

1 Article

2 **Scaffolds with a High Surface Area-to-Volume Ratio**
3 **and Cultured Under Fast Flow Perfusion Result in**
4 **Optimal O₂ Delivery to the Cells in Artificial Bone**
5 **Tissues**6 Thanh Danh Nguyen ¹, Olufemi E. Kadri ¹, Vassilios Sikavitsas², and Roman S. Voronov ^{1,*}7 ¹ Otto H. York Department of Chemical and Materials Engineering, New Jersey Institute of Technology,
8 Newark, NJ 07102, USA; cme@njit.edu9 ² School of Chemical, Biological and Materials Engineering, University of Oklahoma Norman, OK 73019,
10 USA; cbme@ou.edu

11 * Correspondence: rvoronov@njit.edu; Tel.: +1 973 642 4762.

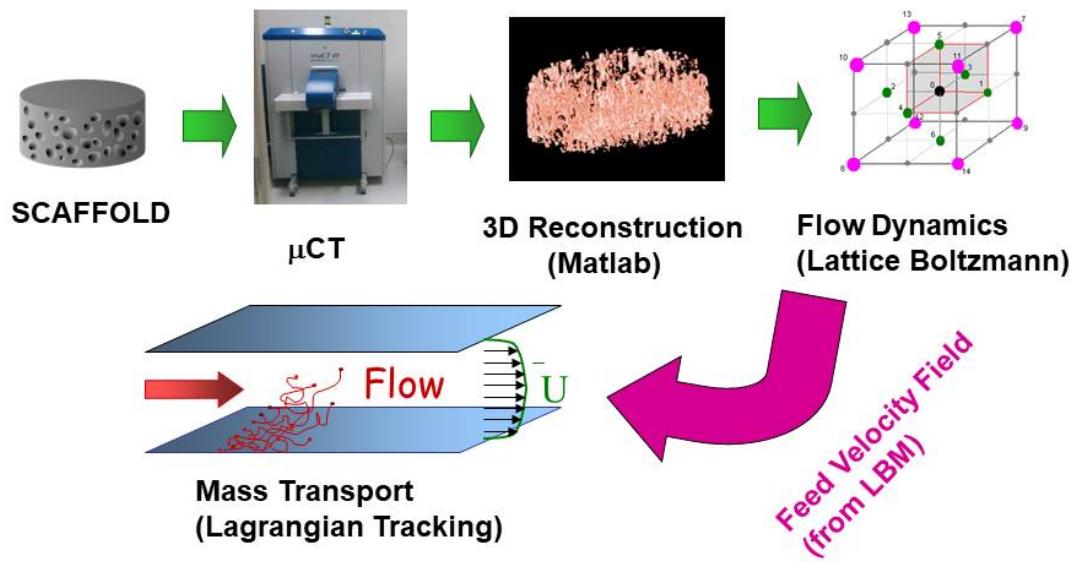
12 Received: date; Accepted: date; Published: date

13 **Featured Application: Optimization of Scaffold Design And Flow Perfusion Culturing**
14 **Conditions for Maximal Delivery of Oxygen to the Cells Embedded Deep Inside of Engineered**
15 **Tissues.**16 **Abstract:** Tissue engineering has the potential for repairing large bone defects, which impose a
17 heavy financial burden on the public health. However, difficulties with O₂ delivery to the cells
18 residing in the interior of tissue engineering scaffolds make it challenging to grow artificial tissues
19 of clinically-relevant sizes. This study uses image-based simulation in order to provide insight into
20 how to better optimize the scaffold manufacturing parameters, and the culturing conditions, in
21 order to resolve the O₂ bottleneck. To do this, high resolution 3D X-ray images of two common
22 scaffold types (salt leached foam and non-woven fiber mesh) are fed into a Lattice Boltzmann
23 Method fluid dynamics and reactive Lagrangian Scalar Tracking mass transfer solvers. The obtained
24 findings indicate that the scaffolds should have maximal surface area-to-solid volume ratios, for
25 higher chances of the molecular collisions with the cells. Furthermore, the cell culture media should
26 be flown through the scaffold pores as fast as practically possible (without detaching or killing the
27 cells). Finally, we have provided a parametric sweep that maps how the molecular transport within
28 the scaffolds is affected by variations in rates of O₂ consumption by the cells. Ultimately, the results
29 of this study are expected to benefit the computer-assisted design of tissue engineering scaffolds
30 and culturing experiments.31 **Keywords:** Oxygen Delivery; Optimization; Mass Transfer; Transport; Bone tissue engineering;
32 Computational fluid dynamics; Lattice Boltzmann Method; Scaffold Design; Culturing Protocol;
33 Lagrangian Scalar Tracking35 **1. Introduction**36 Incidences of bone disorders constitute a significant economic burden to societies globally. In
37 the United States alone, the total annual cost (direct and indirect) of treating an estimated 126.6
38 million people affected by musculoskeletal disorders exceeds \$213 billion [1]. Moreover, with an
39 increasingly obese and ageing population, this trend is expected to continue further. Unfortunately,
40 according to U.S Department of Health & Human Services, only ~10% out of the 115,000 people who
41 needed a lifesaving organ transplant in 2018 have actually received it. This is because despite the

42 overwhelming demand, almost no FDA-approved [2] artificial tissue products are commercially
43 available today.

