

1 **FLYDE Plate: Open source anesthesia labware for *Drosophila* fly-pushing!**

2

3 Jordan Hyde¹ & Tristan A.F. Long^{2*}

4

5 ¹ Department of Kinesiology, Wilfrid Laurier University, 75 University Ave.
6 Waterloo, Ontario, Canada, N2L 3C5.7 ² Department of Biology, Wilfrid Laurier University, 75 University Ave. Waterloo,
8 Ontario, N2L 3C5.

9

10 *Corresponding author: tlong@wlu.ca

11

12 **Running title:** FLYDE plate13 **Word count:** 190914 **Figure Count:** 5

15

16 **Abstract:**17 One of the most important pieces of equipment used in labs in culturing
18 populations of fruit flies (*Drosophila* sp.) is that of the “CO₂ gas plate”, which is
19 used to anesthetize individuals during “fly-pushing”. This piece of equipment
20 consists of a box with a porous top into which carbon-dioxide is pumped. Flies
21 placed on its surface are left immobilized, permitting the sorting, categorizing
22 and/or counting of flies during population culturing and experimental assays.
23 Unfortunately, commercially available gas plates are typically expensive. Here,
24 we describe a new design for a gas plate that can be easily produced using a 3D
25 printer and a laser cutter, which we are making freely available to the fly
26 community.

27

28 **Keywords:** Open source, 3D printing, *Drosophila*, laser cutter, lab equipment,
29 open labware, fly-pushing, fly pad, fly plate, CO₂ anesthesia

30

31 **1. Introduction:**32 The fruit fly, *Drosophila melanogaster*, has a long and illustrious history as
33 a model organism in scientific research, and whose study has contributed to
34 some of the greatest biological discoveries of all time (Weiner 1999, Brookes
35 2001). There are many, many, features that make *D. melanogaster* so amenable
36 to a wide range of biological studies, not the least of which is the relative ease
37 with which populations of flies can be cultured in the laboratory (Weiner 1999,
38 Brookes 2001). Central to much of “fly-pushing” that comprises the culturing
39 and maintenance of these populations, and their use in experiments, is the need

40 to immobilize individuals so that they can be handled, examined, and sorted as
41 needed (Markow and O'Grady 2005, Stocker and Gallant 2008). While
42 temporary paralysis was can be achieved using dimethyl ether or triethylamine
43 (the active agent in FlyNap®), these chemicals are quite volatile and/or a
44 potentially toxic to humans by when inhaled or through contact with the skin
45 (Artiss and Hughes 2007). Today fly immobilization is typically done using the
46 (safer) methods of chilling using ice-baths (e.g. Perry 2018) or using carbon
47 dioxide (CO₂) (Barron 2000). In the latter case, immobilization of flies is achieved
48 by continuously piping this gas into the bottom a specialized staging apparatus:
49 a box with a porous top. The CO₂ diffuses out of the box across the porous,
50 keeping the flies on the surface anesthetized until they are removed. While
51 these CO₂ staging apparatuses (which we colloquially shall hereafter refer to as
52 "fly plates") are available commercially, they typically retail at well over \$100.00
53 USD apiece. This price-point puts them outside the budget of many (actual and
54 potential) fly researchers, and serves as a potential financial barrier.

55 The challenge posed by expensive fly-plates has been long recognized by
56 researchers, some of whom have developed cheaper alternatives, which we shall
57 briefly discuss. Melo Sene and Manfrin (2001) published plans for constructing
58 an open-topped box apparatus out of acrylic sheeting. While this design
59 appears robust to the physical stresses associated with fly-pushing, the presence
60 of lateral walls completely surrounding the fly-pushing surface potentially makes
61 it hard to remove flies without loss. Artiss and Hughes (2007) developed a
62 economical fly-plate by modifying a micropipette tip container. While very
63 ingenious, the use of a fabric top to the plate potentially makes keeping the
64 apparatus clean and uncontaminated a challenge, and the lack of a "back-
65 splash" wall increases the chance that some flies may accidentally fall off the
66 back/sides of the apparatus. Furthermore in both of these aforementioned
67 designs, the construction process is also fairly complicated, involving many
68 precise cutting, drilling and gluing steps.

