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Abstract 

The highly dangerous trend of escalating bacterial resistance to modern antibiotics has 

evolved in recent decades, with increasingly more drug-resistant strains of pathogens emerging 

and spreading each year. This poses a threat to not only public health, but also to entire mankind. 

Marine bioresources, considered as a promising alternative to traditional antibiotics and a 

valuable source of biologically active compounds with high pharmacological potential, now 

attract increasing attention of researchers. Modern biotechnology combines the genetic 

engineering methods and the unusual biosynthetic pathways utilized by marine microorganisms 

to produce natural antibiotics. The goal of this review is to summarize the latest trends in 

searching for new natural antimicrobial agents based on secondary metabolites of marine 

bacteria. The targeted control of biosynthesis mechanisms using the metabolic engineering 

methods in order to create hybrid peptide synthetases or to obtain hybrid peptides by disrupting 

the target gene of nonribosomal synthesis becomes a noteworthy trend in modern biotechnology. 

This pathway is not only one of the most promising approaches to the development of new 

antibiotics, but also a potential target for controlling the exocrine activity of pathogenic bacteria 

and, consequently, their viability.  
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Introduction  

Despite the significant advances in medicine, diagnostics, and treatment of infectious 

diseases, pathogenic microorganism still pose a serious threat to the world’s human population. 

Their impact is significant both in developing countries, due to the limited access to medicines 

there, and in developed countries, where uncontrolled administration of antibiotics has led to a 

wide distribution of multi-resistant bacteria. The strategy of creating new synthetic antibiotics by 
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modifying existing natural ones has not proven effective enough: pathogenic microorganisms 

adapt to new drugs after their first trials. The world community, represented by the World Health 

Organization, raises reasonable concern for the future of mankind and encourages searching for 

novel antimicrobial agents that can become an alternative to modern antibiotics [1, 2]. A number 

of promising strategies for the search for new antibiotic drugs are associated with the use of 

products of metabolism of marine bacteria.   

The bacterial metagenome synthesizes primary metabolites and transforms small protein 

molecules into secondary metabolites, also referred to as “specialized metabolites”. They play an 

important role in cell growth, signal transmission, search for nutrients, intra- and interspecies 

communication, and competition, and are, therefore, of increased interest to researchers considering them 

as potential alternatives to traditional antibiotics. Of particular importance is the study of antibacterial 

activity of antimicrobial peptides, which are secondary metabolites of marine microorganisms [3]. 

Mankind has learnt to use resources of the World Ocean, which covers more than 70% of 

the earth’s surface, since long ago. Despite this fact, marine bacteria aroused researchers’ interest 

only in the middle of the 20th century, although some studies of the biological activity of 

metabolites of these microorganisms were published as early as in the late 19th century. It was 

found that the marine environment, including bottom sediments, represents a giant pool of 

microbial biodiversity, numbering up to approximately 3.67 × 1030 microorganisms [4]. 

Even the few studies in recent decades have shown that the marine ecosystem, with its unique 

diversity of habitats and abundant biota, is an inexhaustible resource of biologically active natural 

chemical substances. Numerous compounds with noteworthy pharmaceutical activities, which can 

become sources of novel therapeutic agents, have been described from marine organisms over recent 

decades [5, 6, 7]. In particular, antibacterial substances that are secondary metabolites of marine 

bacteria attract much researchers’ attention due to their high antibacterial potential. 

These substances are the subject of extensive research conducted in marine microbiology 

and chemistry of marine natural compounds, intensively developing nowadays. Due to their 

unique properties, they have become one of the priorities for modern marine biotechnology. 

The goal of the present review is to summarize the current scientific data on the structure and 

pharmacological activity of secondary metabolites of marine bacteria, as well as on the nonribosomal 

mechanisms of their biosynthesis, which are a new target for antibacterial strategies. 