44 A major hurdle standing in the way of producing viable engineered bone is product size
45 limitations. These in turn stem from the inability to deliver sufficient amounts of metabolites (e.g.,
46 O₂, nutrients, etc.) to the inner pore spaces of scaffolds, given that the cells consume them in large
47 quantities as they build tissue. Among these, O₂ plays a critical role in the cell growth and
48 proliferation, and thus its high concentrations have been correlated with both increased cellularity
49 [3] and cell viability [4]. Conversely, a deficiency in O₂ can result in a hypoxic cell state, which is
50 commonly associated with decreased metabolic activity and potentially undesirable differentiation
51 behavior [5-7]. Hence, optimal oxygen transport is important in maintaining tissue function and
52 overall survival within the artificial tissues. For that reason, bone tissue engineering scaffolds are
53 typically cultured in perfusion bioreactors, the idea behind which is to facilitate the mass transfer
54 using flow.

55 However, understanding what scaffold fabrication parameters, and flow culturing conditions,
56 result in the optimal O₂ delivery to the cells is made difficult by the complexity of the pore network
57 architectures in which they reside. This is because most large scaffolds are not transparent enough
58 for microscopy, and it is also difficult to measure the O₂ concentrations at different locations within
59 the scaffolds. Furthermore, the O₂ uptake rate by the cells changes over time [3]. All these
60 complications make the problem even more difficult to solve manually. For these reasons, computer
61 simulation of the O₂ transport and consumption offers itself as a viable alternative for obtaining
62 insight into the microenvironment, which is experienced by the cells seeded on the surfaces of the
63 scaffold pores.


64 Yet, modeling of mass transport (and specifically of O₂) within scaffolds is uncommon when
65 compared to flow parameters, such as stimulatory fluid shear stress, permeability, and pressure (see
66 Table II in Ref. [8]). Furthermore, Table 1 below summarizes our overview of the few O₂ models that
67 we did find in literature. From it, it can be seen that the studies commonly use idealized geometries
68 for the scaffolds (e.g., a homogeneous porous medium), instead of realistic image-based. In reality,
69 however, the scaffold architectures may be inhomogeneous. Moreover, many of the models either do
70 not take into account specificities of bone tissue engineering: such as the need for flow perfusion,
71 which generates a stimulatory shear environment natural to the bone canaliculi [9,10]. Instead, many
72 models either target tissue engineering in general, or they may be specific to other tissue engineering
73 disciplines: for example, Ferroni et al. [11] modeled a cardiac scaffold, which is cultured under
74 pulsatile flow (not the case for bone). Finally, few of the models take into account O₂ consumption by
75 the cells. And among those that do, the rate is typically assumed to be constant. Thus, we were not
76 able to find a single bone tissue engineering model, which accounted for all of the following: the
77 realistic scaffold structure, O₂ diffusion, convection and variable consumption rates.

78

79 **Table 1** Literature overview of O_2 simulations in tissue engineering scaffolds, shows that image-based
 80 simulation of convection with diffusion and reaction has not yet been done.

Scaffold Type	Simulated Geometry	O_2 Diffusion	O_2 Convection	O_2 Reaction	Varied Parameter	Citation
45S5 Bioglass-PCL Robocast, Bioactive Glass 70S30C Sol-Gel Foamed and Titania Foam Replicated	Micro-computed Tomography	Yes	No	No	Void Fraction	Fiedler et al. [12]
Cardiac Tissue Eng.	Idealized	Yes	Yes	No	Squeeze Pressure	Ferroni et al. [11]
Microchanneled Hydrogel	Idealized	Yes	No	No	Microchannel Configuration	Arrigoni et al. [13]
Periodically Self-Repeated Representative Volume Element	Idealized	Yes	No	Yes	Geometry of the Repeating Element	Li et al. [14]
Bone Tissue Eng. Molded Tantalum	Idealized	Yes	Yes	Yes	Flow rate	Bergemann et al. [4]
Homogeneous Porous Medium	Idealized	Yes	Yes	Yes	Flow rate, Porosity	Yan et al. [15]

