Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 6 May 2019 d0i:10.20944/preprints201905.0056.v1

Using RAXML-NG in Practice

Alexey M. Kozlov!
Computational Molecular Evolution Group, Heidelberg Institute for Theoretical Studies
[Schhloss-Wolfsbrunnenweg 35, 69118 Heidelberg, Germany|
Alexey.Kozlov@h-its.org
http://orcid.org/0000-0001-7394-2718

Alexandros Stamatakis?
Computational Molecular Evolution Group, Heidelberg Institute for Theoretical Studies,
Karlsruhe Institute of Technology, Institute for Theoretical Informatics
[Schhloss-Wolfsbrunnenweg 35, 69118 Heidelberg, Germany]
Alexandros.Stamatakis@h-its.org

https://orcid.org/0000-0003-0353-0691

—— Abstract

RAxML-NG is a new phylogentic inference tool that replaces the widely-used RAxML and ExaML
tree inference codes. Compared to its predecessors, RAXML-NG offers improvements in accur-

acy, flexibility, speed, scalability, and user-friendliness. In this chapter, we provide practical
recommendations for the most common use cases of RAxXML-NG: tree inference, branch support
estimation via non-parametric bootstrapping, and parameter optimization on a fixed tree topo-
logy. We also describe best practices for achieving optimal performance with RAxML-NG, in
particular, with respect to parallel tree inferences on computer clusters and supercomputers. As
RAXML-NG is continuously updated, the most up-to-date version of the tutorial described in
this chapter is available online at: https://cme.h-its.org/exelixis/raxml-ng/tutorial.

2012 ACM Subject Classification Applied computing — Life and medical sciences — Compu-
tational biology — Molecular evolution

Keywords and phrases phylogenetic inference, maximum likelihood, parallel processing, HPC
Supplement Material https://github.com/amkozlov/ng-tutorial

Funding This work was financially supported by the Klaus Tschira Foundation

1 Introduction

RAxML [21, 22] is a widely-used tool for maximum likelihood (ML) based phylogenetic
inference. It has been cited by more than 25,000 publications over the last 15 years.
More recently, we introduced ExaML [20, 8], a variant of RAXML with several novel
features including checkpointing, improved load balancing, and an efficient fine-grained MPI
parallelization. These improvements were particularly important for being able to analyze
large-scale phylogenomic datasets on compute clusters and supercomputer systems [12, 5].
However, ExaML only offered a core subset of RAXML functionality. It lacks several
important functions such as bootstrapping and comprehensive starting tree generation.
These limitations, and its dependency on MPI, made ExaML more difficult to install and
use, and therefore presumably limited its adoption.

! [This work was financially supported by the Klaus Tschira Foundation]
2 [This work was financially supported by the Klaus Tschira Foundation]

© 2019 by the author(s). Distributed under a Creative Commons CC BY license.

mailto:Alexey.Kozlov@h-its.org
http://orcid.org/0000-0001-7394-2718
mailto:Alexandros.Stamatakis@h-its.org
https://orcid.org/0000-0003-0353-0691
https://cme.h-its.org/exelixis/raxml-ng/tutorial
https://doi.org/10.20944/preprints201905.0056.v1
http://creativecommons.org/licenses/by/4.0/

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 6 May 2019 d0i:10.20944/preprints201905.0056.v1

XX:2 RAxML-NG

With RAXML-NG, we introduced one single code that scales from the laptop to the
supercomputer. It combines the parallel efficiency of ExaML with functional completeness of
RAxML. Furthermore, RAXML-NG is more user-friendly than RAxML/ExaML because of a
simplified installation process, the re-engineered command line interface, and new default
settings that cover the most common usage scenarios (see Appendix A).

RAXML-NG can be downloaded at https://github.com/amkozlov/raxml-ng. The cor-
responding documentation is available via a GitHub wiki at https://github.com/amkozlov/
raxml-ng/wiki. Technical implementation details and benchmarking results can be found
in [7] and Chapter 4 of [9]. We also offer extensive user support via the RAxML google
group: https://groups.google.com/forum/#!forum/raxml.

All datasets used in this chapter can be downloaded from https://github. com/amkozlov/
ng-tutorial.

IMPORTANT NOTE: You will need RAxML-NG 0.8.0b or later for this
tutorial, so please make sure you have the right version:

$ raxml-ng -v

RAXML-NG v. 0.8.0 BETA released on 11.01.2019 by The Exelixis Lab.

2 Pre-processing the alignment

2.1 Sanity check

Before starting the actual analysis, it is strongly recommended to perform a multiple sequence
alignment (MSA) sanity check by calling RAXML-NG with the ’--check’ option.

$ raxml-ng --check --msa bad.fa --model GTR+G

This command will check the MSA for several common format issues as well as data
inconsistencies including:

duplicate taxon names

invalid characters in taxon names

duplicate sequences

fully undetermined ("gap-only’) sequences and columns

incorrect or incompatible evolutionary models, partitioning scheme and starting trees (if

provided)

Performing this check before starting the analysis is very important, since based on our
experience, a large proportion of failed RAXxML runs are due to tree or MSA format errors!
Let us take a closer look at the output of our sanity check invocation:

WARNING: Fully undetermined columns found: 2
WARNING: Fully undetermined sequences found: 2

WARNING: Sequences t3 1200bp and t8 are exactly identical!
WARNING: Duplicate sequences found: 1

ERROR: Following taxon name contains invalid characters: t9’
ERROR: Following taxon name contains invalid characters: t6)

https://github.com/amkozlov/raxml-ng
https://github.com/amkozlov/raxml-ng/wiki
https://github.com/amkozlov/raxml-ng/wiki
https://groups.google.com/forum/#!forum/raxml
https://github.com/amkozlov/ng-tutorial
https://github.com/amkozlov/ng-tutorial
https://doi.org/10.20944/preprints201905.0056.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 6 May 2019 d0i:10.20944/preprints201905.0056.v1

A. M. Kozlov and A. Stamatakis XX:3

ERROR: Following taxon name contains invalid characters: t3 1200bp

ERROR: Alignment check failed (see details above) !

It seems that this MSA file has almost every conceivable problem. RAxML-NG will
attempt to automatically fix the most common issues, for instance, by removing fully
undetermined columns and sequences, replacing invalid characters in taxon names etc. To
achieve this, it will write an analogously updated/fixed MSA file back to disk:

NOTE: Reduced alignment (with duplicates and gap-only sites/taxa removed)
NOTE: was saved to: /home/alexey/ng-tutorial/bad.fa.raxml.reduced.phy

Let us now repeat the sanity check with the fixed file:
$ raxml-ng --check --msa bad.fa.raxml.reduced.phy --model GTR+G

[..]
Alignment can be successfully read by RAxML-NG.

2.2 Compression and conversion to binary format

For large alignments, we recommend using the ’--parse’ command after, or, instead of
’—--check’:

$ raxml-ng --parse --msa prim.phy --model GTR+G

In addition to the MSA sanity check, this command will compress alignment patterns
and store the MSA in a binary format (RAxML Binary Alignment, RBA):

NOTE: Binary MSA file created: prim.phy.raxml.rba

In the process of pattern compression, RAXML-NG identifies identical MSA sites and converts
them into a single site ('pattern’) with a weight corresponding to their number of occurrence.
Since this compression step can potentially require quite some time for broad supermatrix
MSAs, directly loading a RBA file is (substantially) faster compared to parsing and loading
a plain FASTA or PHYLIP file. This parsing speed is important for large-scale parallel tree
inferences with say, 500 cores or more, as virtually no time is lost in the beginning for parsing
the file and the cores can almost immediately start with the likelihood calculations (see [8,
Supplement Section 3] for more details).

In addition, ’--parse’ will estimate the memory requirements and optimal number of
CPUs/threads for the particular MSA:

* Estimated memory requirements : 2 MB
* Recommended number of threads / MPI processes: 2

Even though these estimates are approximate, they provide a ’good’ starting point for
experimentation (see Section 7 for details) to determine the optimal number of cores that
will yield maximum parallel efficiency.

3 Inferring ML trees

Let us now infer a tree under the GTR+GAMMA (general time reversible model of nucleotide
substitution with a T' model of rate heterogeneity) model with default parameters. We

https://doi.org/10.20944/preprints201905.0056.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 6 May 2019 d0i:10.20944/preprints201905.0056.v1

XX:4 RAxML-NG

will use 2 threads as suggested above, and provide a fixed random number seed to ensure
reproducibility. By using a fixed random number seed RAXML-NG will always produce the
same sequence of random numbers and therefore a failed run can be easily reproduced for
debugging. Note that, we will also always use a new name via the >--prefix’ output file
name option for each RAXML-NG example run to avoid overwriting preceding output files.

