2010). Food security: the challenge of feeding 9 billion people. *Science 193 (New York, N.Y.)*, 327(5967), 812–818. doi:10.1126/science.1185383

194 Hill, S. B., & MacRae, R. J. (1995). Conceptual Framework for the Transition from Conventional 195 to Sustainable Agriculture. *Journal of Sustainable Agriculture*, 7(1), 81–87. 196 doi:10.1300/j064v07n01_07

197 Hossard, L., Philibert, A., Bertrand, M., Colnenne-David, C., Debaeke, P., Munier-Jolain, N.,
198 ... Makowski, D. (2014). Effects of halving pesticide use on wheat production. *Scientific
199 Reports*, 4(4405). doi:10.1038/srep04405

200 Janssen, M. A., Holahan, R., Lee, A., & Ostrom, E. (2010). Lab experiments for the study of
201 social-ecological systems. *Science*, 328(5978), 613–617. doi:10.1126/science.1183532

202 Johnston, A. E., & Poulton, P. R. (2018). The importance of long-term experiments in
203 agriculture: their management to ensure continued crop production and soil fertility; the
204 Rothamsted experience. *European Journal of Soil Science*, 69(1), 113–125.
205 doi:10.1111/ejss.12521

206 Kristensen, L., Olsen, J., & Weiner, J. (2008). Crop Density, Sowing Pattern, and Nitrogen
207 Fertilization Effects on Weed Suppression and Yield In Spring Wheat. *Weed Science*,
208 56(1), 97–102. doi:10.1614/ws-07-065.1

209 Lechenet, M., Bretagnolle, V., Bockstaller, C., Boissinot, F., Petit, M. S., Petit, S., & Munier-
210 Jolain, N. M. (2014). Reconciling pesticide reduction with economic and environmental
211 sustainability in arable farming. *PLoS ONE*, 9(6), e97922.
212 doi:10.1371/journal.pone.0097922

213 Lechenet, M., Dessaint, F., Py, G., Makowski, D., & Munier-Jolain, N. (2017). Reducing
214 pesticide use while preserving crop productivity and profitability on arable farms. *Nature
215 Plants*, 3(3), 17008. doi:10.1038/nplants.2017.8

216 Lechenet, M., Makowski, D., Py, G., & Munier-Jolain, N. (2016). Profiling farming management
217 strategies with contrasting pesticide use in France. *Agricultural Systems*.
218 doi:10.1016/j.agrsy.2016.08.005

219 Loos, J., Abson, D. J., Chappell, M. J., Hanspach, J., Mikulcak, F., Tichit, M., & Fischer, J.
220 (2014). Putting meaning back into “sustainable intensification.” *Frontiers in Ecology and
221 the Environment*, 12(6), 356–361. doi:10.1890/130157

222 MacMillan, T., & Benton, T. (2014). Engage farmers in research. *Nature*, 509(7498), 25.
223 doi:10.1038/509025a

224 Matthews, R. B., Gilbert, N. G., Roach, A., Polhill, J. G., & Gotts, N. M. (2007). Agent-based
225 land-use models: A review of applications. *Landscape Ecology*, 22(10), 1447–1459.
226 doi:10.1007/s10980-007-9135-1

227 McCall, M. K. (2003). Seeking good governance in participatory-GIS: A review of processes
228 and governance dimensions in applying GIS to participatory spatial planning. *Habitat
229 International*, 27(4), 549–573. doi:10.1016/S0197-3975(03)00005-5

230 Menconi, M. E., Grohmann, D., & Mancinelli, C. (2017). European farmers and participatory
231 rural appraisal: A systematic literature review on experiences to optimize rural
232 development. *Land Use Policy*, 60, 1–11. doi:10.1016/j.landusepol.2016.10.007

233 Méndez, V. E., Caswell, M., Gliessman, S. R., & Cohen, R. (2017). Integrating agroecology
234 and participatory action research (PAR): Lessons from Central America. *Sustainability
235 (Switzerland)*, 9(5), 705. doi:10.3390/su9050705