81
 82 Therefore, in this work we aim to shed insight on how scaffold manufacturing parameters, and
 83 flow culturing conditions, affect the O_2 transport and uptake by the cells in realistic bone tissue
 84 engineering scaffolds. To do this, we use two types of commonly-implemented types: the salt leached
 85 foam and the non-woven fiber mesh poly-l-lactic acid (PLLA) scaffolds. Their geometries are scanned
 86 in 3D using high resolution micro-computed tomography (μ CT), and imported into our image-based
 87 Lattice Boltzmann Method (LBM) flow[16-19] and reactive Lagrangian Scalar Tracking (rLST) mass
 88 transport [20] solvers. A big advantage of the latter is it can model particles with a range of reactivity,
 89 which is informative about how. In this way, a more complete picture of O_2 transport within the
 90 different types of BTE scaffolds can be constructed. The overall computational scheme is depicted in
 91 Figure 1.
 92

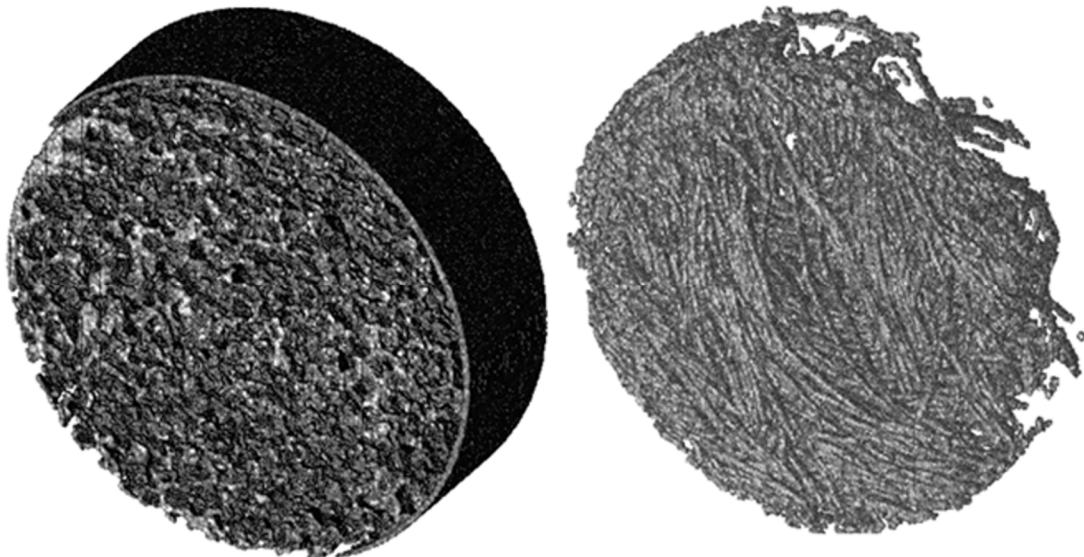
93

94 **Figure 1** The image-based modeling methodology used in this work: scaffolds are scanned in 3D via high
 95 resolution μ CT, reconstructed in silico and the resulting geometries are used by the LBM and rLST solvers.

96 2. Materials and Methods

97 2.1 Scaffold Fabrication

98 The full details of the scaffold preparation protocols can be found in our previous publications
 99 [16,17]. Briefly, the scaffolds were non-woven fiber meshes, constructed using polymer micro-fibers
 100 produced with spunbonding. The polymer used in the production of fibers was poly-L-lactic-acid
 101 (grade 6251D, 1.4% D enantiomer 108,500 MW, 1.87 PDI, NatureWorks LLC). A custom Brabender
 102 extruder (19.1 mm (0.75 in.) diameter x 381 mm length) was used to pressurize and melt the polymer.
 103 A manually circulated collection screen was used to collect a random even layering of fibers. Layers
 104 of fibers were stacked and measured until the stack reached a mass of 9.0 ± 0.1 g within an area of
 105 162.8 cm^2 . The collected non-woven fiber stack then had a 7cm center cut sheet obtained from it.
 106 Finally using an 8 mm diameter die, discs were punched from the layered fiber sheets. The resulting
 107 scaffolds used in culturing were 8 mm diameter and ~ 2.3 mm thickness. Average fiber diameter was
 108 measured optically, using a Nikon HFX-II microscope.