The search for data sources was carried out in the Cochrane Library data base (at Wiley 

Online Library), EMBASE (EMBASE.com), PubMed, PubMed Central, EMBASE, and MEDLINE, 

integrated on the platform of Elsevier, CINAHL, Web of Science, and Health Economic Evaluations.  

Due to the great scientific attention to the issue of “antibacterial metabolites” and “antibacterial 

peptides”, the strategy of sampling was limited to the search for scientific reviews with the following 
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word combinations contained in the title, abstract, and topical catalogs: “marine bacteria and 

secondary metabolites”, “marine bacteria and antibacterial peptides”, and “marine bacteria and 

nonribosomal biosynthesis”. The depth of search was 2007–2019. 

1. Bacterial metabolites 

Bacteria live in the environment of transmitted and received chemical signals, with signal 

molecules being metabolites, i.e. terminal products of cellular metabolism. The latter is a 

combination of two opposite but interrelated processes: energetic (catabolism) and constructive 

(anabolism). This is a continuous and multi-component biochemical process that occurs in every 

bacterial cell throughout its lifecycle [8, 9, 10]. 

Terminal products of metabolism, being small peptide molecules, are used as substrates 

for biochemical reactions or are utilized by microorganisms to support their life processes. This 

is a wide range of molecules extremely diverse in their structures and functions, with their 

registered number exceeding 25,000, which accounts for less than 2% of the total number of 

natural metabolites of microorganisms not yet available for research [9, 10, 11].  

Depending on the functional properties and biosynthesis mechanisms, metabolites are 

divided into primary and secondary. Primary metabolites serve as the main energy source for 

providing various biochemical reactions and performing physiological functions to support life 

processes of bacterial cells such as growth and development. Secondary metabolites are organic 

compounds with a complex chemical structure and a variety of physiological functions. They are 

required to implement the survival strategies of bacteria in adverse conditions, acting as 

mediators with the external environment and means of intercellular communication (Table 1).  

Table 1 

Key biochemical and physiological properties of 
primary and secondary metabolites of bacteria [8] 

Primary metabolites Secondary metabolites 

Small-sized molecules 
Produce several intermediate and 
terminal product 
Terminal products involved in the synthesis of 
macromolecules, coenzyme 
Important for cell growth and viability 
Have a simple chemical structure 
Synthesized during the lag phase of bacterial 
growth 
Used in food and feed industry 
 
Provide energy reserve for communication of 
cells 
Main source of energy for cellular metabolism 
and life support 

Small-sized molecules 
Participate in the synthesis of new compounds and a 
multitude of molecules 
Not vitally important for cell growth 
Have unusual chemical structures 
Terminal products are used as  
antibacterial agents 
Synthesized at the beginning of stationary phase of 
bacterial growth 
Used in medicine, cosmetics, and agriculture as 
preservatives 
Protect bacteria during the period of adverse 
conditions 
Participate in intercellular communication, cell 
protection, and competition for food and space 
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Since this review is focused on the bioactive properties of secondary metabolites of 

marine bacteria, the main emphasis will be on these complex molecules. 
 

1.1 Secondary metabolites of bacteria 

This group of metabolites is an essential component supporting life processes of marine bacteria, 

fungi, archaea, and other microorganisms, which are rich sources of these compounds. Substances with 

various biological properties, including antibacterial, antifungal, antiviral, and antiproliferative agents, 

exotoxins, metal carriers, hormones, immunomodulators, pigments, and enzyme inhibitors, have been 

found among these complex biomolecules synthesized by marine prokaryotes [8–10].  

Many of these compounds, exhibiting high biological activity, play an important role in life 

functions of bacteria and are widely used in pharmacology, cosmetics, food industry, and agriculture. 

Nevertheless, some bacteria (such as Clostridium botulinum, Vibrio cholerae, Escherichia coli, Yersinia 

sp., etc.) synthesize exotoxins, which are secondary metabolites and cause diseases in humans [10]. 

