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Abstract Analyses of the Environmental Kuznet’s Curve 
(EKC) hypothesis have largely focused on economy level 
data with occasional analyses exploring sector level data. 
This paper exploits a new data set which contains sec-
tor level data on greenhouse gas emissions from the 
US energy sector as well as subsector data from six 
disjoint subsectors which together comprise the entire 
energy sector. The data contained in this data set is 
annual data at the state level from 1990 through 2011. 
By using differenced data we specify an econometrically 
sound EKC model and compare it against a model con-
taining only a linear GDP per capita term. We find that 
by using a subsector level modelling approach, evidence 
for the EKC hypothesis is virtually nonexistent. More-
over, we find that aggregated subsector level estimates 
outperform sector level estimate on in-sample accuracy. 
These estimated models are then used to forecast emis-
sions for the energy sector. We find evidence that US 
greenhouse gas emissions from energy production are 
at or near a peak.
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1 Introduction

The primary source of greenhouse gas (GHG) emissions 
from an economy is the energy production sector. Mar-
rero (2010) determined that greater than 65% of the 
world’s GHG emissions come from energy production
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with many OECD nations generating greater than 80%

of their total GHG emissions from energy production.

According to data from the WRI CAIT Climate Data
Explorer (2014), the data set used for this paper, during

the period from 1990 through 2011 the energy produc-

tion sector accounted for more than 88% of total GHG
emissions in the United States. Considering the contri-

bution to total GHG emissions from the energy sector

of the US economy, any analysis or forecast of GHG
emissions in the United States must seriously consider

the dynamics of GHG emissions due to energy produc-

tion.

With new data from the WRI CAIT Climate Data
Explorer data set, we explore for the first time the

dynamics of six subsectors of the energy production

sector of the US economy. By order of magnitude of
GHG emissions, these six subsectors are: electric power,

transportation, industrial, residential, commercial, and

fugitive emissions. By not only studying the energy sec-
tor as a whole, but also by studying the behavior of its

subsectors, we can improve our understanding of GHG

emissions from energy production and thereby enhance

forecasts of GHG emissions. By showing that this fore-
casting approach leads to greater accuracy when divid-

ing data into training and testing periods, aggregated

subsector forecasts are shown to be superior to sector
level forecasts.

Since the quantity and composition of GHG emis-

sions varies across sectors of the economy, and similarly
across subsectors of the energy sector, no two subsectors

of energy production should expect to benefit equally

from any given emissions mitigation program. More-

over, technological advancement does not affect the en-
ergy production sector ubiquitously. By breaking the

energy sector down into subsectors, we can increase our

ability to estimate the effects of subsector specific tech-
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nological advancements or emissions mitigation poli-

cies. As energy consumption habits are known to change
with income, see, e.g., Caron and Fally (2018), energy

production portfolios should vary across income levels

and thus across states. For all of these reasons, finding
an overall trend in GHG emissions from energy produc-

tion will not be as accurate as finding an aggregated

trend of the subsectors of energy production.

In order to study energy subsector GHG emissions,

we use an econometrically sound variant of the Envi-

ronmental Kuznet’s Curve (EKC) approach. Under this
approach, GHG emissions are differenced and these dif-

ferences are estimated primarily as a function of GDP

per capita. The EKC hypothesis states that there is an
inverted “U” shape relationship between GHG emis-

sions and GDP per capita. To test this hypothesis,

models using the EKC approach include both GDP

per capita and GDP per capita squared. The ecological
consequences of this hypothesis are that, if true, GHG

emissions are not a monotonically increasing function

of production. That is to say, as production contin-
ues to increase, overall levels of emissions may actu-

ally decrease. Possible explanations for this behavior

include the notion that the adaption of greener tech-
nologies, the switch to renewable sources of energy, and

the implementation of other abatement strategies are

all monotonically increasing functions of income.

The two overwhelming drivers of emissions from the

energy production sector are electric power generation

and transportation. Both electric power generation and
transportation are areas which are experiencing rapid

growth in the adaptation of greener technologies, the

switch to renewable sources of energy, and in the growth

of regulation which imposes, through various means,
emissions limitations (Fox et al., 2017). However, the

methods employed to achieve emissions reductions in

these two subsectors are not identical, so our method of
isolating these subsectors and studying and forecasting

them independently of each other allows us to deter-

mine not only which factors influence emissions from
energy production, but also how these factors influence

emissions at the subsector level. Similarly, we can test

not only whether the EKC hypothesis is likely for the

energy production sector as a whole, but how valid the
EKC hypothesis is for each of its subsectors. By study-

ing the determinants of GHG emissions at the subsec-

tor level, better policy proposals and decisions regard-
ing emissions and emissions abatement strategies can

be made through this more in depth targeting of the

energy production sector.