109 The porous foam scaffolds were prepared using solvent casting/particulate leaching method [21-
 110 24]. Briefly, poly(L-lactic acid) (PLLA, 114,500 MW, 1.87 PDI, Birmingham Polymers) was dissolved
 111 into chloroform 5% w/v. The solution was then poured over a bed of sodium chloride crystals. Solvent
 112 was allowed to evaporate for 24h. The resulting salt-polymer composite was inserted into an 8 mm
 113 diameter cylindrical mold and compressed at 500 psi. During compression, the composite was heated
 114 to 130°C and held at constant temperature and pressure for 30 min. Using a diamond wheel saw
 115 (Model 650, South Bay Technology, Inc.), the resulting composite rod was cut into 2.3 mm thick discs.
 116 The discs were placed into deionized water (DIH₂O) under agitation for 2 days to leach out NaCl.
 117 Entire DIH₂O volumes were replaced twice per day. Leached discs were then removed from DIH₂O
 118 and placed under vacuum to remove moisture from the scaffolds. The resulting products were 8 mm
 119 diameter, 2.3 mm thick discs. Porosity of scaffolds was determined by measuring the solid volume
 120 (mass of the scaffold divided by the density of PLLA) and comparing to the total scaffold volume
 121 (assuming a cylindrical scaffold shape.)

122

123 *2.2 3D Imaging and Virtual Reconstruction*

124 The full details of our scanning procedure can be found in our previous publication.[16,17,25]
125 Briefly, scaffolds were then scanned via μ CT using a ScanCo VivaCT40 system (ScanCo Medical,
126 Bassersdorf, Switzerland) to obtain 10 μ m resolution, 2D intensity image slices at the optimum
127 settings of 88 μ A (intensity) and 45 kV (energy). The acquired X-ray images were filtered for noise
128 reduction and assembled into 3D reconstructions of the scaffolds using a custom Matlab code
129 (MathWorks Inc., Natick, MA). The scans were segmented using global thresholding. Threshold
130 values were chosen such that the porosity of scaffolds from 3D reconstructions were within 1% of
131 experimentally calculated porosities. Figure 2 is a typical 3D reconstruction of each scaffold type.
132 Experimental porosities were obtained by measuring the solid volume (mass of the scaffolds divided
133 by the density of scaffold materials) and comparing with total scaffold volume (assuming a
134 cylindrical scaffold) as reported in [16,17,20].

135

136

137

138 **Figure 2** Three dimensional reconstructions of the two scaffold architecture types used in this study. LEFT - Salt-
139 Leached Porous Foam Scaffold; RIGHT - Non-woven Fiber mesh Scaffold. Both of the scaffolds are made from
140 PLLA, and their dimensions are 8-mm-diameter and 2.3-mm-thickness. The images were obtained via μ CT
141 imaging described in our previous works [16,17,25].

142 *2.3 Fluid Flow Modeling: Lattice Boltzmann Method (LBM)*

143 LBM was chosen for the present application, because it is especially appropriate for modeling
144 pore-scale flow through porous media (such as scaffolds) due to the simplicity with which it handles
145 complicated boundaries [16-18,20,26-29]. This is because LBM uses structured meshes for complex
146 geometries, unlike classical CFD approaches which will rather utilize unstructured meshes. Another
147 advantage of LBM is that it uses a direct method based on first principles at the mesoscopic scale
148 rather than modeling terms of the fluid flow governing equations at the macroscopic scale. In
149 addition, the LBM method has gained popularity within the scientific computing community because
150 of the ease with which it can be parallelized on supercomputers [30].

151 A previously developed custom-written, in-house code was used in this work [16-
152 18,20,26,29,31]. The D3Q15 lattice [32] in conjunction with the single-relaxation time Bhatnagar, Gross
153 and Krook [33] collision term approximation was used to perform simulations. The no-slip boundary
154 condition was applied at solid faces using the “bounce-back” technique [34]. To take advantage of
155 the inherent LBM parallelizability, domains were decomposed using message passing interface
156 [18,26]. The code has been validated for several flow cases for which analytical solutions are available:
157 forced flow in a slit, flow in a pipe and flow through an infinite array of spheres [16,26].

158 Each simulation domain was composed of a scaffold placed inside of a pipe. This is meant to
159 mimic the cassette holder that typically fixes the scaffold in the perfusion bioreactors. The pipe’s
160 length was taken to be approximately 10 times greater than the scaffold thickness, in order to avoid
161 periodicity artifacts, and to ensure that a uniform parabolic profile is developed before flow reaches
162 the scaffolds. Simulations were performed for a flow rates ranging between 0.15-1 mL/min. This is
163 considered a suitable range for culturing bone tissue in typical perfusion bioreactors. Convergence
164 was defined as when average and highest velocities computed for the simulation domain vary by
165 less than 0.01% for two consecutive time steps.