As a rule, each bacterial species produces several antibiotics, the profile of which 

depends on the genus of microorganism. For instance, more than 5,000 antibiotics referred to 

secondary metabolites have been identified to date from the genus Actinobacteria [8], including 

traditional antibiotics discovered in the 1950s–1960s, as well as new antibiotics. According to forecasts, 

these bacteria may produce up to 150,000 different chemical antimicrobial agents [8, 9]. 

 
Fig. 1. Production of secondary metabolites occurs at the end of the exponential and at the beginning of the stationary 

phases of bacterial growth (A). Various mechanisms of biosynthesis of secondary metabolites in bacteria (B). 
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Modern science considers secondary metabolites as a group of low-molecular-weight, 

structurally diverse, and complex bioactive compounds. It has been found that the active stage of 

synthesis of these molecules in microorganisms occurs at the end of the exponential and the 

beginning of the stationary phases of their growth (Fig. 1-A). Their production is induced by 

depletion of nutrients and adverse habitat conditions; the genes responsible for the biosynthesis 

of secondary metabolites are grouped together in a small number of clusters [10, 12].  

Unlike primary metabolites, the biosynthetic pathways utilized to produce these 

molecules are numerous and have not been fully understood [8, 10]. For biosynthesis, bacteria 

use multi-stage biosynthesis pathways, which involve specific enzymes or multi-enzyme 

complexes, being intermediate or end products of intracellular metabolism. Biosynthesis 

includes cascade regulations, the mechanisms of which have been studied at the transcription 

level [12]. 

Among the key pathways of biosynthesis of secondary metabolites with antibacterial 

activities, the best characterized are nonribosomal (with peptide synthetase as the key enzyme), 

β-lactam, polyketide (types I–III, with polyketide synthase as the key enzyme), ribosomal- 

polyketide, oligosaccharide, and shikimate pathways (Fig. 1-B). 

The significantly increased interest in obtaining new antibiotic agents derived from 

secondary metabolites of marine bacteria is associated with the advances in biotechnology that 

have been made in recent decades [12, 13]. They are based on the revealed mechanism of 

synthesis of major microbial metabolite classes by means of polyketide synthase [14, 15], 

nonribosomal peptide synthetase [16–18], which are biosynthetic pathways extensively utilized 

by marine microorganisms for producing antimicrobial substances. 

2. Antimicrobial substances of marine microorganisms 

Microorganisms from terrestrial ecosystems and their metabolites have always been a source of 

many biologically active compounds applied in medicine, pharmaceutical industry, and agriculture. After 

years of intensive studies of terrestrial microorganisms, attention was focused on aquatic ecosystems of 

the World Ocean. Temperature conversions, hydrostatic pressure, variable salinity and oxygen 

concentration are the factors that cause the rich taxonomic diversity of marine biota, in which bacteria and 

fungi constitute a substantial part, provide a rich resource of chemical products, and are considered a 

promising source of a large number of biologically active compounds [3, 7, 20, 21].  

One of the first researchers to reveal the antagonistic interactions of some marine bacteria with 

causative agents of dangerous infections (Bacillus anthracis and Vibrio cholerae) was V. de Giaxa in 

1889. In his work “Veber das Verhalten einiger pathogener Mikroorganismen im Meerwasser”, he 

showed that in the case of combined cultivation with marine bacteria, these terrestrial pathogens lost their 
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ability to cause infection in the experiment [cited by 22, 23]. However, in those years, this article did not 

receive due attention of researchers. 

The issue of competitive interaction of marine bacteria and some members of the 

family Enterobacteriaceae was raised again only in the 1940s by S. Kiribayashi, T. Aida 

(1941), B.D. Rosenfeld, C.E. ZoBell (1947), and others. The results of the studies 

conducted in that period showed for the first time that the mortality of pathogenic 

enterobacteria in sea water was a consequence of the toxic effect of “antibiotics produced by 

marine microorganisms” (ZoBell, 1947) and, to a lesser extent, due to the salinity and 

osmotic pressure of water [cited by 22]. At the same time, an attempt was made to isolate 

these substances. A total of 58 species of marine bacteria, members of the genera 

Actinomyces, Bacillus, Micrococcus, and Serratia, were tested; of them 9 strains were 

identified as producers of antibacterial substances antagonistically interacting with Gram-

positive microorganisms [19, 22, 23]. 