The remainder of this paper follows the following

structure. After providing a review of the relevant lit-

erature, we describe our data set and the methodologies

we employ to determine which factors influence emis-

sions from the energy sector and its subsectors in the
United States. At this point the results from the var-

ious regression models are presented and their results

and implications for the EKC hypothesis are discussed.
In particular, we show that when analyzing the sub-

sectors of the energy production sector, no support for

the EKC hypothesis exists. Moreover, we show through
use of the Akaike Information Criterion (AIC) that a

model specified to test for the EKC hypothesis is effec-

tively not different from a model which includes only a

linear term for GDP per capita. Once we have an un-
derstanding of these results, we describe our forecast-

ing technique which comes from Selden and Song (1994)

and forecast state level and total US GHG emissions for
the energy production sector both independently and as

an aggregate of the forecasts for each of its subsectors.

To determine the validity of our aggregated forecasting
technique, we show that aggregated fitted values from

subsector models have greater in-sample accuracy in the

energy sector level data by using a secondary data set

from the EPA which includes national level GHG emis-
sions data for an additional five years beyond what is

offered by the WRI data set. Consequentially, we see

that US GHG emissions from the energy production
sector have likely peaked.

2 Literature Review

Selden and Song (1994) popularized the EKC hypoth-
esis as a means for studying various GHG emissions.

After testing the EKC hypothesis, which they found

evidence for in the case of several greenhouse gases,
they forecasted future emissions and found that GHG

emissions were likely to taper off, though not decrease,

over the next several decades. Since then, several papers
have studied and tested the EKC hypothesis in various

contexts.

Early support for the confirmation for the EKC hy-

pothesis was given by List and Gallet (1999). From
there, numerous case studies on various nations, US

states, and global regions were performed. Friedl and

Getzner (2003) studied the EKC hypothesis in Aus-
tria and found evidence for the standard EKC model

with a cubic term for GDP per capita included. Sim-

ilarly, Shittu et al. (2018) studied the EKC hypothe-
sis in Malaysia, Kunnas and Myllyntaus (2007) studied

the case of Finland, and Soytas and Sari (2009) did

the same in Turkey. At the state level in the United

States, Konan and Chan (2010) performed a case study
on Hawai’i and Yang et al. (2009) performed a case

study on California. On a much larger geographic scale,

Zoundi (2017) studied the EKC hypothesis in Africa.
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This analysis found ambiguous evidence, showing that

in Africa CO2 levels rise monotonically with rises in
income.

However, not every study has provided the same

level of support for the EKC hypothesis. Azomahou

et al. (2006) found that the EKC hypothesis has more
or less support in different countries and under differ-

ent statistical approaches. The standard model for EKC

hypothesis testing did exhibit evidence for the EKC hy-
pothesis, but a non-parametric model found only lim-

ited evidence which varied widely by country. In the

context of sulfur emissions specifically, Stern and Com-

mon (2001) found that there was support for the EKC
hypothesis, but only for high income countries. The

standard EKC model found monotonically increasing

sulfur emissions when using a global data set.

There is much concern over the specification of EKC
models due to the inclusions of multiple powers of GDP

per capita. When a cubic term is included, it is possi-

ble to see an ‘N’ shaped model due to the effects of the

cubic term. While this appears to lend some support
to the EKC hypothesis over what could be considered

a realistic income domain, Canas et al. (2003) pointed

out that the ‘N’ shaped curve can perhaps be better
thought of as an ‘augmented’ EKC. Hüttler et al. (1998)

went further and asserted that the ‘N’ shaped curve

supports not the EKC hypothesis, but a perverted vari-
ant in which emissions reduction with economic growth

is merely a transitory phase that precedes a final phase

in which further economic growth drives a rapid growth

in emissions. Because of this, Canas et al. (2003) recom-
mended that any inference of support for EKC models

relying on significant effects from the cubic term should

be taken cautiously.

Many more robust approaches for EKC models have
been developed. Spatial models were first used as a tool

for assessing the EKC hypothesis by Rupasingha et al.