166 2.4 Oxygen Transport Modeling: Reactive Lagrangian Scalar Tracking (rLST)

167 The full details of the rLST code can be found in our prior publications [20,26]. Briefly, the
168 trajectories of the rLST particles are determined by contributions from convection (obtained using
169 the velocity field from the LBM simulations) and diffusion (i.e., Brownian motion obtained from a
170 mesoscopic Monte-Carlo approach). For example, the new X position of a marker at time t+1 is
171 calculated from the previous position at time t as follows:

$$172 \vec{X}_{t+1} = \vec{X}_t + \vec{U}_t^{(LBM)} \Delta t + \Delta \vec{X}_t^{(random)} \quad (1)$$

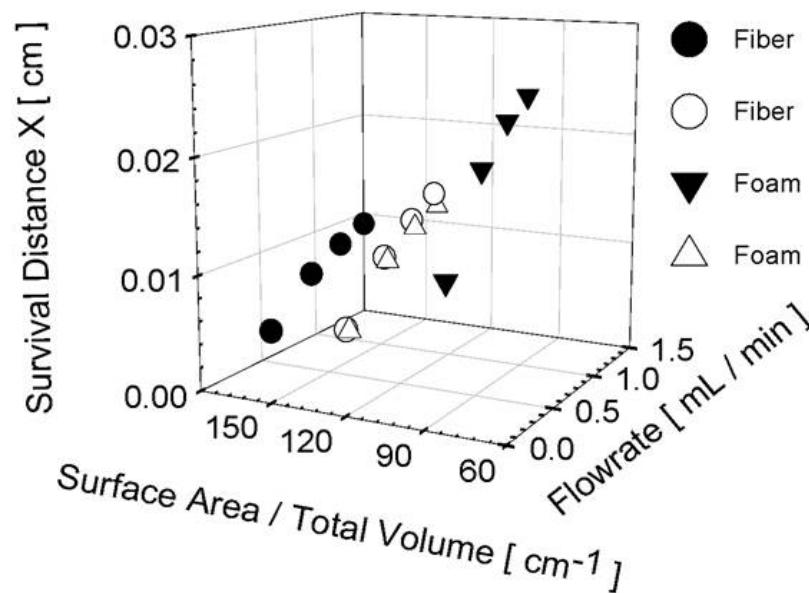
173 where \vec{U}_t is the fluid velocity at the particle’s location at time t , as obtained from the LBM
174 solver. On the other hand, the random jump has a standard deviation that is given by
175 $\sigma = \sqrt{2D_0 \Delta t} = \sqrt{2v \Delta t / Sc}$, where D_0 is the *nominal* molecular diffusivity (i.e. the diffusivity that the
176 particles would have if their motion was purely Brownian). It can also be expressed in terms of the
177 dimensionless Schmidt number Sc , which depends on the carrier fluid’s viscosity. The molecular
178 diffusivity of O_2 in the cell culture medium (assumed to be an aqueous solution at the physiological
179 temperature of $T = 37$ °C) was 2.62×10^{-5} cm²/s, which corresponded to a Schmidt number of 328.14.

180 The rLST simulations were performed using 1 million particles, which was found to be sufficient
181 to reproduce analytical results from the Taylor-Aris formula, during the validation runs. Their initial
182 positions were distributed uniformly in a release plane at the pipe’s entrance. Furthermore, in order
183 to model the O_2 consumption by the cells, each of the rLST particles had a probability ‘q’ to react
184 upon colliding with the scaffold walls: ranging from $q = 0$ (non-reactive) and $q = 1$ (fully reactive).

185 It was also assumed that the scaffold’ surface was uniformly covered with a monolayer of the
186 cells, each of them capable of consuming the O_2 . Since second order reactions (reactions between
187 solute particles) were not considered for this model, any interactions between rLST markers were
188 neglected (i.e. they did not affect each other’s path). This approximation is good for a dilute solution.
189 The simulation was allowed to evolve for a total of 10,000-time steps, needed to achieve equilibration.

190 The 'Mersenne Twister' random number generator with a cycle of length $(2^{19937} - 1)$ was used for all
191 random number generation in the rLST code [35].

192 **3. Results**


193 As previously discussed, efficient delivery of O_2 is vital to the cell survival in the 3D bone tissue
194 engineering scaffolds. Yet, choosing the optimal scaffold manufacturing parameters, and the
195 culturing flow conditions is non-trivial, due to the complex transport phenomena occurring in the
196 pore networks of the engineered tissue constructs. For this reason, we have performed image-based
197 simulation of the fluid flow, and of the O_2 transport, occurring within two common types of bone
198 tissue engineering PLLA scaffolds: the salt-leached foam and the non-woven fiber mesh.

199 Their geometries were varied by controlling the amount and the size of the leached salt grains
200 for the former, and the fiber diameter for the latter. In order to compare the scaffolds on the same
201 scale, here the results are plotted as a function of the "specific surface area" – defined as the ratio of
202 surface area to solid volume. Furthermore, in order to analyze how the transport of O_2 is affected by
203 the rate at which it is consumed by the cells, we considered different probabilities with which its
204 molecules can react upon colliding with the scaffold walls. We examine the condition of a uniform
205 coverage of the scaffold surfaces with O_2 -starved cells. This corresponds to an infinite surface reaction
206 rate (i.e., instantaneous consumption of every O_2 molecule that collides with a scaffold wall); and
207 should be treated as a limiting case scenario, which allows for a comparison of different scaffold
208 structures on an equivalent basis.