The growing worldwide interest in the study of biologically active metabolites produced by 

marine bacteria resulted from the accumulation of knowledge about true marine microorganisms. The 

modern scientific paradigm is consistent with the concept proposed in the middle of the 20th century by 

the academician B.L. Isachenko (1871–1948) and Claude E. ZoBell (1904–1989), the founders of marine 

microbiology who explained the autochthonous existence of marine bacteria and their taxonomic 

uniqueness [cited by 23]. Subsequent discoveries have shown that marine biota is comprised of specific 

taxa of prokaryotes, fungi, and other microorganisms distributed ubiquitously. They are active 

participants in the cycle of matter in water and bottom sediments of the ocean, as well as sources for the 

production and isolation of specific peptide-based metabolites [20, 23–25]. 

The history of study of secondary metabolites from marine bacteria is an example of the 

joint efforts and achievements of microbiologists, chemists, biochemists, molecular biologists, 

and geneticists. The discovery of the phenomenon of unusual peptides synthesized in 

microorganisms independently of ribosomes and RNA was followed by a long series of findings 

and evidence of extremely diverse natural bacterial metabolites exhibiting antibiotic and 

antitumor activities (Table 2). 

Table 2  

Promising secondary metabolites with antimicrobial activity 
isolated from marine bacteria 

Metabolite Producer inhibiting Active 
concentration References 

Bogorol A Bacillus sp. Methicillin-resistant S. aureus  
(MRSA) 2 µg/mL (MIC) 26, 27 

Loloatin B Bacillus sp. 
Methicillin-resistant S. aureus  
(MRSA), vancomycin-
resistant Enterococcus 

1–2 µg/mL 
(MIC) 28, 29 
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faecium (VRE) 

Tauramamide Brevibacillus 
laterosporus Enterococcus sp. 0.1 μg/mL 

(MIC) 30, 31 

Halobacillin Bacillus sp. CND-
914 

S. aureus, P. vulgaris, and E. 
faecalis. Human HCT-116 
cancer cells 

0.98 µg/mL 
(IC50) 4, 32 

Macrolactin S  B. amyloliquefaciens E. coli, S. aureus 0.1– 0.3 µg/mL 
(MIC) 33, 34 

Macrolactin V B. amyloliquefaciens E. coli, B. subtilis, S. aureus 0.1 µg/mL 
(MIC) 33, 34 

Bacillistatins Bacillus silvestris Streptococcus pneumonia 0.5–2 μg/mL 
(GI50) 35 

Triopeptid TP-1161 Nocardiopsis sp Vancomycin-resistant 
Enterococcus faecium  (VRE) 

1.0 μg/mL 
(MIC) 36–39 

Halocintin Halocynthia 
papillosa 

Micrococcus luteus, Bacillus 
megaterium, Aerococcus 
viridans, S. aureus, 
Enterococcus faecalis 

0.39–50 μM 
(MBC) 40, 41 

Indigoidin Phaeobacter sp. Vibrio fischeri n/d 42, 43 
Unnarrmicins A, C  Photobacterium sp. Pseudovibrio sp. 7–18 μg/disk  44, 45 
Ngercheumicins A–D Photobacterium sp. Gram (-) bacteria n/d 31, 46 

Solonamidin A Photobacterium sp S. aureus, methicillin-
resistant S. aureus  (MRSA) n/d 3, 47 

Cyclo-peptides Pseudomonas sp. S. aureus, M. luteus, B. subtilis, 
E. coli, V. anguillarum n/d 4, 3, 48, 