(2004). Extending the use of more sophisticated econo-
metric approaches, Maddison (2006) studied a spatial

variant of the EKC hypothesis for national emissions of

SO2 and NOx and found evidence that national emis-

sions are lowered by proximity to nations with high
per capita income, contradicting the notion that na-

tions must achieve increased environmental quality at

the expense of their neighbors. Burnett et al. (2013a)
also studied several spatial panel data models in the

context of CO2 emissions in the United States, and

Ordás Criado (2008) performed a case study on Spain
using non-parametric estimation techniques.

In addition to testing the EKC hypothesis with semi-
and non-parametric and spatial econometrics models,

recent emphasis has been placed on validating estima-

tions and on the importance of the data itself. Chow

and Li (2014) established a method using t-tests for

validating conclusions supporting the EKC hypothesis
using standard econometric approaches. However, Mil-

limet et al. (2003) demonstrated that semi-parametric

techniques tend to be superior to standard economet-
ric approaches. As for the choice of data set on the

part of the researcher, both Harbaugh et al. (2002) and

Galeotti et al. (2006) showed that the data set cho-
sen does not significantly impact any conclusions drawn

from statistical analyses.

In lieu of testing the EKC hypothesis itself, the

topic of convergence of per capita GHG emissions has

also garnered recent attention in the literature. Aldy
(2006) studied the convergence of per capita GHG emis-

sions in OECD countries and found evidence support-

ing this idea. Criado and Grether (2011) found with
non-parametric methods that convergence in per capita

emissions existed only within groups of similar coun-

tries. Aldy (2007) found no evidence, in the context
of the United States, for state-wise convergence in per

capita emissions, while Burnett (2016) found a group of

26 states for which there is support for convergence in

emissions. Relatedly, Tol et al. (2006) studied the EKC
hypothesis for emissions intensities and Burnett et al.

(2013b) found the economic growth drives not absolute

emissions but emissions intensities.

Not all sectors of the economy are equally respon-
sible for producing emissions. For this reason several

papers have explored the EKC hypothesis for certain

sectors of the economy. Using data from the industrial

sector, Edelenbosch et al. (2017) forecasted decreasing
energy intensities for this sector in non-OECD countries

following a brief increase in industrial energy demand in

the short term. Suri and Chapman (1998) first studied
the EKC hypothesis in the context of energy consump-

tion. Expanding on their results, Soytas et al. (2007)

investigated energy consumption in the United States
and found that increases in energy use, not increases

in income, cause carbon emissions in the United States

by using a Granger causality test. This result is note-

worthy because it implies that economic growth alone
is not a solution for long term emissions reductions.

Furthering these sector level analyses, Bruvoll and

Medin (2003) looked at potential economic factors driv-

ing air pollution and found that changes in the rela-
tive size of different sectors of the economy helps drive

changes in emissions. Mazzanti et al. (2008) used data

on value added and capital stock per employee as co-
variates and found that the inclusion of these measures

of labor productivity led to mixed support at the sector

level for the EKC hypothesis in the case of Italy.

In the United States, another interesting way to

subdivide emissions is at the state level. Aldy (2005)
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studied per capita emissions at the state level, find-

ing that the estimated EKC varied by state. Using a
spatial autoregressive model, Burnett and Bergstrom

(2010) found further evidence for the EKC hypothe-

sis in the United States. Auffhammer and Steinhauser
(2012) found that, while standard EKC models did well

with in sample accuracy (R2, Akaike Information Crite-

rion, Schwartz Information Criterion, and others), they
were not the top performing models for out of sample

testing. Combining the state level and sector specific

analyses, Zhou and Gurney (2011) used a spatial econo-

metric model to study sector specific emissions and the
state and county level in the United States. Using sur-

face temperature data, they found that emissions due

to space cooling in warmer climates should more than
offset any future emissions reductions due to reduced

needs for space heating. A study by Apergis et al. (2017)

found limited evidence for the EKC hypothesis at the
state level (10 of 48 states fit the hypothesis) using a

standard EKC model without a cubic term.

Using a similar basis, namely province level EKC
testing on province level data from China, Auffhammer

and Carson (2008) forecasted aggregate Chinese emis-

sions. Of particular interest in this paper was the re-
sponse by the forecasted Chinese emissions to the Kyoto

Protocol. More generally, the theme of increased emis-

sions mitigation techniques, ranging from legislation to
greener technologies to socioeconomic inequality and

beyond, to combat global climate change and increased

air pollution have also been studied in the context of

the EKC hypothesis. Magnani (2000) studied how in-
come inequality affects investment into emissions miti-

gation R&D and found that income inequality leads to

a gap between the willingness to pay of a country and
its ability to pay.