236 Moschini, G., & Hennessy, D. A. (2001). Uncertainty, risk aversion, and risk management for
237 agricultural producers. In B. L. Gardner & G. C. Rausser (Eds.), *Handbook of Agricultural
238 Economics* (pp. 87–153). doi:10.1016/S1574-0072(01)10005-8

239 Oteros-Rozas, E., Martín-López, B., Daw, T. M., Bohensky, E. L., Butler, J. R. A., Hill, R., ...
240 Vilardy, S. P. (2015). Participatory scenario planning in place-based social-ecological
241 research: Insights and experiences from 23 case studies. *Ecology and Society*, 20(4), 32.
242 doi:10.5751/ES-07985-200432

243 Perrot, T., Gaba, S., Roncoroni, M., Gautier, J. L., & Bretagnolle, V. (2018). Bees increase

244 oilseed rape yield under real field conditions. *Agriculture, Ecosystems and Environment*,
245 266, 39–48. doi:10.1016/j.agee.2018.07.020

246 Peterson, G. D., Cumming, G. S., & Carpenter, S. R. (2003). Scenario planning: A tool for
247 conservation in an uncertain world. *Conservation Biology*. doi:10.1046/j.1523-
248 1739.2003.01491.x

249 Phalan, B., Balmford, A., Green, R. E., & Scharlemann, J. P. W. (2011). Minimising the harm
250 to biodiversity of producing more food globally. *Food Policy*, 36, S62–S71.
251 doi:10.1016/j.foodpol.2010.11.008

252 Pretty, J., & Bharucha, Z. P. (2014). Sustainable intensification in agricultural systems. *Annals
253 of Botany*, 114(8), 1571–1596. doi:10.1093/aob/mcu205

254 Pretty, J. N. (1995). Participatory learning for sustainable agriculture. *World Development*,
255 23(8), 1247–1263. doi:10.1016/0305-750X(95)00046-F

256 Pywell, R. F., Heard, M. S., Woodcock, B. A., Hinsley, S., Riddin, L., Nowakowski, M., &
257 Bullock, J. M. (2015). Wildlife-friendly farming increases crop yield: Evidence for
258 ecological intensification. *Proceedings of the Royal Society B: Biological Sciences*,
259 282(1816), 20151740. doi:10.1098/rspb.2015.1740

260 Redman, C. L., & Kinzig, A. P. (2003). Resilience of past landscapes: Resilience theory,
261 society, and the Longue Durée. *Conservation Ecology*, 7(1), 14. doi:10.2489/63.1.6A

262 Rommel, J., Villamayor-Tomas, S., Müller, M., & Werthmann, C. (2015). Game participation
263 and preservation of the commons: An experimental approach. *Sustainability
264 (Switzerland)*, 7(8), 10021–10035. doi:10.3390/su70810021

265 Sebilo, M., Mayer, B., Nicolardot, B., Pinay, G., & Mariotti, A. (2013). Long-term fate of nitrate
266 fertilizer in agricultural soils. *Proceedings of the National Academy of Sciences*, 110(45),
267 18185–18189. doi:10.1073/pnas.1305372110

268 Spangenberg, J. H., Görg, C., & Settele, J. (2015). Stakeholder involvement in ESS research
269 and governance: Between conceptual ambition and practical experiences - risks,
270 challenges and tested tools. *Ecosystem Services*, 16, 201–211.
271 doi:10.1016/j.ecoser.2015.10.006

272 Therond, O., Duru, M., Roger-Estrade, J., & Richard, G. (2017). A new analytical framework
273 of farming system and agriculture model diversities. A review. *Agronomy for Sustainable
274 Development*, 37(3), 21. doi:10.1007/s13593-017-0429-7

275 Tittonell, P. (2014). Ecological intensification of agriculture-sustainable by nature. *Current
276 Opinion in Environmental Sustainability*, 8, 53–61. doi:10.1016/j.cosust.2014.08.006

277 Wezel, A., Bellon, S., Doré, T., Francis, C., Vallod, D., & David, C. (2009). Agroecology as a
278 science, a movement and a practice. *Sustainable Agriculture*, 29(4), 503–515.
279 doi:10.1007/978-94-007-0394-0_3