49 

Ariakemicins A, B Rapidithrix sp. Brevibacterium sp.,  
S. aureus, B. subtilis 

0.46–80 μg/mL 
(MIC) 44, 45 

Turnagainolides A, B Bacillus sp. RJA 
2194 

MRSA, VRE, and penicillin-
resistant S. pneumoniae  

1–2 μg/mL 
(MIC) 50 

Anthramycin Streptomyces sp. 
B. anthracis, E. faecalis, S. 
pneumonia, S. aureus, MSSA, 
MRSA, S. aureus (VRE) 

0.03125–0.25 
μg/mL (MIC) 51, 52 

3. Secondary metabolites of marine bacteria are products nonribosomal synthesis 

During their life cycle, marine microorganisms actively synthesize secondary metabolites 

which are low-molecular-weight peptides. They represent specific protein fragments that, in 

addition to being sources of nitrogen and amino acids, perform numerous biological functions [5, 

7, 11, 53]. These substances were derived from algae, marine bacteria, and fungi. The anti-infection 

activity of marine peptides has been shown to depend on their structural properties, amino acid 

composition and sequence, as well as on the habitat conditions for producer bacteria [7, 53, 54] 

(Table 2). 

The major part of marine bacteria are exposed to extreme conditions of high pressure, 

salinity, low temperature, and lack of sunlight. These factors caused them to develop the unique 

properties and the ability to biosynthesize substances with unusual characteristics, different from 

their terrestrial counterparts. To date, biological properties of only a small number of these peptides 

have been studied, but the proportion of described substances increases each year, attracting 

increasingly more attention of researchers [11, 54–56]. 
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Most marine bacteria and other microorganisms use numerous gene clusters for 

metabolite biosynthesis [7, 56]. Studies of genome sequences have shown that a significant part 

of them is responsible for the biosynthesis of secondary metabolites. For example, among marine 

microorganisms, isolates of the genus Bacillus are referred to as phylogenetically heterogeneous 

groups of marine bacteria. They need much nutrients and space, and, in order to compete with 

other bacteria, they synthesize a significant amount of secondary metabolites with pronounced 

antimicrobial activity, encoded by genes constituting up to 8% of the genome [54, 57]. 

To date, dozens of metabolites, which are peptides consisting of 20–40 amino acids and 

used for inter- and intraspecific competition, have been isolated from various marine 

microorganisms [5, 7, 54]. Most of them are capable of quick inhibition or kill of a wide range of 

microbes. Other antimicrobial metabolites (proteins consisting of 100 or more amino acids) 

disrupt the structure or function of microbial cell membranes by binding to specific targets [58, 

59]. In the framework of the global program of search for antimicrobial alternatives to traditional 

antibiotics, results of more than 40 studies on finding new antimicrobial compounds isolated 

from marine bacteria and fungi have been published over the past 15 years [53, 55, 57]. 

In recent years, much of the attention of researchers has been focused on secondary metabolites 

of marine bacteria, which are products of nonribosomal biosynthesis considered a new class of natural 

antimicrobial agents that can potentially become an alternative to traditional antibiotics [54, 56, 59, 60].  

The capability of nonribosomal peptide synthesis is widely distributed among bacteria. 

As a rule, these metabolites show a wide range of biological activities (antimicrobial, antitumor, 

antiviral, and antifungal), a variety of pharmacological properties, and an extremely high 

structural diversity [58–60]. Marine ecosystem provides an inexhaustible source of diverse 

classes of nonribosomally synthesized secondary metabolites. These substances (lipopeptides, 

polypeptides, macrolactones, fatty acids, polyketides, lipoamides, and isocoumarins) are cyclic 

branched peptide compounds with unusual structure and structural templates of novel natural 

antibiotics [59, 61–63].  