The negative externalities associated with GHG emis-
sions and how they will impact the economy are cur-

rently attracting much attention from interdisciplinary

researchers. Fankhauser and Tol (2005) studied the ef-

fects of climate change on capital accumulation, finding
that forward looking agents are likely to change their

savings behavior which will lead to reduced economic

growth. A growth model with endogenous emissions re-
duction was created by Criado et al. (2011), and by

using data from European nations they were able to

validate this theoretical model. Simulations of the im-
pact of automation on emissions at the household level

were performed by Ringel et al. (2019), demonstrating

evidence that automation of lighting, heating, and cool-

ing in a household can help reduce emissions. Al-Mulali
et al. (2015) studied contributing factors to air pollu-

tion in Vietnam and Yates and Strzepek (1998) found

that climate change had a minimal impact on agricul-

tural production in Egypt. Beyond agricultural produc-

tion, the negative externalities due to emissions are vast
and include depletion of the ozone layer, primarily due

to N2O emissions (Ravishankara et al., 2009). Addi-

tionally, impacts on human health due to emissions,
including increased risks of various chronic respiratory

diseases and cancers (Kampa and Castanas, 2008), are

also concerns which emissions mitigation policies at-
tempt to address. The economic impact of increased

health risks due to emissions are well documented (West

et al., 2013).

We conclude the literature review section of this pa-

per by acknowledging several well written survey papers
on the EKC hypothesis which the reader may find help-

ful, including (Dinda, 2004), (Gill et al., 2018), (Stern,

2004), and (Stern, 2017).

3 Data

The basis for our data set is from the WRI CAIT Cli-
mate Data Explorer (2014). This data set is the only

data set known to the author which includes GHG emis-

sions data not only for the energy production sector,

but for its comprising subsectors (electric power gener-
ation, transportation, industrial, residential, commer-

cial, and fugitive emissions). This data considers total

GHG emissions in Mt CO2 equivalent rather than by
Mt of individual chemical species, i.e., it is an aggre-

gate measure of emissions. This data is at the state

level, includes estimates of GDP per capita and popu-
lation, and covers the time period from 1990 to 2011.

While 22 years is a relatively short period of time, the

novelty and level of specification of this data set allows

us to be the first to analyze GHG emissions at the state
level for subsectors of the US energy production sector.

To clarify the scope of the subsectors, they are de-

fined as follows. The electric power generation subsec-

tor reflects emissions from the primary generation of

electricity. The transportation subsector reflects emis-
sions from passenger vehicles, trucks, ships, trains, and

plains, typically from the combustion of fossil fuels in

combustion engines. The industrial subsector reflects
emissions from production processes for the produc-

tion of goods. The residential subsector reflects emis-

sions from residential structures, such as emissions from
heating or cooling. The commercial subsector reflects

emissions from non-production aspects of industry, e.g.,

emissions from heating or cooling retail stores. Finally,

fugitive emissions are emissions that escape into the
atmosphere due to leaks, mechanical failures, or other

unintentional causes, i.e., these are emissions that were

intended to be captured but were not.
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Have greenhouse gas emissions from US energy production peaked? 5

The socioeconomic data used in this study includes

GDP per capita and population density. The WRI data
set included GDP per capita and population. To derive

population density, the given population of each state

was divided the area of the state in square kilometers.
To address the various state level portfolios of energy

sources (i.e., clean versus fossil fuels), we use data on

this blend from the United States Energy Information
Administration (2019). Because climate change is a sig-

nificant concern in forecasting future energy consump-

tion and emissions, we include data on heating degree

days and cooling degree days from United States Na-
tional Climate Data Center (2019). Heating degree days

are defined as the sum of the number of degrees that av-

erage temperature is above 65 degrees Fahrenheit over
a given time period (in our case annually). Cooling de-

gree days are defined similarly by using the sum of the

number of degrees the average temperature is below 65
degrees. These data are the standards used in the lit-

erature. We differentiate between these because they

often use different fuel sources. Summary statistics for

the data are presented below in Table 1.

Table 1: Summary statistics for the data

Variable Mean St. Dev.

GHG Emissions 121 118

GDP per capita 52,355 12,850

Energy Blend 0.877 0.246
Heating Degree Days 5,280 2,084

Cooling Degree Days 1,065 804

Population Density 61.14 76.30

The data for the subsectors exhibit several impor-
tant quantitative and qualitative properties. First, the

sum of GHG emissions over all subsectors in a fixed year

and state are equal to the total GHG emissions from
the energy sector in that same state and year. Qual-

itatively, there are two primary drivers of the energy

production sector (electric power generation and trans-

portation), and the three largest subsectors account for
nearly 90% of GHG emissions from US energy produc-

tion. The average contribution of each subsector to total

GHG emissions from energy production over all states
and years in the data set is summarized in the table

below.