69 Some of the complications involved with manually constructing fly-plates
70 is potentially avoided by using "3D-printing" (aka additive manufacturing)
71 devices, in which virtual models are designed using Computer Assisted Design
72 (CAD) software, and materials are combined, under precise computer-control, to
73 manufacture desirable objects. There is an increasing use of personal-fabrication
74 equipment and design-sharing – the open source movement – among scientists
75 (see Pearce 2013, Baden 2015). To the best of our knowledge, only one open
76 source plan for a 3D printed fly-plate exists (Cruz 2017). In this model, the entire
77 apparatus is printed as single piece, with the bottom, and walls of the fly-plate
78 printed at 100% infill with the interior and top of the box printed with to 85%.

79 While this design has many desirable features (including a back-splash), the flat
80 upper printed surface produced by 3D printers can often be rough, potentially
81 catching (and damaging flies), and is harder to keep clean.

82 Here, we describe the process by which we have designed, produced and
83 tested a new CO₂ staging apparatus ("FLYDE plate"), as an open-source labware
84 for the benefit of fly-pushers everywhere.

85

86 **2. Materials and methods**

87 In designing our fly-plate, our primary objective was to create a high
88 quality, low-cost, apparatus that could withstand the rigors of regular and
89 prolonged lab use. Our fly-plate design consists of two pieces: a lower box, built
90 using an additive 3D printing process (Figures 1 & 2) and an upper plate that
91 was cut using a laser from a piece of acrylic sheet (Figure 3). The two pieces
92 slide together (Figure 4), with gas introduced via a 1/4" (outer diameter) vinyl
93 tube that is inserted through a hole that is part of the lower box's design.

94

95 The lower box was produced on a Cubicon Style 3D printer (HyVision
96 Systems) using a 0.4mm extruder from polylactic acid (PLA) filament. Production
97 of the box used approximately 80g of PLA, which retails at approximately
98 \$45.00CAD/kg.

99

100 The upper plate was cut using a Transon TS6090 CO₂ Laser Machine
101 (Jinan Transon CNC Equipment Co., Ltd.) from a 10.5 x 12.5 cm sheet of 3mm
102 thick clear cast acrylic sheeting. The cost of a 4 x 8 foot sheet of this sheeting
103 retails at approximately \$45.00CAD. When cutting, the laser was set at 35%
104 power. The laser cutter was used to perforate the surface of the acrylic sheet
105 with 14,000 holes, each 0.25mm in diameter.