In the second half of the 20th century, this biosynthesis mechanism was simulated in a 

laboratory to obtain antimicrobial peptides produced by marine isolates of Bacillus sp., in which 

the pharmacologically-induced inhibition of ribosomes or RNA removal did not prevent protein 

synthesis [64]. 

It has been established that the ATP-dependent synthesis of nonribosomal peptides (NRP) 

occurs by means of peptide synthetase, an enzyme complex independent of messenger RNA, 

transmitting the genetic information from DNA to ribosomes, where the amino acid sequence of 

protein products of gene expression is determined [61, 63, 65].  
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Fig. 2. Structure of Macrolactin of bacteria constituting the basis of nonribosomal synthesis and structural 

diversity of synthesized metabolites. 
Domains are as follows: (A) carrier peptide; (B) acetylation; (C) condensation; 

(D) thyosterase domains; (E, F) formyltransferase domains. 
 

Operation of this “assembly line” depends solely on the activity of peptide synthetase, 

which is a multi-domain modular enzyme complex. It catalyzes the ATP-dependent synthesis of 

important peptide products with antimicrobial activity from specific sequences of proteinogenic 

and non-encoded amino acid substrates. The process includes three key sequential stages: 

acetylation, thyolization, and condensation with the involvement of the same-name key domains 

and peptide carrier protein [18, 59, 62] (Fig. 2).  

Unlike ribosomal synthesis, where the sequence of 20–22 natural amino acids is 

determined by the primary structure of RNA, the ribosome-independent mechanism provides 

assembly of relatively short NRPs. They consist of a set of non-encoded (non-proteinogenic) 

amino acids, the sequence of which is strictly determined by the structure of the polyenzyme 

complex. To date, almost 150 such amino acids and dozens of thousands of their combinations 

are known, which explains the wide structural variety of NRPs, as well as their physical and 

chemical stability and conformational plasticity [58, 60, 63].  

Due to the high pharmacological activity of the nonribosomal synthesis products, much 

effort has been applied in recent years to the study of the promising and unusual biosynthesis 
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mechanisms and the diversity of pharmacological properties of NRPs. To date, several pathways 

of nonribosomal synthesis of peptides have been characterized from both terrestrial (human 

commensals and pathogens) and marine species of bacteria, which are enough comprehensively 

considered in recent reviews [59, 60, 64].  

It should be noted that, from the evolutionary aspect, the understanding of nonribosomal 

biosynthesis mechanisms has evolved from the erroneous view of peptide synthetase as a 

precursor of ribosomes, as well as from the discovery of the “thiotemplate” mechanism [62, 65] 

and its revision in connection with the advent of the modern modular-domain “multiple carrier 

model” [58, 63, 64]. In the present review, we consider only some of the antimicrobial peptide 

substances that are products of this biosynthesis pathway, being components of secondary 

metabolites of marine bacteria.  

3.1 Cyclic lipopeptides (cLPs) 

Cyclic lipopeptides (cLPs) are common metabolites synthesized by various bacterial genera 

and are of interest as substances having various biological activities (Fig. 2). Lipopeptides of marine 

bacteria consist of a short cyclic oligopeptide (backbone) bound to fatty acids (tail) and show strong 

antibacterial activity against common human, animal, and plant pathogens, due to which these 

metabolites have attracted attention as potential natural antibiotic agents (Table 2). 

Lipopeptides are divided into three families: iturins, fengycins, and surfactins [66–

68]. In the chemical structure, the peptide backbone is represented by seven (iturins and 

surfactins) or ten (iturins) amino acids bound to β-hydroxy- (fengycins and surfactins) or β-

amino- (iturins) fatty acids with the number of carbon atoms being from C-10 to C-16 

(surfactins), from C-14 to C-17 (iturins), and from C-14 to C-18 (fengycins). Each family 

is subdivided into homologous subfamilies depending on the position of a certain amino 

acid in the peptide ring [66, 68]. The examples of well-characterized lipopeptide antibiotics, which 

are metabolites of marine bacteria, are tauromamid, halobacillin, and methylhalobacillin [4, 30–32]. 