In order to validate the forecasts using the WRI
data, we use national level data from the United States

Environmental Protection Agency (2019) which extends

through 2017.

Table 2:

Contribution of each subsector to GHG emissions from

energy production

Subsector Contribution

Electric Power 36.23%

Transportation 32.16%

Industrial 18.60%
Residential 6.18%

Commercial 3.90%

Fugitive Emissions 2.91%

4 Methodologies

This paper has two primary goals: to test the EKC
hypothesis for GHG emissions from the US energy pro-

duction sector and its subsectors, and to forecast GHG

emissions from US energy production using these re-

sults. In this section we detail the regression models
used to test the EKC hypothesis on the data set.

As detailed in the literature review section of this

paper, several regression techniques, including fixed ef-

fects models, random effects models, autoregressive mod-

els, semi- and non-parametric techniques, and spatial
regression models have been used on various data sets

to test the EKC hypothesis. In this paper we use two

different models applied to each of the six subsectors of
the energy production sector as well as the energy pro-

duction sector itself. These models are both variants of

autoregressive models with covariates, with one model
testing the EKC hypothesis (i.e., it includes GDP2) and

one which does not include the GDP 2 term to serve

as an econometrically sound comparison for the EKC

model. Eventually, the estimated coefficients from both
models will be used in our forecasts.

Model misspecification is a common problem faced

when testing the EKC hypothesis which causes corre-

lated residuals Burnett et al. (2013a). In order to test

the EKC hypothesis for GHG emissions in a statis-
tically sound manner, we consider a model which in-

cludes the lagged dependent variable (in our case this

is emissions) as a determinant of the current level of
emissions. The inclusion of the lagged dependent vari-

able helps eliminate any potential endogeneity without

concern of model misspecification Achen (2000). Given
this, the EKC model takes on the following specifica-

tion in which the variableGHGs,t represents total GHG

emissions from state s in year t, ys,t represents GDP per

capita in state s in year t, ps,t represents the population
density of state s in year t, hs,t represents the number

of heating degree days in state s in year t, and cs,t rep-

resents the number of cooling degree days in state s in
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year t.

GHGs,t = αGHGs,t−1 + β1ys,t + β2y
2

s,t

+β4ps,t + β5hs,t + β6cs,t + ǫi,t
(1)

If the emissions generation process exhibits a unit

root, then testing the EKC hypothesis on emissions lev-
els becomes equivalent to testing the EKC hypothesis

on changes in emissions. That is, if the estimated pa-

rameter α̂ from Equation 1 is not statistically different
from unity, then Equation 1 may be replaced with a

model for the change in GHG emissions. We test this

with the following null hypothesis.

H0 : α̂ = 1 (2)

When running this regression we found that we could

not reject the null hypothesis H0 and so we conclude

that we are justified in using a model of the differ-

ence in GHG emissions to test the EKC hypothesis.
The form our model takes is given below where ∆s,t =

GHGs,t −GHGs,t−1.

∆s,t = β1ys,t+β2y
2

s,t+β4ps,t+β5hs,t+β6cs,t+ ǫi,t (3)

In the second model which serves as a comparison
for the EKC model, we simply remove the y2s,t term and

its coefficient from the first model.

After estimating each model, the estimated coeffi-
cients are used to find the point at which GHG emis-

sions peak according to the EKC hypothesis. This is

done by using the parameters β1 and β2 by checking
that β1 > 0 and β2 < 0. If so, the estimated peak, or

turning point as it is often called, is given by −β1

2β2

. In

instances in which the coefficients reject the EKC hy-
pothesis, i.e., they do not fit the above form and thus

monotonically increase, we denote the estimated turn-

ing point by —.

The forecasts performed using this data are vali-

dated with national level data from the EPA. To ensure

that we have a reliable basis for comparing the per-
formance of the forecasts using each model, we trans-

form the EPA data to fit the national level WRI GHG

emissions data using a standard univariate OLS regres-

sion approach. By using GHG emissions data from 2012
through 2017, this allows us to use mean squared error

(MSE) as a metric for assessing which forecasting ap-

proach is superior.