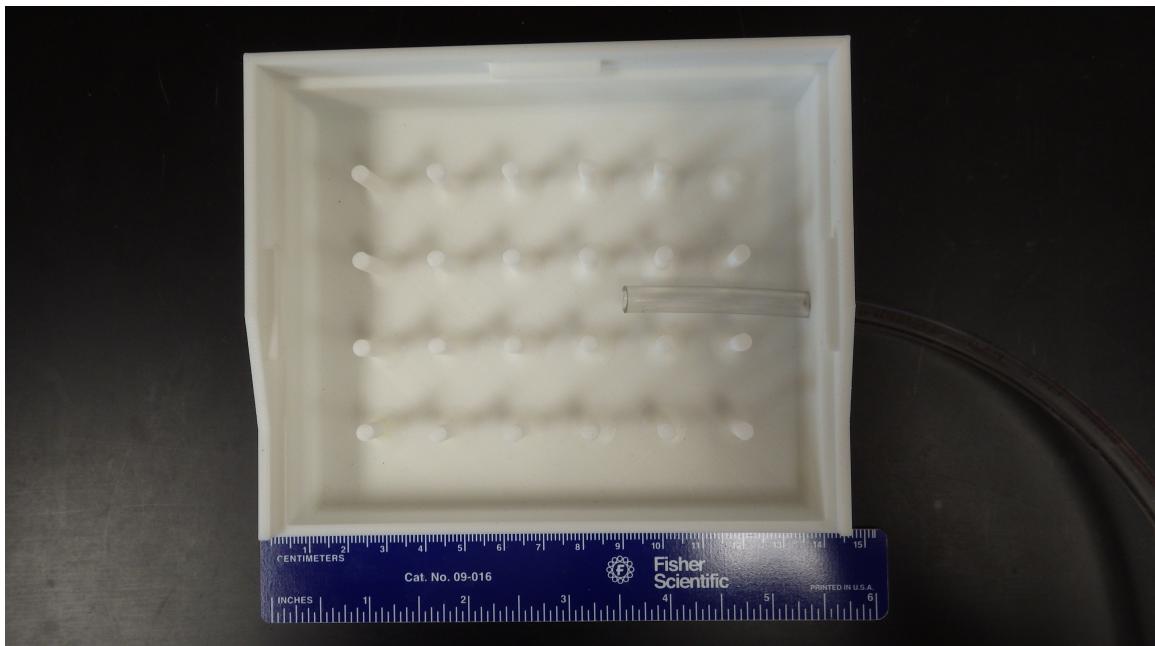
106

107 **3. Results/Discussion**

108 The completed FLYDE plate measures 3.2 cm high, 13.2 cm wide and
109 11.0 cm deep and has an active fly-pushing surface of 131.25 cm² that sits 2cm
110 off the bench surface. The raised ("back-splash") walls around the back and side
111 of the plate reduce the chances of flies being lost accidentally from the working
112 surface. The perforated surface of the upper plate extends to the front edge of
113 the apparatus, allowing for the seamless transfer of anesthetized flies from the
114 surface of the FLYDE plate into a waiting vial.

115

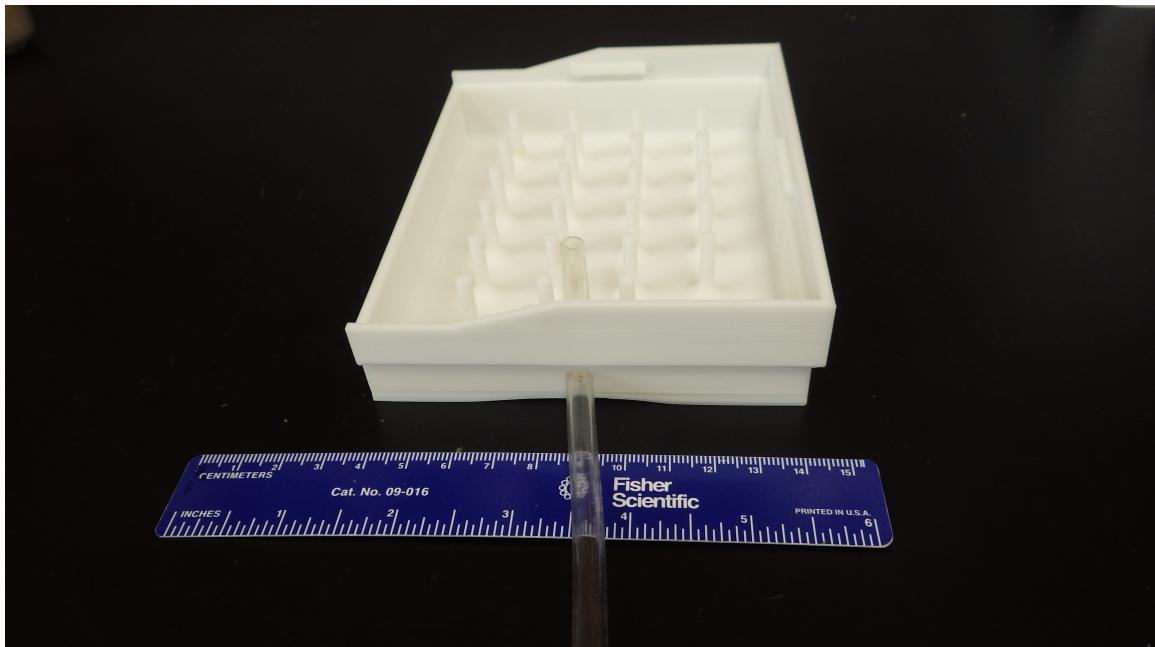
116 Tests of the FLYDE plate have proven successful at providing a fairly even
117 diffusion of CO₂ across the upper surface of the acrylic plate. This means that