$ raxml-ng --msa prim.phy --model GTR+G --prefix T3 --threads 2 --seed 2

The above command will perform 20 tree searches using 10 random and 10 parsimony-
based starting trees. In the end it will pick the best-scoring topology:

Analysis options:
run mode: ML tree search
start tree(s): random (10) + parsimony (10)

This default setting represents a reasonable choice for most practical cases. However,
computational resources permitting, we might want to increase the number of starting trees
to explore the tree space more thoroughly:

$ raxml-ng --msa prim.phy --model GTR+G --prefix T4 --threads 2 --seed 2
--tree pars{25},rand{25}

Conversely, we can also just perform a quick-and-dirty search from a single random
starting tree using the ——searchl command:

$ raxml-ng --searchl --msa prim.phy --model GTR+G --prefix T5 --threads 2
--seed 2

Let us now compare the results of all three alternative tree inference runs:

$ grep "Final LoglLikelihood:" T{3,4,5}.raxml.log

T3.raxml.log:Final LogLikelihood: -5708.923977
T4 .raxml.log:Final LogLikelihood: -5708.923977
T5.raxml.log:Final LogLikelihood: -5708.979717

This looks quite good: the likelihood surface appears to have a clear peak, which RAxXML-NG
finds regardless of the search parameters.

We use the term likelihood surface in a colloquial /subjective way to describe the space of
all possible tree topologies and their respective likelihood scores. If the likelihood surface is
smooth there seems to be one clear peak that is identified by several independent searches. If
the surface is rough, we typically observe a plethora of substantially different tree topologies
but with statistically indistinguishable likelihood scores. Rough likelihood surfaces are
frequently observed for large single gene MSAs with 1,000 or more sequences.

Let us get back to our example. We observe that the tree ‘T5‘ has a slightly worse
likelihood. The question arises if it also has a distinct topology. We can check this by using
the —-rfdist command to compute the topological Robinson-Foulds (RF) distance [17]
between all trees we have inferred:

$ cat T{3,4}.raxml.mlTrees T5.raxml.bestTree > mltrees
$ raxml-ng --rfdist --tree mltrees --prefix RF

https://doi.org/10.20944/preprints201905.0056.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 6 May 2019 d0i:10.20944/preprints201905.0056.v1

A. M. Kozlov and A. Stamatakis XX:5

Loaded 71 trees with 12 taxa.

Average absolute RF distance in this tree set: 0.000000
Average relative RF distance in this tree set: 0.000000
Number of unique topologies in this tree set: 1

This tells us that, in fact, all 71 resulting topologies (one per starting tree) are identical,
so we can be optimistic that we found the globally optimal ML tree. The slight numerical
deviations we observe for the likelihood scores are due to numerical round-off error propagation.
To conduct calculations computers rely on so-called floating-point numbers that are just an
imperfect representation of the real numbers on the machine.

Unfortunately, not all datasets are as well-behaved as our initial test dataset:

$ raxml-ng --msa fusob.phy --model GTR+G --prefix T6 --seed 2 --threads 2
$ grep "ML tree search #" T6.raxml.log

[00:00:03] ML tree search #1, logLikelihood: -9974.668088
[00:00:07] ML tree search #2, logLikelihood: -9974.666644
[00:00:11] ML tree search #3, logLikelihood: -9974.669417
[00:00:15] ML tree search #4, logLikelihood: -9974.664855
[00:00:19] ML tree search #5, logLikelihood: -9974.663779
[00:00:22] ML tree search #6, logLikelihood: -9974.666906
[00:00:26] ML tree search #7, logLikelihood: -9974.668155
[00:00:30] ML tree search #8, logLikelihood: -9974.664340
[00:00:33] ML tree search #9, logLikelihood: -9974.666937
[00:00:37] ML tree search #10, logLikelihood: -9974.666388
[00:00:40] ML tree search #11, logLikelihood: -9980.601114
[00:00:43] ML tree search #12, logLikelihood: -9974.675123
[00:00:46] ML tree search #13, logLikelihood: -9980.602470
[00:00:49] ML tree search #14, logLikelihood: -9974.671637
[00:00:52] ML tree search #15, logLikelihood: -9980.602668
[00:00:54] ML tree search #16, loglLikelihood: -9980.601182
[00:00:57] ML tree search #17, loglLikelihood: -9974.672801
[00:01:00] ML tree search #18, loglLikelihood: -9974.668668
[00:01:03] ML tree search #19, loglLikelihood: -9974.669997
[00:01:06] ML tree search #20, logLikelihood: -9980.607281

This example illustrates why it is so important to use multiple starting trees: we can see
that some searches converged to a local optimum with a substantially lower likelihood
(—9980.607281 vs. —9974.669997). Once again, let’s check if the resulting trees differ
topologically:

$ raxml-ng --rfdist --tree T6.raxml.mlTrees --prefix RF6

[...]
Loaded 20 trees with 38 taxa.

Average absolute RF distance in this tree set: 3.157895
Average relative RF distance in this tree set: 0.045113
Number of unique topologies in this tree set: 2

https://doi.org/10.20944/preprints201905.0056.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 6 May 2019 d0i:10.20944/preprints201905.0056.v1

XX:6 RAxML-NG

Pairwise RF distances saved to: <...>/RF6.raxml.rfDistances

So we have 2 distinct topologies in our set of 20 inferred trees, which correspond to two
distinct likelihood values we observed in the tree search output. Let’s look at the individual
pairwise RF distances which are printed to the RF6.raxml.rfDistances file:

$ cat RF6.raxml.rfDistances

0 1 0 0.000000
0 2 0 0.000000
0 3 0 0.000000
0 4 0 0.000000
0 5 0 0.000000
0 6 0 0.000000
0 7 0 0.000000
0 8 0 0.000000
0 9 0 0.000000
0 10 8 0.114286
0 11 0 0.000000
0 12 8 0.114286
0 13 0 0.000000
0 14 8 0.114286
0 15 8 0.114286
0 16 0 0.000000
0 17 0 0.000000
0 18 0 0.000000
0 19 8 0.114286
Lol

As we can see, all 10 searches from the random starting trees (trees 0 to 9) found the
best-scoring topology (RF=0, logL.=—9974), whereas 5 out of 10 searches from a parsimony
starting tree converged to a local optimum (RF = 8, logL, = —9980). Ideally, one should also
check whether the likelihood difference between both topologies is statistically significant.
This could be done by e.g. CONSEL tool [18] that implements a large number of statistical
significance tests.

4 Bootstrapping and branch support

NOTE: As of v.0.8.0b, RAXML-NG only supports the standard bootstrap algorithm (cor-
responding to the -b option in standard RAxML). It is subsantially slower than rapid
bootstrapping implemented in standard RAxML (-x or -f a options), but returns more
accurate support values.

4.1 Inferring bootstrap trees

RAxML-NG can perform the standard non-parametric bootstrap by re-sampling alignment
columns and re-inferring a tree for each bootstrap (BS) replicate MSA:

raxml-ng --bootstrap --msa prim.phy --model GTR+G --prefix T7 --seed 2 —-
threads 2

https://doi.org/10.20944/preprints201905.0056.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 6 May 2019 d0i:10.20944/preprints201905.0056.v1

A. M. Kozlov and A. Stamatakis XX:7

By default, RAXML-NG employs so-called MRE-based bootstopping test [15] to auto-
matically determine the sufficient number of BS replicates. The diagnostic statistics is
evaluated after every 50 BS tree inferences, and once its value drops below the cutoff, the
analysis stops. The key motivation for the bootstopping criterion is to ensure that neither
too few (unstable/inaccurate support values) nor too many (waste of CPU time) replicates
are computed. To assess stability of support values, the bootstopping criterion repeatedly
splits the current set of BS replicate trees at random into two tree sets of equal size and
subsequently compares the support values induced by these sets. If the induced support
values are not substantially different it suggests that bootstrapping should stop.

Let us now infer some BS replicates:

bootstrap replicates: max: 1000 + bootstopping (autoMRE, cutoff:
0.030000)
Loool
[00:00:15] Bootstrap tree #50, logLikelihood: -5762.777409
[00:00:15] Bootstrapping converged after 50 replicates.

This converged quickly! Let us now manually increase the number of BS replicates to be
on the safe side:

raxml-ng --bootstrap --msa prim.phy --model GTR+G --prefix T8 --seed 2 --
threads 2 --bs-trees 200

Bootstrap convergence can also be assessed after the BS inference by using the ‘~bsconverge*
command. Note that, we can also change the bootstopping cutoff value to make the test
more or less stringent:

$ raxml-ng --bsconverge --bs-trees T7.raxml.bootstraps --prefix T9 --seed
2 --threads 2 --bs-cutoff 0.01

trees avg WRF avg WRF in % # perms: wrf <= 1.00 % converged?
50 7.400 1.644 0 NO
Bootstopping test did not converge after 50 trees

The cutoff here represents the weighted RF (WRF) distance between extended majority
rule consensus trees calculated on the respective randomly split BS tree set. By default we
calculate 1000 such random splits of the tree set and average the WRF distances over them.