5 Results

Since we are analyzing results from not only the energy

sector as whole, but for six subsectors of this sector,

we break this section down into seven subsections, one

for the energy production sector and one for each of its

six subsectors. In each subsection we will present the
estimates from the regression models, provide the es-

timated turning point (−β1

2β2

) representing an estimated

peak emissions level, and discuss whether the results fit
the EKC hypothesis.

Overall we do not find evidence for the EKC hy-

pothesis for the energy sector, even when we restrict our
analysis to the subsector level. This is evidence that any

claims supporting the EKC are quite possibly spurious

due to misspecified econometric models. Moreover, we

find that the linear GDP model outperforms the EKC
model in terms of forecast accuracy.

The tables for the results discussed in this section

can be found in Appendix A. In those tables, the symbol
* will denote that a variable is significant at the 10%

level, ** will denote significance at the 5% level, and

*** will denote significance at the 1% level.

We begin by examining the US energy production

sector as a whole. The data set used for this study broke

down the energy production sector into six disjoint sub-

sectors: electric power, transportation, industrial, resi-
dential, commercial, and fugitive emissions. An initial

survey of the estimates from the regression models, pre-

sented in Tables 4 and 5 in Appendix A, immediately
dissuades us from making any conclusions in support of

the EKC hypothesis. In none of the models using the

EKC specification was the coefficient β1 positive. This
means that the EKC hypothesis was not supported at

either the level of the energy production sector or for

any of its subsectors. When comparing this against the

linear GDP model by using the Akaike Information Cri-
terion (AIC), we see no substantial difference between

the two approaches. Considering that the coefficient β1

behaves the sames under both model specifications and
that the GDP squared term in the EKC model was

only statistically significant in one instance (for the en-

ergy sector as a whole), the AIC statistics suggest that
the two models are effectively the same, further eroding

support for the EKC hypothesis.

Moving beyond the income terms, we see that the

significant factors were heating degree days and cool-
ing degree days. An increase in the number of heating

or cooling degree days corresponds to an increase in

emissions; however, cooling degree days were respon-
sible for roughly triple the increase in emissions, sug-

gesting that, at least in the United States, temperature

increases could have a slightly net negative effect on

GHG emissions.

Interestingly enough, these results suggest that GHG

emissions from the energy production sector have likely

peaked.
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Moving on to the subsector level analyses, we see a

nearly identical story. Heating degree days and cooling
degree days are the most significant covariates included

in this study, with both of these variables being statis-

tically significant in the majority of models.

We do take the time to mention that some subsec-
tors could benefit from perhaps a more targeted set

of covariates. For example, transportation is relatively

elastic in how it is consumed when compared to the

other subsectors. For this reason, transportation is a
common target of emissions mitigation policies, legisla-

tion, and technologies (Fox et al., 2017). Furthermore,

emissions from transportation often occur in heavily
populated areas. These emissions contribute directly

to numerous negative health consequences (Kagawa,

2002), further incentivizing reductions in emissions from
this subsector. Alternatively, results from fugitive emis-

sions are due to faulty equipment, faulty processes, and

corporate corruption, among other distinct factors. For

this reason, results for fugitive emissions indicate that
the factors which contribute to changes in emissions in

other subsectors are not as impactful on fugitive emis-

sions.

6 Forecasting GHG Emissions

Forecasts are a valuable tool for policy making, in part
because they allow for us to attempt to answer the ques-

tion of whether or not emissions have likely peaked. Us-

ing the results from our econometric models, we fore-
cast GHG emissions from the US energy production

sector using the forecasting method used by Selden and

Song (1994). We then complement these forecasts using

aggregated subsector emissions forecasts following the
same methodology. This dual forecasting approach al-

lows us to achieve several novel results. First, it allows

for us to forecast GHG emissions at the subsector level.
Additionally, this allows for state level forecasts of emis-

sions at the subsector level. But most importantly, we

can compare aggregated forecasted subsector emissions
against forecasted emissions from the energy sector as

a whole. By doing so, we can potentially improve upon

forecasts of emissions from the energy production sec-

tor.

Since the EKC hypothesis asserts that GHG emis-
sions are a function of economic growth, we can forecast

GHG emissions using the estimated parameters from

our regression models and forecasted economic growth.