Tauromamid is a relatively new nonribosomally biosynthesized antibiotic [30, 31] (Table 

2), belonging to the group of cyclic lipopeptides (like daptomycin, the first permitted antibiotic 

of this class). It is produced by the marine bacterial isolate of Brevibacillus lateosporus PNG276, 

inhabiting the Gulf of Papua [31]. Tauromamid has a strong and selective inhibitory action on 

the Gram-positive pathogen Enterococcus sp., as well as exhibits unexpressed activity against 

the methicillin-resistant Staphylococcus aureus (MRSA; MIC = 200 µg/mL) and Candida 

albicans (MIC = 50 µg/mL) [30, 31]. 

Halobacillin and methylhalobacillin are two cyclic lipopeptides isolated from bacteria 

inhabiting deep-sea sediment in the Gulf of California, Mexico [32]. Halobacillin is also one of 
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the most effective known biosurfactants [4]. This antibiotic inhibits the growth of human colon 

tumor cells (HCT-116) at IC50 0.98 µg/mL and exhibits analogous, but lower than surfactin (a 

known surfactant antibiotic isolated from terrestrial strains of Bacillus subtilis), antimicrobial 

activity against S. aureus, Proteus vulgaris, and Enterococcus faecalis [4, 32] (Table 2).  

The wide distribution of cLPs among secondary metabolites of marine bacteria is evidenced 

by the fact that they make up the major part of products of marine isolates from Bacillus sp., one of 

the most common inhabitants of the World Ocean [3].  

3.3 Polyketides / lipoamides 

Polyketides are extremely large classes of secondary metabolites that contain acyl-

coenzyme A and constitute the basis of many pharmaceutical, agrochemical, and veterinary 

drugs. The biosynthesis of these metabolites occurs with the involvement of multimodular 

megasynthases known as polyketide synthases [14, 15]. Thanks to this biosynthesis mechanism, 

polyketides show an amazing structural and antimicrobial diversity. Several metabolites with 

antibiotic action from marine isolates of B. lateosporus, belonging to the family of polyketides, 

such as basiliskamide A and B, as well as tupusleiamide A and B, have been characterized 

recently. These antibiotics exhibited antifungal activity against Candida albicans (MIC = 1.0 and 

3.1 µg/mL) and Aspergillus fumigatus (MIC = 2.5 and 5.0 µg/mL) [14, 15, 45]. 

Two polyketides with unique antimicrobial and antitumor properties were isolated in 

2012 from the marine bacterium B. licheniformis from a sediment core sample collected on the 

southern Iodo reef, Republic of Korea. Antibiotics ieodoglucomides A and B in vitro showed 

antimicrobial activity against Gram-positive and Gram-negative pathogenic bacteria (MIC = 8–

32 µg/mL). In addition, ieodoglucomide B exhibited cytotoxic activity against lung cancer cell line 

(GI50 = 25.18 µg/mL) and gastric cancer cell line (GI50 = 17.78 µg/mL) [14].  

The thiopeptide antibiotic TP-1161, isolated from the marine Gram-positive bacterium 

Nocardiopsis sp., belongs to the same structural group [36–38]. This antibiotic showed high 

antibacterial activity in vitro against clinical isolates of Gram-positive bacteria (with MIC varying 

from 0.25 to 4 µg/mL), i.e., at concentrations comparable or lower than that of the reference 

antibiotic vancomycin. TP-1161 also inhibited growth of vancomycin-resistant bacterial strains, 

including E. faecalis and E. faecium, at MIC = 1 µg/mL [38]. 

4. Mechanisms of antimicrobial action of antibacterial peptides 

In recent years, a large group of secondary metabolites of different types, structures, and 

mechanisms of antibacterial action has been isolated from a number of other marine bacteria [3–5, 

7, 8]. Unlike those from terrestrial ecosystems, producers of antimicrobial peptides were mainly 
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strains of Gram-positive marine bacteria [7, 9, 10], despite Gram-negative prokaryotes dominate 

the marine environment [21, 22, 68, 69]. 