118 there were no zones where some flies were able to recover from the CO₂ while
119 others remained immobilized. (Figure 5, Supplementary Video:
120 <https://youtu.be/UpzqK-EdZh4>). A slower rate of gas diffusion can be produced
121 by placing a thin sheet of tissue paper (e.g. Kimwipes Delicate Task Wipers, Mfr.
122 No. 34155, Kimberly-Clark Inc.) in between the upper plate and the lower box.
123 When assembled, the FLYDE plate was capable of withstanding the regular
124 wear-and-tear associated with fly-pushing, and could be easily cleaned after use.
125

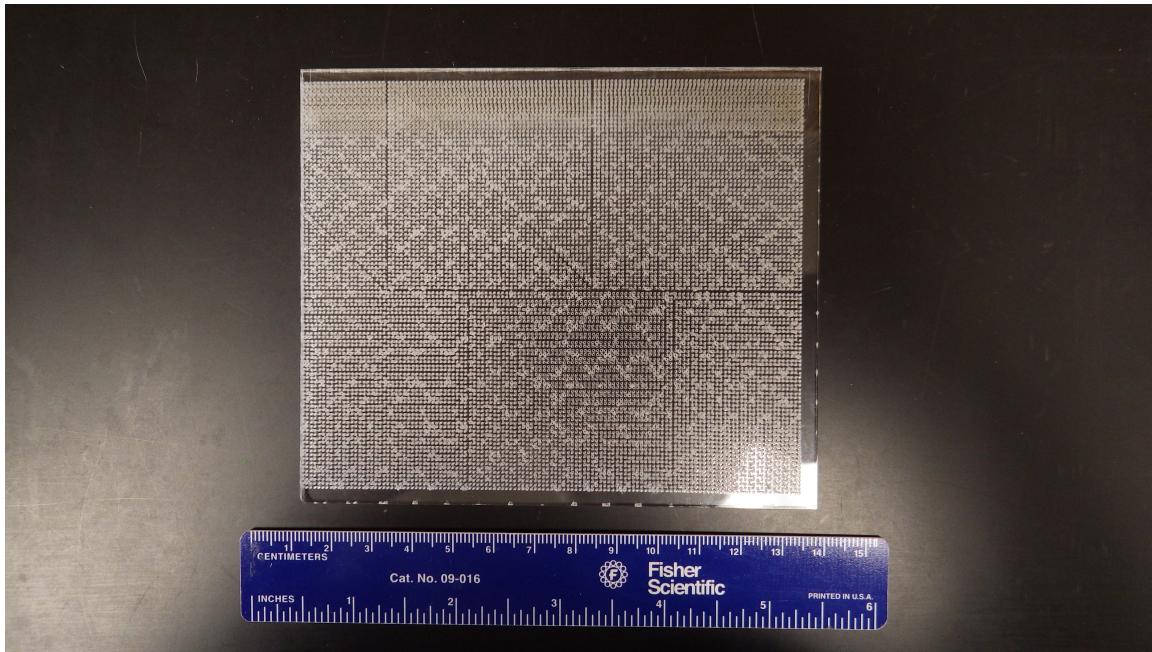
126 Our design is not without some potential limitations. First, it does require
127 access to both a 3D printer and a laser-cutter, which may pose a logistical
128 challenge to potential users. Secondly, the sheer number of holes in the top
129 plate (14,000, each 0.25mm in diameter) means that its production can be time-
130 consuming (and may pose a challenge if the laser-cutter does not have sufficient
131 cooling systems). Thirdly, as the upper surface is composed of acrylic, it may
132 conceivably be prone to static cling under some circumstances, which can
133 adversely affect the efficiency of fly-pushing. While we have not encountered
134 this problem, the use of an in-line bubbler may mediate this issue.
135