209 Figure 3 is a 3D plot of the O_2 "survival distance" in the stream-wise direction (the X-direction),
210 as a function of the scaffold structure and the cell-culture media perfusion flow rate. The survival
211 distance is defined as the distance that the rLST markers (representing the O_2 molecules) travel on
212 average, until they are "consumed" via a collision with a scaffold wall. From this figure, it is apparent
213 that the survival distance in the stream-wise direction increases as the flow rate goes up. This is
214 consistent with the Taylor-Aris dispersion theory, which states that the effective diffusivity in the
215 stream-wise direction should increase with the square of the Peclet number [20,34]:

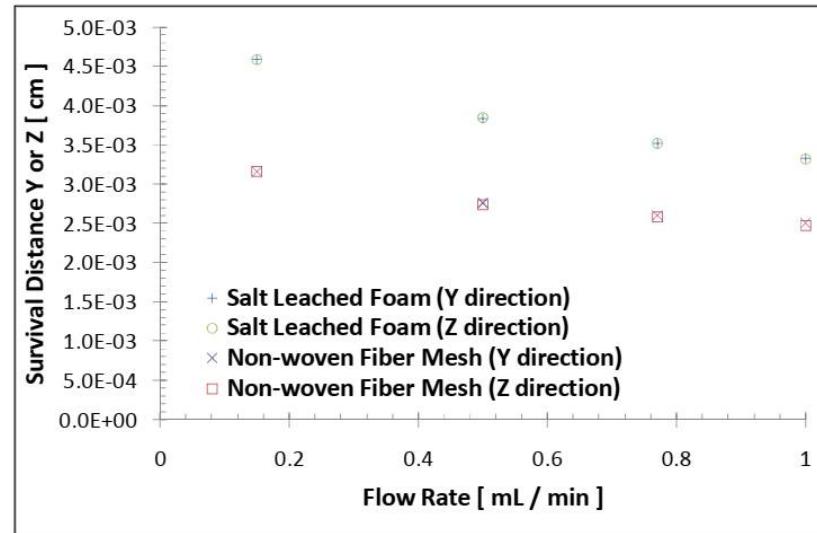
$$Pe_m = Re * Sc$$

216 where Re is the Reynolds number and Sc is the Schmidt Number. Its physical meaning is the
217 ratio of the transport by advection to transport by diffusion. In this study, Sc is fixed for an O_2
218 molecule in an aqueous cell culture media at $T = 37$ $^{\circ}C$, as was discussed in the methods section.
219 Hence, according to Equation 2, the Peclet number will increase proportionally with the value of Re ,
220 which depends on the velocity of the fluid. This leads to a higher effective diffusivity of the solute
221 in the stream-wise direction; and thus, the O_2 can make it further into the scaffold, before it is fully
222 consumed by the cells.

223

224 **Figure 3** Survival distance in the stream-wise direction, as a function of the scaffold geometry and perfusion
 225 flow rate. Data is plotted for the limiting case of the fully reactive rLST particles.

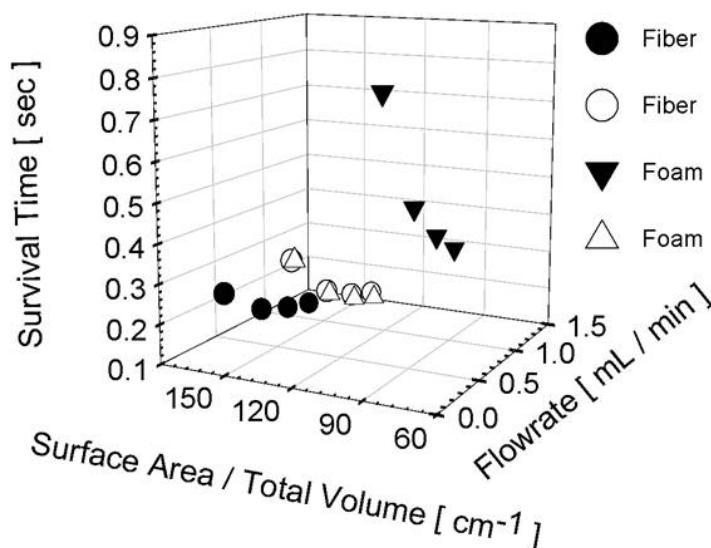
226 Another trend that is apparent from Figure 3 is that the survival distance of O_2 is also inversely
 227 proportional to the specific surface area of the scaffold. This makes sense, because the O_2 molecules
 228 have a smaller chance to collide with the scaffold's surface, when it has less area exposed.
 229 Furthermore, Figure 3 shows that the foam scaffolds have a lower specific surface area than do the
 230 fiber ones. This leads to noticeably longer survival distances of O_2 in the foam scaffolds.