Most of the isolated antimicrobial metabolites are capable of rapidly killing a wide range 

of microbes. Large-sized antimicrobial proteins (>100 amino acids) are often lytic proteins 

binding nutrients [68, 71] or destroying specific cell patterns [71–73], causing DNA degradation 

[73, 74], and inhibiting intracellular synthesis of peptidoglycan [75–77] and specific proteins by 

disrupting the structure or function of microbial cell membranes [7, 54, 78, 79] (Fig. 3).  

 
Fig 3. Key mechanisms of antimicrobial action 

of antibacterial peptides, which are secondary metabolites 
of marine bacteria (diagram by authors). 

 

In recent years, two accessible databases have been created for storing and querying 

information on almost two hundred antibacterial peptides: BACTIBASE [80] and BAGEL [81, 

82]. Moreover, members of this metabolite class are mentioned in other relevant databases, such 

as APD3 [83], ANTIMIC [84], CyBase [85], or StraPep [86], the use of which in the mode 

suggests the antibacterial activity of the substances obtained. 

Despite the isolation and study of secondary metabolites from marine bacteria is currently 

at the initial stage, the obtained results show them as the most promising agents to control 

infectious diseases of fish. This is especially important in the light of the current trend of 

increasing proportion of marine aquaculture in the global seafood production and its increasing 

role in world’s fisheries [87–89]. 
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In addition, marine-derived metabolites have demonstrated their immense potential to be 

used as natural preservatives of foods, medical and veterinary therapeutic drugs, or phytosanitary 

agents for plant protection [4, 88, 90, 91]. Their antitumor resource [4, 32, 66, 92] and anti-virus 

[5, 64] and antifungal activities [3–5] are very noteworthy and promising. 

5. Conclusions and prospects to the future 

Marine bacteria are an extremely rich source of structurally diverse classes of protein-

based secondary metabolites. In recent years, significant progress has been made in our 

understanding of the complex mechanisms of their nonribosomal biosynthesis. These natural 

metabolic byproducts of marine bacteria have a wide range of antimicrobial activities, low rate 

of elimination from the organism, high specificity to cell targets, and reduced risk of undesirable 

side effects. Due to these properties, they are already considered as a source of effective 

biologically active therapeutic agents that can become an alternative to traditional antimicrobial 

drugs. 

Modern biotechnologies of invention and development of novel antibiotics having a 

medical value are based on application of natural strategies of nonribosomal peptide synthesis [4, 

9, 10]. Revealing the mechanisms and potential of this type of metabolite production in 

terrestrial and marine bacteria is not only of fundamental, but also of great practical importance. 

In human pathogens, this biosynthetic pathway probably causes the emergence of microbial 

isolates with multidrug resistance. Under these conditions, the activity of peptide synthetase and 

clusters of the genes responsible for nonribosomal synthesis become a new target for the strategy 

of treatment of infections caused by drug-resistant forms of bacteria [3, 5, 91, 92].  

As regards marine bacteria and their secondary metabolites, the targeted control of 

biosynthesis mechanisms by using the metabolic engineering methods to create hybrid peptides 

or obtain hybrid peptide synthetases by disrupting the target gene of nonribosomal synthesis is 

now one of the noteworthy trends in modern biotechnology. This pathway becomes not only one 

of the most promising approaches to the development of novel antibiotics, but also a potential 

target for controlling the exocrine activity of pathogenic bacteria and, consequently, their 

viability [5, 93–95]. 

The range of active antimicrobial agents derived from marine bacteria, discovered and 

tested in recent years, indicate a high pharmacological potential of their secondary metabolites, 

and the study of these peptides is expected to be an interesting and fruitful activity in the coming 

years. 
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