As we can see, with a 1% WRF cutoff 50 replicates are not enough. What about 2007

$ raxml-ng --bsconverge --bs-trees T8.raxml.bootstraps --prefix T10 --seed
2 -—threads 2 --bs-cutoff 0.01

trees avg WRF avg WRF in), # perms: wrf <= 1.00 % converged?

50 7.400 1.644 0 NO
100 11.702 1.300 245 NO
150 13.960 1.034 457 NO
200 16.484 0.916 648 NO

Bootstopping test did not converge after 200 trees

Still no convergence, but the WRF distance (avg WRF in \%) is steadily decreasing as
we add more replicates, and now lies below the 1% cutoff for 648 out of the 1000 random
splits of the BS tree set (convergence requirement: > 990). This looks promising, and we

https://doi.org/10.20944/preprints201905.0056.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 6 May 2019 d0i:10.20944/preprints201905.0056.v1

XX:8 RAxML-NG

can expect convergence after few hundred replicates. Luckily, bootstraps are independent,
an we can thus reuse the 200 BS trees we have already inferred. So let’s add 400 additional
BS replicate trees. It is extremely important to specify a distinct random seed for
the second run, otherwise first 200 trees of the second run will be identical to
the first run!

raxml-ng --bootstrap --msa prim.phy --model GTR+G --prefix T1l --seed 333
--threads 2 --bs-trees 400
Now, we can simply concatenate the BS replicate trees from both runs, and re-assess the
convergence:

$ cat T8.raxml.bootstraps T1l.raxml.bootstraps > allbootstraps
$ raxml-ng --bsconverge --bs-trees allbootstraps --prefix T12 --seed 2 --
threads 1 --bs-cutoff 0.01

trees avg WRF avg WRF in %, # perms: wrf <= 1.00), converged?

50 7.400 1.644 0 NO
100 11.702 1.300 245 NO
150 13.960 1.034 457 NO
200 16.484 0.916 648 NO
250 17.410 0.774 841 NO
300 18.900 0.700 927 NO
350 20.060 0.637 942 NO
400 22.076 0.613 969 NO
450 23.856 0.589 973 NO
500 26.164 0.581 985 NO
550 27.844 0.563 985 NO
600 28.462 0.527 991 YES

Bootstopping test converged after 600 trees

Now we have convergence, even with a more stringent bootstopping cutoff. However, we
had to conduct 600 BS replicate searches instead of just 50. On large datasets, this quickly
becomes computationally expensive. Hence in practice, the default bootstopping cutoff value
of an average WRF of 3% should be sufficient in most cases [15].

4.2 Computing branch support

Now, what can we do with the BS trees? We can either summarize them via some sort of
consensus tree (strict, majority, majority rule extended, e.g., using standard RAxML or some
other tool) or we can map them onto the best-scoring ML tree that we inferred on the original
MSA. It is debatable what might the best way of summarizing BS trees might be, but there
seems to be a trend toward mapping the BS support values onto the best-scoring/best-known
ML tree (remember: finding the globally optimal ML tree is computationally hard), so let us
do that.
We will use the ML tree obtained in run T3 (see Section 3):

raxml-ng --support --tree T3.raxml.bestTree --bs-trees allbootstraps —--
prefix T13 --threads 2

Now, we can actually look at this best-known ML tree including supports, T13.raxml . support
using some tree viewer (e.g., Dendroscope or FigTree). Beware: due to confusion between

https://doi.org/10.20944/preprints201905.0056.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 6 May 2019 d0i:10.20944/preprints201905.0056.v1

A. M. Kozlov and A. Stamatakis XX:9

node and branch attributes in the NEWICK format, some viewers have or had issues con-
cerning correct branch support visualization [1]. If possible (e.g., in recent versions of
Dendroscope), you should specify that support values must be interpreted as edge labels.

Alternatively, we can also compute the so-called Transfer Bootstrap Expectation (TBE)
support metric recently suggested by Lemoine et al. [11] as follows:

$ raxml-ng --support --tree T3.raxml.bestTree --bs-trees allbootstraps --
prefix T14 --threads 2 --bs-metric tbe

While the standard bootstrap support metric (Felsenstein’s bootstrap, FBP) relies on
binary presence/absence of bipartitions from replicate trees in the best-known ML tree, TBE
is based on a gradual ’transfer’ distance. Transfer distance between two branches equals to
the minimum number of taxa that have to be transfered (or removed) to make those branches
identical (that is, both branches split the set of taxa in identical subsets). TBE support for
a branch in the ML tree is computed based on the minimum transfer distance between this
branch and any branch in the BS replicate tree; in other words, we compare each ML tree
branch to its respective closest branch in the BS replicate tree (please see [11] for details).
For this reason, TBE can better recover support in very large trees with thousands of taxa.
This is because, bipartitions that exactly match those in the best-known ML tree are rarely
present in replicates, and thus FBP usually yields low support, especially for deep branches.

As shown above, TBE can be computed from the same set of bootstrap replicate trees,
so there in no need to repeat the compute-intensive tree inference step. However, the TBE
computation itself is more expensive than FBP. This can be noted when computing the TBE
on large trees: e.g., on a laptop, RAXML-NG v0.8.0 needs =~ 20 seconds per BS replicate
tree on the 9,000 taxon dataset from [11]. However, this time is still negligible compared to
the time required for BS replicate tree inference.

Finally, RAXML-NG offers a convenient "all-in-one" analysis mode for really lazy users
(analogous to -f a in standard RAxML):

$ raxml-ng --all --msa prim.phy --model GTR+G --prefix T15 --seed 2 --
threads 2 --bs-metric fbp,tbe

This will do all of the above steps (20 ML inferences on the original MSA, inferring
bootstrap replicate trees, and drawing support values using both FBP and TBE on the
best-scoring tree) with just a single command:

$ 1s T15.x

T15.raxml.bestModel T15.raxml.bestTree
T15.raxml.bootstraps T15.raxml.log
T15.raxml.mlTrees T15.raxml.rba
T15.raxml.startTree T15.raxml.supportFBP
T15.raxml . supportTBE

Please note, that for taxa-rich alignments running such a complete analysis with the
--all command can take extremely long. It is therefore recommended to estimate the runtime
required for a single tree search first, for instance, by using the -—search1 command. Based
on the results, one might consider allocating more CPU cores and/or using the coarse-grained
parallelization (see Section 7.7).

https://doi.org/10.20944/preprints201905.0056.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 6 May 2019 d0i:10.20944/preprints201905.0056.v1

XX:10 RAxML-NG

5 Tree likelihood evaluation

5.1 Basics

Another standard task is to evaluate trees, that is, to compute the likelihood of a given fixed
tree topology by just optimizing model and/or branch length parameters on that fixed tree.
This operation is frequently needed in model and hypothesis testing.

The basic option is --evaluate. It will re-optimize all branch lengths and all free
model parameters. This default behavior can be altered with --opt-branches on/off and
—--opt-model on/off. There is also the ——1loglh command which is a short alias for

--evaluate --opt-branches off --opt-model off --nofiles

that is, it will compute and print the likelihood of the tree(s) without optimizing anything
and without creating any output files. For instance, we can re-compute the likelihood of T3
with default model parameters as follows:

$ raxml-ng --loglh --msa prim.phy --model GTR+G --tree T3.raxml.bestTree
-—-threads 2

Rate heterogeneity: GAMMA (4 cats, mean), alpha: 1.000000 (ML),
weights&rates: (0.250000,0.136954) (0.250000,0.476752)
(0.250000,1.000000) (0.250000,2.386294)

Base frequencies (ML): 0.250000 0.250000 0.250000 0.250000
Substitution rates (ML): 1.000000 1.000000 1.000000 1.000000 1.000000
1.000000

Final LogLikelihood: -6420.095053

In contrast, after re-optimizing all model parameters we obtain:

$ raxml-ng --evaluate --msa prim.phy --model GTR+G --tree T3.raxml.
bestTree --threads 2 --nofiles

Rate heterogeneity: GAMMA (4 cats, mean), alpha: 0.377068 (ML),
weights&rates: (0.250000,0.013550) (0.250000,0.164429)
(0.250000,0.705224) (0.250000,3.116797)

Base frequencies (ML): 0.354236 0.321458 0.080986 0.243320

Substitution rates (ML): 3.989744 45.320369 3.326172 2.533579 36.939966

1.000000

Final LogLikelihood: -5709.002997

Finally, we can fix some parameters to certain values and optimize others:

$ raxml-ng --evaluate --msa prim.phy --model GTR+G{2.0}+F{0.2/0.3/0.4/0.1%}
——tree T3.raxml.bestTree --threads 2 --nofiles

Rate heterogeneity: GAMMA (4 cats, mean), alpha: 2.000000 (user),
weights&rates: (0.250000,0.293275) (0.250000,0.655014)
(0.250000,1.069990) (0.250000,1.981722)

Base frequencies (user): 0.200000 0.300000 0.400000 0.100000

https://doi.org/10.20944/preprints201905.0056.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 6 May 2019 d0i:10.20944/preprints201905.0056.v1

A. M. Kozlov and A. Stamatakis XX:11

Substitution rates (ML): 44.454379 47.979464 65.161744 2.413970
252.745302 1.000000

Final LogLikelihood: -6158.335994

5.2 Comparing different models

Let us now conduct some small tests that show how the likelihood improves as we add more
and more free parameters to our model. For this, we will use the best-scoring ML tree from
Section 3 again.