231 Overall, the result demonstrates that it is plausible to modify the scaffold's geometry in order to
 232 increase the efficiency of the O_2 transport within its structure. For example, the specific surface area
 233 of a medium composed of cylinders (such as the fiber-mesh scaffold) is given as:

$$234 \quad S = \frac{4}{D} \quad (3)$$

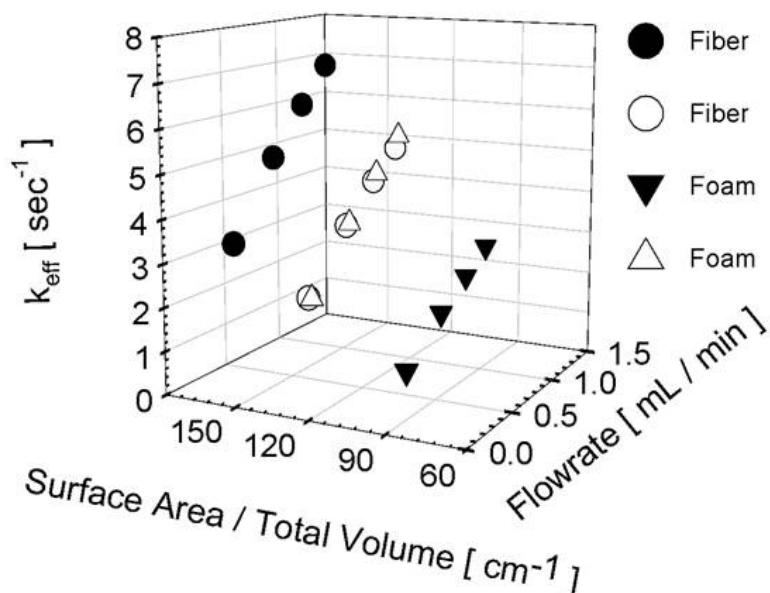
235 where D is the fiber diameter. Unfortunately, there is no analytical formula for the salt-leached
 236 foam structures, due to their anisotropy resulting from the fabrication procedure. However, in
 237 general, their specific surface area goes up with lower porosity (i.e., amount of salt), and with smaller
 238 salt grain size used in the leaching.

239 Interestingly, the survival distances in the Y and Z directions (i.e., perpendicular to the flow) go
 240 down with the increasing flow rate (see Figure 4). The reason behind this is likely due to the particles
 241 becoming entrained by the carrier fluid. Consequently, they move less in the Y and Z directions per
 242 time step, relative to their displacement in the X. As a result, there is a smaller probability of collisions
 243 with the walls in the former directions. However, since both the Y and Z survival distances are an
 244 order of magnitude smaller than those in the X direction, the *total* survival distance is dominated by
 245 the trend displayed by the latter.

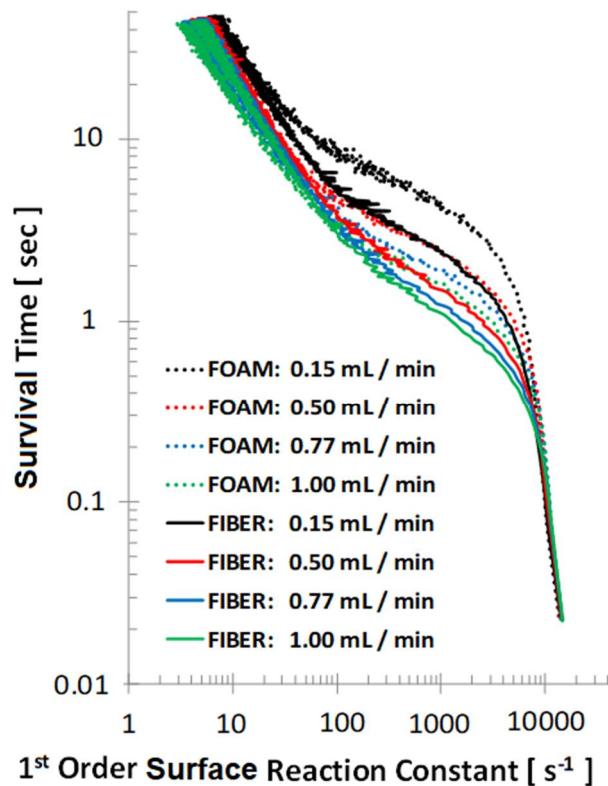

246

247

248 **Figure 4** Survival distances in the Y & Z directions, as a function of the scaffold geometry and perfusion flow
 249 rate. Data is plotted for the limiting case of the fully reactive rLST particles. Both scaffolds types are chosen to
 250 have a similar specific surface area.