136 Ultimately it is our hope that the FLYDE plate will be adopted as a
137 cheaper alternative to commercially produced fly plates, allowing more people
138 to experience the wonders of pushing flies.
139

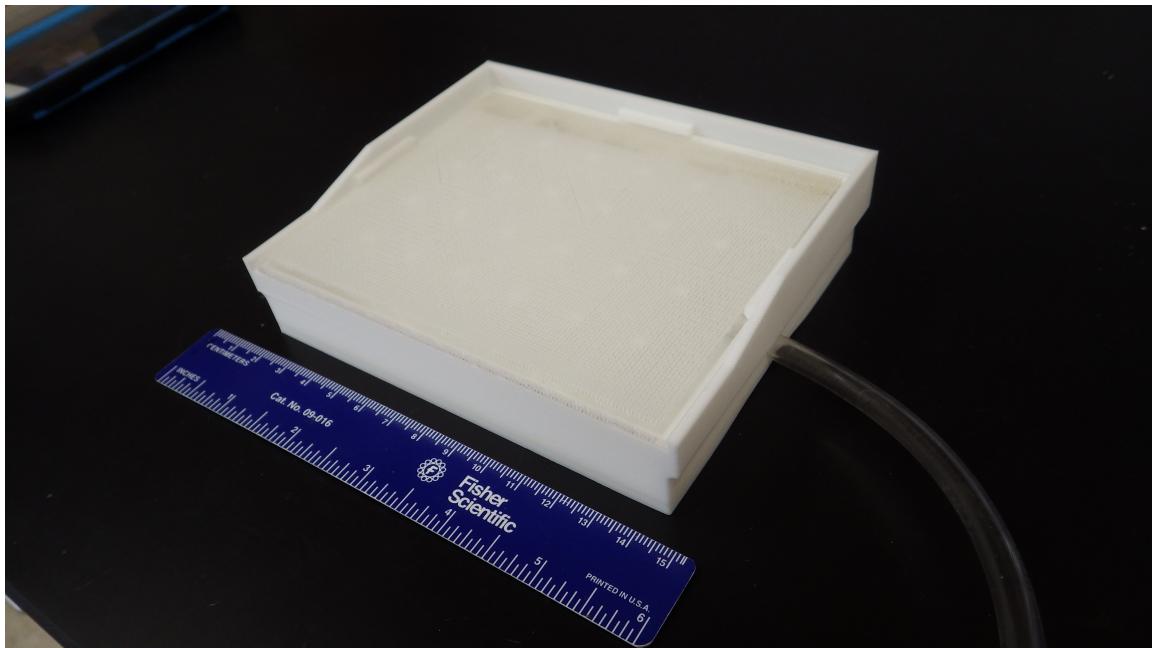
140 All files mentioned in the article that are currently hosted on thingiverse
141 (www.thingiverse.com) at the following link:
142 <https://www.thingiverse.com/thing:3599321> where they are licensed under the
143 Creative Commons - Attribution - Non-Commercial - Share Alike license.
144


145

146


147 Figure 1: Side view of the 3D printed lower box portion of the FLYDE plate. Gas
148 is introduced to the chamber via the inserted tube.