Let us first evaluate the tree under the most simple model, Jukes-Cantor (JC):

$ raxml-ng --evaluate --msa prim.phy --threads 2 --model JC --tree T3.
raxml.bestTree —-prefix El

Now, let us add the I' model of rate heterogeneity:

$ raxml-ng --evaluate --msa prim.phy --threads 2 --model JC+G --tree T3.
raxml .bestTree —-prefix E2

Now let us use a simple GTR model (without rate heterogeneity):

$ raxml-ng --evaluate --msa prim.phy --threads 2 --model GTR --tree T3.
raxml.bestTree --prefix E3

GTR with the GAMMA model of rate heterogeneity, but using empirical base frequencies:

$ raxml-ng --evaluate --msa prim.phy --threads 2 --model GTR+G+FC --tree
T3.raxml.bestTree —-prefix E4

And now also conducting a ML estimate of the base frequencies:

$ raxml-ng --evaluate --msa prim.phy --threads 2 --model GTR+G+F0 --tree
T3.raxml.bestTree --prefix Eb5

Finally, using 4 free rates [23] instead of GAMMA-distributed rates:

$ raxml-ng --evaluate --msa prim.phy --threads 2 --model GTR+R4+F0 --tree
T3.raxml.bestTree --prefix E6

Let us check the results:

$ grep loglikelihood E*.raxml.log

El.raxml.log: [00:00:00] Tree #1, final logLikelihood: -6424.203056 <- JC

E2.raxml.log: [00:00:00] Tree #1, final logLikelihood: -6272.469063 <- JC+
GAMMA

E3.raxml.log: [00:00:00] Tree #1, final logLikelihood: -5934.158958 <- GTR

E4.raxml.log: [00:00:00] Tree #1, final logLikelihood: -5719.408956 <- GTIR
+ GAMMA + empirical base fregs

E5.raxml.log: [00:00:00] Tree #1, final logLikelihood: -5709.002997 <- GIR
+ GAMMA + estimated base fregs

E6.raxml.log: [00:00:01] Tree #1, final logLikelihood: -5706.008654 <- GTR
+ FreeRate + estimated base fregs

https://doi.org/10.20944/preprints201905.0056.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 6 May 2019 d0i:10.20944/preprints201905.0056.v1

XX:12 RAxML-NG

Unsurprisingly, models with more free parameters yield better likelihood scores. However,
this does not mean that we should always use the most parameter-rich model. Instead, it is
common to use information theoretical criteria such as AIC (Akaike Information Criterion),
AICc (corrected AIC; AIC with a correction for small sample sizes) or BIC (Bayesian Inform-
ation Criterion) to penalize parameter-rich models and thereby avoid overfitting the data.
The three aforementioned criteria are implemented in RAXML-NG:

$ grep "AIC score" Ex.raxml.log

El.raxml.log:AIC score: 12890.406112 / AICc score: 12891.460907 / BIC
score: 12991.209684 <- JC

E2.raxml.log:AIC score: 12588.938126 / AICc score: 12590.094698 / BIC
score: 12694.541868 <- JC+G

E3.raxml.log:AIC score: 11926.317917 / AICc score: 11928.322525 / BIC
score: 12065.522849 <- GTR

E4.raxml.log:AIC score: 11498.817912 / AICc score: 11500.963241 / BIC
score: 11642.823014 <- GTR+G+FC

E5.raxml.log:AIC score: 11478.005995 / AICc score: 11480.151323 / BIC
score: 11622.011097 <- GTR+G+FO0

E6.raxml.log:AIC score: 11482.017308 / AICc score: 11484.940742 / BIC
score: 11650.023260 <- GTR+R4+F0

For all criteria, model with the lowest score should be preferred. As we can see, the GTR+G+F0
model scores best according to all three information theoretical criteria evaluated, even though
it yields a lower likelihood than GTR+R4+F0. This example illustrates the importance of formal
model selection. In practice, one should use specialized tools such as ModelTest-NG [2],
IQTree/ModelFinder [6], or PartitionFinder [10] for this task.

6 Partitioned analyses

6.1 Partitioned model definition

So far, we always used a single evolutionary model for all MSA sites. This is biologically
rather unrealistic, since different genes and/or codon positions typically exhibit distinct
substitution patterns. Therefore, it is common to divide MSA sites into subsets or partitions,
to which we can assign individual evolutionary models. In the most simple case, we can assign
identical models to all partitions, but allow for independent model parameter estimates:

$ cat prim.part

GTR+G+F0, NADH4=1-504
GTR+G+F0, tRNA=505-656
GTR+G+F0, NADH5=657-898

The RAXxML-NG partition file format is similar to that of standard RAxML and ExaML.
Each line defines a partition, and contains the evolutionary model specification, the partition
name, and the MSA site range(s). Note that, the evolutionary model specification is
not compatible with that in RAxML/ExaML! In particular, rate heterogeneity has
to be defined for each partition individually, that is, we specify GTR+G for every partition
with the I' model instead of using a global -m GTRGAMMA switch on the command line as

https://doi.org/10.20944/preprints201905.0056.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 6 May 2019 d0i:10.20944/preprints201905.0056.v1

A. M. Kozlov and A. Stamatakis XX:13

in standard RAXxML/ExaML. Therefore, special care has to be taken when using legacy
partition files.

Below, we show a more sophisticated example, where we use different per-partition
substitution matrices and rate heterogeneity models, and also split the first gene by codon
position:

$ cat prim2.part

GTR+G+FO, NADH4=1-504/3,2-504/3
JC+I, tRNA=505-656

GTR+R4+FC, NADH5=657-898

HKY, NADH4p3=3-504/3

Here, we use the stride notation to separate codon positions. For instance, 1-504/3 means
"every 3rd position in the range between 1 and 504"

6.2 Likelihood evaluation with partitioned models

Now, let us try to evaluate the likelihood on a fixed tree topology as in Section 5, but using
a partitioned model (we will also increase the log output verbosity to be able to insepct the
estimated parameter values):

$ raxml-ng --evaluate --msa prim.phy --threads 2 --model prim.part --tree
T3.raxml.bestTree --prefix P1 -log verbose

Optimized model parameters:

Partition O0: NADH4

Speed (ML): 1.045481

Rate heterogeneity: GAMMA (4 cats, mean), alpha: 0.320532 (ML),
weights&rates: (0.250000,0.007108) (0.250000,0.120533)
(0.250000,0.628725) (0.250000,3.243634)

Base frequencies (ML): 0.347608 0.343620 0.074289 0.234483

Substitution rates (ML): 1.110014 16.895228 0.903118 0.001000 11.861976
1.000000

Partition 1: tRNA

Speed (ML): 0.505287

Rate heterogeneity: GAMMA (4 cats, mean), alpha: 0.300774 (ML),
weights&rates: (0.250000,0.005358) (0.250000,0.105097)
(0.250000,0.597100) (0.250000,3.292444)

Base frequencies (ML): 0.362527 0.230093 0.151307 0.256073

Substitution rates (ML): 66.393654 308.024274 43.477166 37.411363
671.608883 1.000000

Partition 2: NADH5

Speed (ML): 1.216009

Rate heterogeneity: GAMMA (4 cats, mean), alpha: 0.614255 (ML),
weights&rates: (0.250000,0.056061) (0.250000,0.320104)
(0.250000,0.888421) (0.250000,2.735414)

https://doi.org/10.20944/preprints201905.0056.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 6 May 2019 d0i:10.20944/preprints201905.0056.v1

XX:14 RAxML-NG

Base frequencies (ML): 0.360963 0.322304 0.061324 0.255409
Substitution rates (ML): 67.157660 1000.000000 56.903929 148.358484
530.324413 1.000000

As we can see from the output above, even though we assigned the GTR+G+F0 model to all
three partitions, each of them has independent estimates of the parameter values (a shape
parameter of the GAMMA distribution, base frequencies, and GTR substitution rates).