Because economic growth in the United States is rel-
atively consistent, we can forecast GDP per capita on

a state by state basis with the following model speci-

fied by Selden and Song (1994) in which yi,t represents

GDP per capita in state s in year t, and θs,t denotes

the error term.

ln

(

ys,t

ys,t−1

)

= γ0+γ1 ln (ys,t−1)+γ2 ln (y
2

s,t−1
)+θs,t (4)

Because we used a series of covariates in our regres-

sion models, and because these covariates can be easily

forecasted with reasonable accuracy, we include fore-
casts for each covariate in our forecasts using a linear

trend on a state by state basis. We then use our fore-

casted GDP per capita and forecasted covariates along
with the estimated parameters from each of our mod-

els to create a raw forecast of emissions for each model

and (sub)sector combination over the period from 2012

through 2017, the time period for which we have ad-
ditional national level GHG emissions data from the

EPA.

These raw emissions are then transformed using a
Tobit functional form. This approach flattens forecasts,

creating more gradual increases and decreases. Selden

and Song (1994) preferred this method for asymptotic
properties compared to the standard EKC and because

it does not affect the turning points estimated by the

EKC model. The Tobit transformation used here is

given by the following equation in which m̂s,t denotes
the Tobit transformed forecasted emissions for state s

in year t, ms,t denotes the raw forecasted emissions for

state s in year t, Φ denotes the standard normal cu-
mulative distribution function, φ denotes the standard

normal probability distribution function, and σ denotes

the standard deviation of the error terms in the original
regression models from which the forecasts are based.

m̂s,t = Φ
(ms,t

σ

)

∗ms,t + σ ∗ φ(ms,t) (5)

Once the Tobit transformations are complete, we ag-

gregate the state level forecasts for each model into a

single national level forecast of GHG emissions.

In order to validate our model and its forecasts, we
use data from the United States Environmental Pro-

tection Agency (2019). The reason for using this data

is two fold. First, it is an independent source which al-
lows not only for model verification but also serves to

validate our primary emissions data. Consistency be-

tween the EPA and WRI data sets confirms the quality
of the data used in this paper. Second, the most re-

cent year of data available in the WRI data set was

from 2012. The EPA data set contained data for as re-

cently as 2017. Since we want to determine whether
or not US GHG emissions have likely peaked, we use

the EPA data to confirm the result from our forecasts

that US GHG emissions have indeed likely peaked. In
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order to directly compare the EPA data to our fore-

casts, we transformed the EPA data to fit the historical
WRI data using a simple linear model. This allows us

to account for any discrepancies in emissions accounting

while ensuring that the year over year emissions levels
are consistent.

The forecasted models are presented below and are

grouped by model. For legibility purposes, the forecasts
are separated into two plots. Before discussing the re-

sults, we again mention that both models predict de-

creasing GHG emissions going forward, supporting the

conclusion that US GHG emissions may have reached
their peak.
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In order to justify this forecasting approach, we first

present a comparison of the in-sample accuracy of the
models for the energy sector as a whole versus the ac-

curacy of aggregated subsector models. We find that, in

accordance with the ‘sum of the parts is more than the
whole’ approach espoused by Ferreira and Santa-Clara

(2011), the aggregated subsector models are more accu-

rate than the energy sector models. The following table

contains the comparisons between the mean squared
error (MSE) values for the independent energy sector

models and the aggregated energy subsector models

within the energy sector data. They show not only that

the aggregated energy subsector models are more accu-

rate, but also that the linear growth models are more
accurate than the EKC models.

Table 3: Comparison of MSE Values

Mean Squared Error (MSE)

Model Aggregate Independent

EKC 1.47e5 1.93e5

Linear 6.07e3 3.07e4

Throughout all forecasts we see that the aggregated

forecasts, which we have demonstrated to be more ac-
curate within the data set, universally predict a slower

decrease in future emissions than the forecasts using

energy sector level data. This indicates that forecasts
based on the EKC are relatively inaccurate; in this case

we see that forecasts based on the standard EKC con-

sistently forecast below aggregate forecast levels. Given
that the aggregated subsector level models outperform

the energy sector level models for in-sample accuracy,

we conclude that the ‘sum of the part is greater than

the whole’ concept applies to emissions estimation and
forecasting at the sector and subsector level.

7 Conclusion

In this paper we tested the EKC hypothesis for GHG

emissions from the US energy production sector and its

subsectors using an econometrically rigorous variant of
the autoregressive EKC regression model which models

GHG emissions as a function of economic growth. We

found no evidence for the EKC hypothesis at either the

energy production sector level or at the subsector level.
The behavior of the linear GDP term was the same

(negative coefficients) for a linear GDP model, further

supporting that the EKC hypothesis is not the best
approach to modelling GHG emissions.