149



150

151 Figure 2. Side view of the 3D printed lower box portion of the FLYDE plate.
152

153
154 Figure 3. Photo of the laser-cut acrylic sheet that comprises the upper plate of
155 the FLYDE plate.
156

157
158 Figure 4: Photo of the assembled FLYDE plate. CO₂ is introduced to the bottom
159 of the apparatus via the tube (on right), and dissipates through the upper plate.
160

161
162 Figure 5: Photo of the assembled FLYDE plate. CO₂ is introduced to the bottom
163 of the apparatus via the tube (on right), and dissipates through the upper plate.
164 The tight grouping of the holes ensures that there is an ~even diffusion of gas
165 across the surface, ensuring a consistent arena for manipulating anesthetized
166 flies.
167
168
169

170 **References:**

171 Artiss, T. and Hughes, B., 2007. Taking the headaches out of anesthetizing
172 *Drosophila*: A cheap & easy method of constructing carbon dioxide staging. *The*
173 *American Biology Teacher*, 69(8) 77-80.

174

175 Baden T, Chagas A.M., Gage G, Marzullo T, Prieto-Godino LL and Euler T.,
176 2015. Open Labware: 3-D printing your own lab equipment. *PLoS Biology*, 13(3)
177 e1002086.

178

179 Barron, A.B., 2000. Anaesthetising *Drosophila* for behavioural studies. *Journal of*
180 *Insect Physiology*, 46(4), 439-442.

181

182 Brookes, M., 2001. Fly: the unsung hero of twentieth-century science. New York:
183 Ecco.

184

185 Cruz, J. 2017. Fly pad. Model ID 3DPX-007884.
186 <https://3dprint.nih.gov/discover/3DPX-007884>

187

188 Markow, T.A. and O'Grady, P., 2005. *Drosophila: a guide to species*
189 *identification and use*. Elsevier.

190

191 Melo Sene, F., and Manfrin M.H., 2001. A CO₂ chamber for anesthetizing
192 *Drosophila*. *Drosophila Information Service*. 84, 186-187.

193

194 Pearce J.M., 2013. *Open-source lab: how to build your own hardware and*
195 *reduce research costs*. Elsevier.

196

197 Perry, J., 2018. "Glue filter paper down on top of a Petri dish packed with ice,
198 works nicely [Tweet]
199 <https://twitter.com/jennyperry/status/1001119345404207106>

200

201 Stocker, H., and Gallant, P., 2008. Getting started: an overview on raising and
202 handling *Drosophila*. *Methods in Molecular Biology*. 420, 27-44.

203

204

205 **Data Accessibility Statement:** All design files are uploaded to Thingverse.com
206 (<https://www.thingiverse.com/thing:3599321>) and are available upon request
207 from the authors

208

209 **Competing Interests Statement:** The authors report no competing interests.

210

211 **Author Contributions:** The project was conceived by TAFL, the design was a
212 collaboration of JH and TAFL with drafting and model production performed by
213 JH. TAFL and JH wrote the manuscript.

214

215 **Acknowledgements:** We are grateful to Science Entrepreneurship program
216 coordinator Ron Daniels for advice and instruction on the programs involved in
217 creating this design, and the operation of the 3D printer and the laser-cutter,
218 and to the Wilfrid Laurier University Student Life Levy and the Laurier Faculty of
219 Science for financial support of Science Maker Lab. TAFL was funded with a
220 Natural Sciences and Engineering Research Council (NSERC) Discovery grant,
221 which (along from funding from the Laurier Office of Research Services) also was
222 used to support JH with a NSERC Undergraduate Student Research Award
223 (USRA). The release of these plans as open-source labware is consistent with
224 NSERC's policy on Intellectual policy in "Support[ing] a researcher's right to use
225 his/her research results for non-commercial purposes in future research and in
226 teaching". Members of the Long lab provided helpful feedback on the
227 manuscript and on the product design. This manuscript is dedicated to Dr. Bill
228 Rice (UC Santa Barbara), who taught TAFL how to make his first fly plate. This
229 work was conducted at Wilfrid Laurier University, which exists on the traditional
230 territory of the Neutral, Anishnawbe, and Haudenosaunee peoples.