Let us repeat this evaluation using the second, more complex partition scheme:

$ raxml-ng --evaluate --msa prim.phy --threads 2 --model prim2.part --tree
T3.raxml.bestTree —--prefix P2 -log verbose

and compare the likelihoods for P2 vs. P1 vs. single GTR+G+F0 model:

$ grep loglLikelihood {E5,P1,P2}.raxml.log

E5.raxml.log: [00:00:00] Tree #1, final logLikelihood: -5709.002997
Pl.raxml.log: [00:00:00] Tree #1, final logLikelihood: -5673.027260
P2.raxml.log: [00:00:00] Tree #1, final logLikelihood: -5673.868809

So P1 has the best likelihood score, closely followed by P2. But both P1 and P2 also
introduce more free parameters compared to GTR+G+FO:

$ grep "Free parameters" {E5,P1,P2}.raxml.log

E5.raxml.log:Free parameters (model + branch lengths): 30
Pl.raxml.log:Free parameters (model + branch lengths): 50
P2.raxml.log:Free parameters (model + branch lengths): 52

Hence, we will once again use AIC/BIC criteria to assess the model complexity versus
likelihood score trade-off (lower=better):

grep "AIC score" {E5,P1,P2}.raxml.log

E5.raxml.log:AIC score: 11478.005995 / AICc score: 11480.151323 / BIC
score: 11622.011097

P1l.raxml.log:AIC score: 11446.054521 / AICc score: 11452.075772 / BIC
score: 11686.063024

P2.raxml.log:AIC score: 11451.737617 / AICc score: 11458.260694 / BIC
score: 11701.346461

The situation is less clear now: AIC and AICc favor the P1 model, whereas GTR+G+F0 has
the best BIC score. Unfortunately, there seems to be no general consensus with respect to
which information criterion is superior. Therefore, unfortunately the decision whether to use
AIC, AICc or BIC is left to the user. Furthermore, the computation of AICc and BIC scores
requires the knowledge of sample size. In the context of phylogenetics, both the number of
alignment sites (columns) and the total number of alignment characters (sites x taxa) have
been proposed as sample size definitions (see e.g. [16] and references therein). In RAXML-NG,
we define sample size as number of alignment sites, which is a more conservative option, also
used by e.g., ModelTest-NG [2] and IQTree [14].

https://doi.org/10.20944/preprints201905.0056.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 6 May 2019 d0i:10.20944/preprints201905.0056.v1

A. M. Kozlov and A. Stamatakis XX:15

6.3 Branch length linkage

In the output shown in Section 6.2, there is an extra parameter called Speed estimated for
each partition:

Optimized model parameters:

Partition O: NADH4

Speed (ML): 1.045481
[..]

Partition 1: tRNA

Speed (ML): 0.505287
[..]

Partition 2: NADH5

Speed (ML): 1.216009

What does it mean? In partitioned analyses, there are three common ways to estimate
branch lengths (sometimes called branch linkage models):

linked: all partitions share a common set of (global) branch lengths. This is the most
simple model with the lowest number of parameters (#branches). However, it is often
considered too unrealistic, as it is known that genes (or genome regions) evolve at different
speeds.

unlinked: each partition has its own, independent set of branch lengths. This model
allows for the highest flexibility, but it also introduces a huge number of free parameters
(#branches x #partitions), which makes it prone to overfitting.

scaled (proportional): a global set of branch lengths is estimated as in ‘linked‘ mode,
but each partition has an individual scaling factor; per-partition branch lengths are
obtained by multiplying the global branch lengths with these individual scalers. This
approach represents a compromise that allows to model distinct evolutionary rates across
partitions while, at the same time, only introducing a moderate number of free parameters
(#branches + #partitions).

RAXML-NG supports all three branch linkage models described above; they can be selected
using the --brlen option. A recent simulation study by Duchéne et al. [3] showed that the
scaled branch linkage model offers the best fit for a large number of typical representative
datasets. This confirms the intuition about its 'good’ flexibility versus complexity trade-off.
Hence, RAXML-NG uses the scaled branch linkage model for partitioned analyses by default.
Please note, that standard RAxML and ExaML use the linked branch length
model by default. This should be kept in mind when comparing likelihoods and
resulting topologies with those obtained via RAXML-NG!

So let us now explore how the linked and unlinked models behave on our toy dataset:

$ raxml-ng --evaluate --msa prim.phy --threads 2 --model prim.part --tree

T3.raxml.bestTree --prefix P3 --brlen linked

$ raxml-ng --evaluate --msa prim.phy --threads 2 --model prim.part --tree
T3.raxml.bestTree —-prefix P4 --brlen unlinked

As could be expected, more complex models yield better likelihood scores (unlinked >
scaled > linked):

https://doi.org/10.20944/preprints201905.0056.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 6 May 2019 d0i:10.20944/preprints201905.0056.v1

XX:16 RAxML-NG

$ grep loglLikelihood {P1,P3,P4}.raxml.log

P1.raxml.log: [00:00:00] Tree #1, final logLikelihood: -5673.027260 <-

scaled
P3.raxml.log: [00:00:00] Tree #1, final logLikelihood: -5678.429054 <-

linked
P4.raxml.log: [00:00:00] Tree #1, final logLikelihood: -5648.348677 <-

unlinked

However, the induced likelihood score difference is not always large enough to justify using

additional model parameters:

grep "AIC score" {P1,P3,P4}.raxml.log

P1l.raxml.log:AIC score: 11446.054521 / AICc score: 11452.075772 / BIC

score: 11686.063024 <- scaled
P3.raxml.log:AIC score: 11452.858107 / AICc score: 11458.398743 / BIC

score: 11683.266270 <- linked
P4.raxml.log:AIC score: 11476.697354 / AICc score: 11496.994752 / BIC

score: 11908.712661 <- unlinked

Once again, we observe a disagreement between the AIC/AICc and BIC criteria, which choose
scaled and linked branch length models, respectively. However, all three criteria exclude

the extremely parameter-rich unlinked model.

6.4 Tree searches with partitioned models

In the previous subsection, we used partitioned models to re-evaluate the likelihood of the
ML tree obtained under the GTR+G model. But what if we re-run tree search from scratch
under a partitioned model? Will this alter the resulting likelihoods and/or topologies?

$ raxml-ng --msa prim.phy --model prim.part --prefix P5 --threads 2 --seed
2 --brlen scaled

$ raxml-ng --msa prim.phy --model prim.part --prefix P6 --threads 2 --seed
2 --brlen linked

$ raxml-ng --msa prim.phy --model prim.part --prefix P7 --threads 2 --seed
2 --brlen unlinked

Checking the new likelihood scores

$ grep "Final LogLikelihood" {P5,P6,P7}.raxml.log

P5.raxml.log:Final Loglikelihood: -5672.951995
P6.raxml.log:Final LoglLikelihood: -5678.301081
P7.raxml.log:Final Loglikelihood: -5648.204296

shows that they are almost identical to the values obtained on the T3 topology (see Sec-
tion 6.2). Moreover, all three partitioned runs converged to the same ML tree topology as

the unpartitioned T3 run (see Section 3).

https://doi.org/10.20944/preprints201905.0056.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 6 May 2019 d0i:10.20944/preprints201905.0056.v1

A. M. Kozlov and A. Stamatakis XX:17

Of course, this observation will not hold for all datasets. However, there is some evidence
that the choice of the DNA substitution models has a rather limited influence on the resulting
tree topology [4]. Of course, this result does not mean that model selection should not be
conducted. However, it suggests that subtle details such as the conflicts between AIC(c)
versus BIC or sample size definition are of minor concern in practice.

7 Parallelization and performance

7.1 Introduction

RAXML-NG supports three levels of parallelism: CPU instruction level (vectorization), intra-
node (multithreading),and inter-node (MPI) parallelism. Unlike standard RAxML/ExaML,
a single RAXML-NG executable offers all parallelism levels. The desired parallelism level can
be configured at run-time (MPT support is optional and should be enabled at compile-time).