After testing the EKC hypothesis for the energy
production sector of the US economy and its six sub-

sectors, we forecasted future emissions for the energy

production sector both independently and as the ag-
gregate of forecasts of its subsectors. We found that the

aggregated forecasts were sightly higher than the inde-

pendent forecasts, demonstrating a lessened decrease in

emissions during the forecast. This result was validated
with in-sample testing of the accuracy of these two ap-

proaches. Both models suggest that US GHG emissions

due to energy production have peaked.
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To extend this research, we suggest that this ap-

proach of subsector level emissions based analysis and
forecasting be applied elsewhere, beyond the United

States. In-sample accuracy testing may not necessarily

offer the same results, so any subsector level forecasting
should pay special attention to how it is validated.
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A Regression Tables

Table 4: Estimation Results for the EKC Model

Energy Electric Power Transportation Industrial Residential Commercial Fugitive
Variable Sector Subsector Subsector Subsector Subsector Subsector Emissions
GDP -0.0001*** -6.827e-5** -9.52e-6 -2.766e-5 -1.849e-5** -6.701e-6 -9.557e-6

(4.79e-5) (2.74e-5) (1.72e-5) (2.12e-5) (7.29e-6) (4.61e-6) (6.84e-6)
GDP2 8.138e-10*** 4.118e-10 -3.795e-11 1.685e-10 1.152e-10 4.212e-11 1.141e-10

(4.64e-10) (2.65e-10) (1.67e-10) (2.05e-10) (7.05e-11) (4.46e-11) (6.62e-11)
Population Density 0.0016 0.0006 0.0010 -1.058e-5 0.0003 9.33e-5 -0.0005

(0.003) (0.001) (0.001) (0.001) (0.000) (0.000) (0.000)
Energy Blend 0.1978 0.3004 0.0242 -0.0833 -0.1215 -0.0596 0.1377

(0.734) (0.419) (0.264) (0.324) (0.112) (0.071) (0.105)
Heating Days 0.0006*** 0.0002*** 6.828e-5 0.0001 9.469e-5*** 3.754e-5** 1.393e-5

(0.000) (9.43e-5) (5.93e-5) (7.29e-5) (2.51e-5) (1.59e-5) (2.36e-5)
Cooling Days 0.0019*** 0.0010*** 0.0004** 0.0002 0.0002*** 7.015e-5 3.103e-5

(0.000) (0.000) (0.000) (0.000) (6.48e-5) (4.1e-5) (6.08e-5)
Adjusted R

2 0.032 0.035 0.022 0.003 0.013 0.001 0.002
AIC 6335 5206 4272 4688 2537 1615 2409
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Table 5: Estimation Results for the Linear GDP Model

Energy Electric Power Transportation Industrial Residential Commercial Fugitive
Variable Sector Subsector Subsector Subsector Subsector Subsector Emissions
GDP -5.949e-5*** -2.743e-5*** -1.328e-5*** -1.094e-5* -7.073e-6*** -2.523e-6* 1.763e-6

(1.35e-5) (7.74e-5) (4.86e-6) (5.98e-6) (2.06e-6) (1.3e-6) (1.93e-6)
Population Density 0.0011 0.0004 0.0011 -0.0001 0.0002 6.929e-5 -0.0005

(0.003) (0.001) (0.001) (0.001) (0.000) (0.000) (0.000)
Energy Blend -0.0054 0.1976 0.0336 -0.1254 -0.1503 -0.0701 0.1092

(0.726) (0.414) (0.260) (0.320) (0.110) (0.000) (0.104)
Heating Days 0.0004*** 0.0001** 7.766e-5 8.48e-5* 6.623e-5*** 2.713e-5** -1.428e-5

(0.000) (6.79e-5) (4.27e-5) (5.25e-5) (1.81e-5) (1.14e-5) (1.7e-5)
Cooling Days 0.0014*** 0.0008*** 0.0004*** 9.596e-5 0.0001*** 4.268e-5 -4.34e-5

(0.000) (0.000) (0.000) (0.000) (4.56e-5) (2.89e-5) (4.29e-5)
Adjusted R

2 0.030 0.034 0.023 0.004 0.012 0.001 0.000
AIC 6336 5207 4270 4686 2537 1614 2410
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B Code and Data Source Availability

The python script and csv files containing data from

WRI CAIT Climate Data Explorer (2014) are available

online at:
https://github.com/cat-astrophic/energy_subsector_emissions

Please cite the data source if using the data used in

this paper, but feel free to use, edit, and redistribute
any scripts related to this project freely!
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