As of v.0.8.00, RAXML-NG only supports fine-grained parallelization across MSA sites.
This is the same parallelization approach that has been used in the PThreads version of
standard RAXxML and ExaML. It is conceptually different from the coarse-grained paralleliz-
ations across independent tree searches or tree moves as implemented in RAxML-MPIT or
IQTree-MPI [14], respectively. With fine-grained parallelization, the number of CPU cores
that can be efficiently utilized is limited by the MSA "width" (=number of site patterns).
For instance, using 20 cores on a single-gene protein alignment with 300 sites would be
suboptimal, and using 100 cores would most probably result in a huge slowdown. In order to
prevent wasting CPU time and energy, RAXML-NG will warn you — or, in extreme cases,
even refuse to run — if you try to assign too few MSA sites to a core.

Coarse-grained parallelization, although not directly implemented in RAxMIL-NG, can be
easily emulated as shown in Section 7.7.

7.2 Multithreading (pthreads)

By default, RAXML-NG will start as many threads as there are CPU cores available on
your system. Most modern CPUs employ so-called hyperthreading technology, which makes
each physical core appear as two logical cores to software. Hyperthreading can be beneficial
for some programs, but RAxML-NG achieves the best performance when run with
one thread per physical core. Therefore, RAXML-NG will try to detect if CPU supports
hyperthreading, and will reduce the number of threads accordingly.

For instance, on a laptop with an Intel i7-8550U processor, RAXML-NG will detect 4
(physical) cores and use 4 threads by default:

parallelization: PTHREADS (4 threads), thread pinning: OFF

even though this CPU has 8 logical cores:

$ lscpu -e

CPU NODE SOCKET CORE Li1d:L1i:L2:L3 ONLINE MAXMHZ MINMHZ

0 0 0 0 0:0:0:0 yes 4000,0000 400,0000
1 0 0 1 1:1:1:0 yes 4000,0000 400,0000
2 0 0 2 2:2:2:0 yes 4000,0000 400,0000
3 0 0 3 3:3:3:0 yes 4000,0000 400,0000
4 0 0 0 0:0:0:0 yes 4000,0000 400,0000
5 0 0 1 1:1:1:0 yes 4000,0000 400,0000

https://doi.org/10.20944/preprints201905.0056.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 6 May 2019 d0i:10.20944/preprints201905.0056.v1

XX:18 RAxML-NG

6 0 0 2 2:2:2:0 yes 4000,0000 400,0000
7 0 0 3 3:3:3:0 yes 4000,0000 400,0000

Unfortunately, it is very hard to reliably detect situations when hyperthreading is supported
by the CPU, but disabled in BIOS. For instance, this setup can be found on Amazon AWS
as well as on some clusters. In this situation, RAXML-NG can underestimate the number of
available physical cores. Thus, it is recommended to use the --threads option and manually
set the number of threads, to be on the safe side.

7.3 MPI and hybrid MPI/pthreads

If compiled with MPI support, RAXML-NG can leverage multiple compute nodes for a single
analysis. Please check your cluster documentation for system-specific instructions on running
MPI programs as this is different for every cluster. In MPI-only mode, you should start 1
MPI process per physical CPU core (the number of threads will be set to 1 by default).

However, in most cases, a hybrid MPI/pthreads setup will be more efficient in terms
of both, runtime, and memory consumption. Typically, you would start 1 MPI rank per
compute node, and 1 thread per physical core (e.g. ——threads 16 for nodes equipped with
dual-slot octa-core CPUs). Here is a sample job submission script for the cluster at our
research institute using 4 nodes x 16 cores:

#!/bin/bash

#SBATCH -N 4

#SBATCH -B 2:8:1

#SBATCH --ntasks-per-node=1
#SBATCH --cpus-per-task=16
#SBATCH --hint=compute_bound
#SBATCH -t 08:00:00

raxml-ng-mpi --msa rbcl.phy --model GTR+G --prefix H1 --threads 16

Once again, please consult your cluster documentation to find out how to properly
configure a hybrid MPI/pthreads run. Please note that incorrect configuration can
result in extreme slowdowns and hence waste time and resources!

7.4 Thread pinning

For attaining optimal performance, it is crucial to ensure that only one RAXML-NG thread
is running on each physical CPU core. Usually, the operating system can handle the thread-
to-core assignment automatically. However, some (misconfigured) MPI runtimes tend to
pack all threads onto a single CPU core, resulting in abysmal performance. To avoid this
situation, each thread can be "pinned" (explicitely assigned to) to a particular CPU core.

In RAXML-NG, thread pinning is enabled by default only in the hybrid MPI/pthreads
mode when 1 MPI rank per node is used. You can explicitly enable or disable thread pinning
with --extra thread-pin and --extra thread-nopin, respectively.

7.5 Vector instructions

RAXML-NG will automatically detect the best (fastest) set of vector instructions available
on your CPU, and use the respective computational kernels to achieve optimal performance.
On modern Intel CPUs, this autodetection mechanism appears to work pretty well, so most

https://doi.org/10.20944/preprints201905.0056.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 6 May 2019 d0i:10.20944/preprints201905.0056.v1

A. M. Kozlov and A. Stamatakis XX:19

probably you will not need to worry about this. However, you can force RAXML-NG to use
a specific set of vector instructions with the --simd option, for instance,

$ raxml-ng --msa prim.phy --model GTR+G --prefix V1 --threads 2 --seed 2
--simd sse

to use SSE3 vector instructions, or

$ raxml-ng --msa prim.phy --model GTR+G --prefix V2 --threads 2 --seed 2
—--simd none

to use non-vectorized (scalar) instructions. This option might be useful for debugging,
but otherwise using non-optimal vectorization should be avoided as it incurs a substantial
performance penalty:

$ grep "Elapsed time:" {T3,V1,V2}.raxml.log

T3.raxml.log:Elapsed time: 7.802 seconds <- AVX (autodetect)
Vl.raxml.log:Elapsed time: 15.394 seconds <- SSE
V2.raxml.log:Elapsed time: 21.663 seconds <- scalar

7.6 Determining the optimal number of threads

One of the most frequent question we get from RAXML users is: How many threads should I
use?. As always, simple questions are the toughest ones. You might as well ask: How fast
should I drive?. In both cases, the answer would be: It depends. It depends on where you
drive (dataset), your vehicle (system), and your priorities (time versus money/energy). In
RAxML-NG, we have implemented some warning signs and radar speed guns, for your own
safety. As in real life, you are free to ignore them (with the --force option), which can
result in two things: (1) earlier arrival, or (2) lost time and money. Fortunately, unlike on
the road, you can experiment with RAxMIL-NG safely, and we encourage you to do so.

A reasonable workflow for analyzing a large dataset would be as follows. First, run
RAXML-NG in parser mode, that is,

$ raxml-ng --parse --msa rbcl.phy --model GTR+G+F --prefix rbcl

This command will generate a binary MSA file (rbcl.raxml.rba), which can subsequently
be loaded by RAXML-NG much faster than the original FASTA alignment. Furthermore, it
will print the estimated memory requirements and the recommended number of threads for
this dataset:

[00:00:00] Reading alignment from file: rbcl.phy
[00:00:00] Loaded alignment with 436 taxa and 1371 sites

Alignment comprises 1 partitions and 1001 patterns
NOTE: Binary MSA file created: rbcl.raxml.rba

* Estimated memory requirements : 54 MB
* Recommended number of threads / MPI processes: 4

https://doi.org/10.20944/preprints201905.0056.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 6 May 2019 d0i:10.20944/preprints201905.0056.v1

XX:20 RAxML-NG

Execution time (s) Speedup (x) Parallel efficiency (%)

400 :
100

80

300

60

40

200

20

100
12 4 6 8 10 12 14 16 12 4 6 8 10 12 14 16 12 4 6 8 10 12 14 16
Number of threads Number of threads Number of threads

Figure 1 Typical scaling of RAXML-NG on a small alignment (here: 436 taxa and 1,371 DNA
sites).

The recommended number of threads is computed using a simple heuristic and should yield
a decent runtime/resource utilization trade-off in most cases. It also constitutes a good
starting point for your experiments: you can now run tree searches with a varying number of
threads, for instance,

$ raxml-ng --searchl --msa rbcl.raxml.rba --seed 1 --threads 2
$ raxml-ng --searchl --msa rbcl.raxml.rba --seed 1 --threads 4
$ raxml-ng --searchl --msa rbcl.raxml.rba --seed 1 --threads 8

and so on. For a small example dataset as in our example, the execution time will decrease
initially as we add more threads, but will then quickly level off (leftmost plot below). Although
the maximum speedup of = 3.75x can be attained with 8 — 14 threads (middle plot), it
induces a rather poor parallel efficiency of 60%-30% (right plot). The recommended number
of threads (4) yields a reasonable speedup (3x) without compromising the parallel efficiency
too much (75%). Finally, if we use an excessively large number of cores (> 16 in this example),
execution times will start to increase again. Although the actual speedups will vary across
datasets and systems, the general trend will stay the same. Therefore, it is up to the user to
decide how many resources (=higher CPU time) can be sacrificed to obtain the results faster
(=lower execution time).

7.7 Coarse-grained parallelization for short alignments

If you want to utilize a large number of CPU cores for analyzing a small ("single-gene")
alignment, please have a look at our ParGenes pipeline [13] which implements coarse-
grained parallelization and dynamic load balancing. ParGenes is freely available at https:
//github.com/BenoitMorel/ParGenes.

Alternatively, coarse-grain parallelization can easily be emulated by executing multiple

https://github.com/BenoitMorel/ParGenes
https://github.com/BenoitMorel/ParGenes
https://doi.org/10.20944/preprints201905.0056.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 6 May 2019 d0i:10.20944/preprints201905.0056.v1

A. M. Kozlov and A. Stamatakis XX:21

RAXxML-NG instances, but with distinct random seeds. For instance, let us assume that we
want to run an "all-in-one" analysis on the dataset described in Section 7.6, and we want to
use a server with 16 CPU cores. As Figure 1 shows, the fine-grained parallelization across 16
cores is very inefficient for this dataset. We will therefore use fine-grained parallelization
with 2 cores per tree search, which means we can run 16/2 = 8 RAxML-NG instances in
parallel. First, we will infer 24 ML trees, using 12 random and 12 parsimony-based starting
trees. Hence, each RAXM-NG instance will run searches from 24/8 = 3 starting trees. Below
is a sample SLURM script for doing this:

#!/bin/bash

#SBATCH -N 1

#SBATCH -n 8

#SBATCH -B 2:8:1

#SBATCH --threads-per-core=1
#SBATCH --cpus-per-task=2
#SBATCH -t 02:00:00

for i in ‘seq 1 4¢;
do
srun -N 1 -n 1 --exclusive raxml-ng --search --msa rbcl.raxml.rba --tree
pars{3} —-prefix CT$i --seed $RANDOM --threads 2 &
done

for i in ‘seq 5 8¢;

do
srun -N 1 -n 1 --exclusive raxml-ng --search --msa rbcl.raxml.rba --tree
rand{3} --prefix CT$i --seed $RANDOM --threads 2 &
done
wait

Of course, this script has to be adapted for your specific cluster configuration and/or job
submission system. You can also use GNU parallel, or directly start multiple RAXML-NG
instances from the command line. Please pay attention to the ampersand symbol (&) at
the end of each RAXML-NG command line: it is extremely important here, since if you
forget the ampersand all RAxML-NG instances will run one after another and not in parallel!
Furthermore, we add --exclusive flag to tell ensure that ‘raxml-ng‘ instances will be
assigned to distinct CPU cores (this is default behavior with some SLURM configurations,
but not always).

Once the job has finished, we can inspect the likelihoods:

$ grep "Final LoglLikelihood" CT*.raxml.log | sort -k 3

CT7.raxml.log:Final LogLikelihood: -30621.004116
CT6.raxml.log:Final LogLikelihood: -30621.537107
CT2.raxml.log:Final LogLikelihood: -30621.699234
CT3.raxml.log:Final LogLikelihood: -30622.534482
CT1.raxml.log:Final LogLikelihood: -30622.783250
CT8.raxml.log:Final LogLikelihood: -30623.963471
CT5.raxml.log:Final LogLikelihood: -30623.020351

https://doi.org/10.20944/preprints201905.0056.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 6 May 2019 d0i:10.20944/preprints201905.0056.v1

XX:22 RAxML-NG

CT4.raxml.log:Final LogLikelihood: -30623.378857

and select the best-scoring tree (CT7.raxml.bestTree in our case):

$ 1n -s CT7.raxml.bestTree best.tre

The same trick can be applied to bootstrapping. For the sake of simplicity, let us infer
8 x 15 = 120 replicate trees:

for i in ‘seq 1 8°;
do
raxml-ng --bootstrap --msa rbcl.raxml.rba --bs-trees 15 —-prefix CB$i --
seed $RANDOM --threads 2 &
done

wait

Now, we can simply concatenate all replicate tree files (*.raxml.bootstraps) and then
proceed with the bootstrap convergence check as well as branch support calculation as usual
(see Section 4):

$ cat CB*.raxml.bootstraps > allbootstraps

$ raxml-ng --bsconverge --bs-trees allbootstraps --prefix CS --seed 2 --
threads 1

$ raxml-ng --support --tree best.tre —-bs-trees allbootstraps --prefix CS
-—threads 1

There are two things to keep in mind when conducting this type of coarse-grained
parallelization. First, memory consumption will grow proportionally to the number of
RAxXML-NG instances running in parallel. That is, in our case, an estimate given by the
--parse command should be multiplied by 8. Second, correct thread allocation (1 thread
per CPU core) is crucial for achieving the optimal performance. Hence, we recommend to
check thread allocation, for instance, by running htop after your initial script submission.

https://doi.org/10.20944/preprints201905.0056.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 6 May 2019 d0i:10.20944/preprints201905.0056.v1

A. M. Kozlov and A. Stamatakis XX:23

A Summary of changes compared to RAXML 8.x

RAxML-NG offers multiple improvements and extensions compared to standard RAxML
8.x. On the other hand, not all features of standard RAxML are implemented as of RAxML-
NG v0.8.0b (most notably, rapid bootstrapping and CAT /PSR model [19]). Furthermore,
several important defaults have been changed to be in line with best practices: for instance,
RAXML-NG is using multiple starting trees and scaled branch lengths by default. To
give a better overview, we provide a side-by-side comparison of standard RAxML 8.x and
RAxMIL-NG 0.8.0b in Table 1.

Option/Feature RAxML 8.x RAxML-NG 0.8.0b
Features
Bootstrapping standard, rapid standard
Parallelization scheme fine-grained (PTHREADS) fine-grained (PTHREADS
coarse-grained (MPI) and MPI)
Checkpointing NO YES
Binary MSA NO YES

Evolutionary models

Rate heterogeneity across GAMMA, p-inv, CAT GAMMA, p-inv, FreeRate

sites (RHAS)

RHAS linkage global per-partition

Branch length linkage linked, unlinked linked, unlinked, scaled

LG4X with linked branches YES NO

User-specified parameter NO YES

values

Defaults

Starting tree(s) parsimony (1) parsimony(10)+random(10)

Stationary state frequencies empirical ML estimate

Branch lengths linkage linked scaled

Number of boostrap 100 AUTO (bootstopping)

replicates

Table 1 Differences in features and default settings between standard RAxML and RAXxML-NG
v0.8.0b

Acknowledgements

This work was funded by the Klaus Tschira Foundation. The authors wish to thank the
following former students of our 2018 summer school on computational molecular evolution
for useful comments on the initial draft of this book chapter: Sunitha Manjari and Loic
Meunier.

https://doi.org/10.20944/preprints201905.0056.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 6 May 2019 d0i:10.20944/preprints201905.0056.v1

XX:24 RAxML-NG

—— References

1 Lucas Czech, Jaime Huerta-Cepas, and Alexandros Stamatakis. A critical review on the
use of support values in tree viewers and bioinformatics toolkits. Molecular Biology and
FEvolution, 34(6):1535-1542, 2017. URL: http://dx.doi.org/10.1093/molbev/msx055,
doi:10.1093/molbev/msx055.

2 Diego Darriba. ModelTest-NG: Best-fit evolutionary model selection. ht-
tps://github.com/ddarriba/modeltest, 2018. Website. Accessed December 03, 2018.

3 David A Duchene, K. Jun Tong, Charles S.P. Foster, Sebastian Duchene, Robert Lanfear,
and Simon Y.W. Ho. Linking branch lengths across loci provides the best fit for phylogen-
etic inference. bioRxiv, 2018. URL: https://www.biorxiv.org/content/early/2018/
11/09/467449, arXiv:https://www.biorxiv.org/content/early/2018/11/09/467449.
full.pdf, doi:10.1101/467449.

4 Michael Hoff, Stefan Orf, Benedikt Riehm, Diego Darriba, and Alexandros Stamatakis.
Does the choice of nucleotide substitution models matter topologically? BMC Bioin-
formatics, 17(1):143, Mar 2016. URL: https://doi.org/10.1186/s12859-016-0985-x%,
doi:10.1186/s12859-016-0985-x.

5 Erich D Jarvis, Siavash Mirarab, Andre J Aberer, Bo Li, Peter Houde, Cai Li, Simon YW
Ho, Brant C Faircloth, Benoit Nabholz, Jason T Howard, et al. Whole-genome analyses
resolve early branches in the tree of life of modern birds. Science, 346(6215):1320-1331,
2014.

6 Subha Kalyaanamoorthy, Bui Quang Minh, Thomas KF Wong, Arndt von Haeseler, and
Lars S Jermiin. Modelfinder: fast model selection for accurate phylogenetic estimates.
Nature methods, 14(6):587, 2017.

7 Alexey Kozlov, Diego Darriba, Tomas Flouri, Benoit Morel, and Alexandros Stamatakis.
Raxml-ng: A fast, scalable, and user-friendly tool for maximum likelihood phylogenetic
inference. bioRxiv, 2018. URL: https://www.biorxiv.org/content/early/2018/10/18/
447110, doi:10.1101/447110.

8 Alexey M. Kozlov, Andre J. Aberer, and Alexandros Stamatakis. ExaML version
3: a tool for phylogenomic analyses on supercomputers. Bioinformatics, 31(15):2577—
2579, 2015. URL: http://dx.doi.org/10.1093/bioinformatics/btv184, doi:10.1093/
bioinformatics/btv184.

9 Oleksii Kozlov. Models, Optimizations, and Tools for Large-Scale Phylogenetic Inference,
Handling Sequence Uncertainty, and Taxonomic Validation. PhD thesis, Karlsruher Institut
fiir Technologie (KIT), 2018. doi:10.5445/IR/1000081661.

10 Robert Lanfear, Paul B Frandsen, April M Wright, Tereza Senfeld, and Brett Calcott.
Partitionfinder 2: new methods for selecting partitioned models of evolution for molecular
and morphological phylogenetic analyses. Molecular Biology and Fvolution, 34(3):772-773,
2016.

11 F. Lemoine, J. B. Domelevo Entfellner, E. Wilkinson, D. Correia, M. Dévila Felipe,
T. De Oliveira, and O. Gascuel. Renewing Felsenstein’s phylogenetic bootstrap in the
era of big data. Nature, 556(7702):452-456, April 2018. URL: http://dx.doi.org/10.
1038/s41586-018-0043-0, doi:10.1038/s41586-018-0043-0.

12 Bernhard Misof, Shanlin Liu, Karen Meusemann, Ralph S Peters, Alexander Donath, Chris-
toph Mayer, Paul B Frandsen, Jessica Ware, Tomas Flouri, Rolf G Beutel, et al. Phylo-
genomics resolves the timing and pattern of insect evolution. Science, 346(6210):763-767,
2014.

13 Benoit Morel, Alexey M Kozlov, and Alexandros Stamatakis. Pargenes: a tool for massively
parallel model selection and phylogenetic tree inference on thousands of genes. Bioinform-
atics, page bty839, 2018. URL: http://dx.doi.org/10.1093/bioinformatics/bty839,
doi:10.1093/bioinformatics/bty839.

http://dx.doi.org/10.1093/molbev/msx055
http://dx.doi.org/10.1093/molbev/msx055
https://www.biorxiv.org/content/early/2018/11/09/467449
https://www.biorxiv.org/content/early/2018/11/09/467449
http://arxiv.org/abs/https://www.biorxiv.org/content/early/2018/11/09/467449.full.pdf
http://arxiv.org/abs/https://www.biorxiv.org/content/early/2018/11/09/467449.full.pdf
http://dx.doi.org/10.1101/467449
https://doi.org/10.1186/s12859-016-0985-x
http://dx.doi.org/10.1186/s12859-016-0985-x
https://www.biorxiv.org/content/early/2018/10/18/447110
https://www.biorxiv.org/content/early/2018/10/18/447110
http://dx.doi.org/10.1101/447110
http://dx.doi.org/10.1093/bioinformatics/btv184
http://dx.doi.org/10.1093/bioinformatics/btv184
http://dx.doi.org/10.1093/bioinformatics/btv184
http://dx.doi.org/10.5445/IR/1000081661
http://dx.doi.org/10.1038/s41586-018-0043-0
http://dx.doi.org/10.1038/s41586-018-0043-0
http://dx.doi.org/10.1038/s41586-018-0043-0
http://dx.doi.org/10.1093/bioinformatics/bty839
http://dx.doi.org/10.1093/bioinformatics/bty839
https://doi.org/10.20944/preprints201905.0056.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 6 May 2019 d0i:10.20944/preprints201905.0056.v1

A. M. Kozlov and A. Stamatakis XX:25

14 Lam-Tung Nguyen et al. IQ-TREE: A fast and effective stochastic algorithm for es-
timating maximum-likelihood phylogenies. Molecular Biology and Evolution, 32(1):268—
274, 2015. URL: http://mbe.oxfordjournals.org/content/32/1/268.abstract, doi:
10.1093/molbev/msu300.

15 Nicholas D. Pattengale, Masoud Alipour, Olaf R.P. Bininda-Emonds, Bernard M.E. Moret,
and Alexandros Stamatakis. How many bootstrap replicates are necessary? Journal of
Computational Biology, 17(3):337-354, 2010. PMID: 20377449. URL: https://doi.org/10.
1089/cmb.2009.0179, arXiv:https://doi.org/10.1089/cmb.2009.0179, doi:10.1089/
cmb.2009.0179.

16 David Posada and Thomas R. Buckley. Model selection and model averaging in phylogen-
etics: Advantages of akaike information criterion and bayesian approaches over likelihood
ratio tests. Systematic Biology, 53(5):793-808, 2004. URL: http://dx.doi.org/10.1080/
10635150490522304, doi:10.1080/10635150490522304.

17 D.F. Robinson and L.R. Foulds. Comparison of phylogenetic trees. Mathematical Bios-
ciences, 53(1):131 — 147, 1981. URL: http://www.sciencedirect.com/science/article/
pii/0025556481900432, doi:https://doi.org/10.1016/0025-5564(81)90043-2.

18 Hidetoshi Shimodaira and Masami Hasegawa. Consel: for assessing the confidence of phylo-
genetic tree selection. Bioinformatics, 17(12):1246-1247, 2001.

19 A. Stamatakis. Phylogenetic Models of Rate Heterogeneity: A High Performance Comput-
ing Perspective. In Proc. of IPDPS2006, HICOMB Workshop, Proceedings on CD, Rhodos,
Greece, April 2006.

20 A. Stamatakis and A.J. Aberer. Novel parallelization schemes for large-scale likelihood-
based phylogenetic inference. In Parallel Distributed Processing (IPDPS), 2013 IEEE 27th
International Symposium on, pages 1195-1204, 2013. doi:10.1109/IPDPS.2013.70.

21 Alexandros Stamatakis. RAxML-VI-HPC: maximum likelihood-based phylogenetic ana-
lyses with thousands of taxa and mixed models. Bioinformatics, 22(21):2688-2690, 2006.

22 Alexandros Stamatakis. RAxML version 8: a tool for phylogenetic analysis and post-
analysis of large phylogenies. Bioinformatics, 30(9):1312-1313, 2014.

23 7 Yang. A space-time process model for the evolution of DNA sequences. Genetics,
139(2):993-1005, 1995. URL: http://www.genetics.org/content/139/2/993.

http://mbe.oxfordjournals.org/content/32/1/268.abstract
http://dx.doi.org/10.1093/molbev/msu300
http://dx.doi.org/10.1093/molbev/msu300
https://doi.org/10.1089/cmb.2009.0179
https://doi.org/10.1089/cmb.2009.0179
http://arxiv.org/abs/https://doi.org/10.1089/cmb.2009.0179
http://dx.doi.org/10.1089/cmb.2009.0179
http://dx.doi.org/10.1089/cmb.2009.0179
http://dx.doi.org/10.1080/10635150490522304
http://dx.doi.org/10.1080/10635150490522304
http://dx.doi.org/10.1080/10635150490522304
http://www.sciencedirect.com/science/article/pii/0025556481900432
http://www.sciencedirect.com/science/article/pii/0025556481900432
http://dx.doi.org/https://doi.org/10.1016/0025-5564(81)90043-2
http://dx.doi.org/10.1109/IPDPS.2013.70
http://www.genetics.org/content/139/2/993
https://doi.org/10.20944/preprints201905.0056.v1

	Introduction
	Pre-processing the alignment
	Sanity check
	Compression and conversion to binary format

	Inferring ML trees
	Bootstrapping and branch support
	Inferring bootstrap trees
	Computing branch support

	Tree likelihood evaluation
	Basics
	Comparing different models

	Partitioned analyses
	Partitioned model definition
	Likelihood evaluation with partitioned models
	Branch length linkage
	Tree searches with partitioned models

	Parallelization and performance
	Introduction
	Multithreading (pthreads)
	MPI and hybrid MPI/pthreads
	Thread pinning
	Vector instructions
	Determining the optimal number of threads
	Coarse-grained parallelization for short alignments

	Summary of changes compared to RAxML 8.x