251 Another quantity of interest is the survival time of the O_2 molecules in the scaffolds. Figure 5
 252 plots this quantity as a function of the flow rate and the specific surface area of the scaffolds; for the
 253 limiting case of fully reactive rLST particles. Conversely to the survival distance in Figure 3, the
 254 survival time in Figure 5 decreases with the flow rate. Though, the effect of the specific surface area
 255 remains the same, and the survival time varies inversely-proportionally to it. Combining the results
 256 from both of the figures, it becomes apparent that fully reactive molecules get carried to a farther
 257 distance by a higher flow rate. However, they take a shorter time to get consumed by the cells on the
 258 surface of the scaffolds. This is especially true for the scaffold geometries with a higher exposed
 259 surface area.

260


261 **Figure 5** Survival time in the stream-wise direction, as a function of the scaffold geometry and perfusion flow
 262 rate. Data is plotted for the limiting case of the fully reactive rLST particles.

263 Ultimately, it is of interest to measure the *effective* 1st order reaction rate constant k_{eff} , with which
264 the O₂ molecules get consumed in the scaffolds, after accounting for the mass transfer limitations.
265 To that end, Figure 6 is a plot of k_{eff} as a function of the flow rate and specific surface area of the
266 scaffold, for the limiting case of an infinitely fast surface consumption of O₂. It reaffirms the
267 previously observed trends, which show that the O₂ is consumed faster in the scaffold structures with
268 the higher surface area-to-solid volume ratios. Furthermore, it also supports the finding that
269 increasing the cell culture media flow rate through the scaffold leads to a faster O₂ consumption in
270 its pores.

271
272 **Figure 6** Effective O₂ reaction coefficient k_{eff} , as a function of the scaffold geometry and perfusion flow rate.
273 Data is plotted for the limiting case of the fully reactive rLST particles.

274 If the cells are not starved for O₂, however, the rLST particles can be made to have a *finite* (as
275 opposed to infinite) probability to become consumed upon collision with the scaffold walls. Thus,
276 Figure 7 explores the role that the different cell affinities for consuming the O₂ have on its transport
277 in the pores. In this case, the rLST particles with the different reactivities are all released
278 simultaneously, and their survival times are compared as a function of the cell culture media flow
279 rate and the scaffold type.

280

281 **Figure 7** O_2 survival time as a function of the consumption rate by the cells on the scaffold surface. Data is plotted
282 for salt leached foam and non-woven fiber mesh scaffolds at four different flow rates.

283 Two trends are immediately apparent from Figure 7: 1) the O_2 in the fiber scaffolds (solid lines)
284 has a shorter survival time than in the foam ones (dotted lines), regardless of the cells' affinity for its
285 uptake. This is consistent with the trends in the previous section, which showed that the fiber
286 scaffolds have a higher specific surface area than do the foams. This makes them more efficient at
287 delivering the O_2 molecules to the cells; and 2) the second trend essentially says that for a given
288 surface reaction rate, the consumption of O_2 will take longer at the slower flows. This is again
289 consistent with a similar trend that was shown in Figure 5, where the survival time increased with
290 the slower flow rate.

291 4. Discussion

292 In this manuscript, we carried out a study of how the O_2 mass transfer is affected by the scaffold
293 manufacturing and the flow perfusion culturing parameters, in bone tissue engineering scaffolds.
294 The knowledge obtained from the reported results is needed in order to overcome the product-size
295 limitations, which are commonly experienced due to hypoxia and necrosis in the center of large
296 scaffolds. To solve the problem, we used an image-based approach of scanning the true scaffold
297 structures in 3D using a high resolution μ CT, and then feeding the obtained geometries to our in-
298 house parallelized fluid flow (LBM) and mass transport (rLST) solvers. Two scaffolds commonly used
299 in bone tissue engineering, the salt leached foam and the nonwoven fiber mesh, were used for this
300 study. The O_2 transport results were parametrized as a function of the specific surface area of the
301 scaffold, the flow rate in the bioreactor and the affinity to consume the molecule by the cells.

302 The main conclusions from our work are that the scaffolds with the higher specific area (i.e.
303 surface area-to-solid volume ratio) result in more frequent molecular collisions with the cells. This

304 increases the chances of the O_2 uptake by them, which results in a higher consumption (i.e., shorter
305 survival times and distances) of the molecules in the scaffold. Furthermore, by increasing the flow
306 rate in the bioreactor, the O_2 transport can be both facilitated (as seen from the shorter survival time
307 in Figure 4) and delivered deeper into the scaffold (as seen from the longer survival distance in Figure
308 3). Thus, the overall effective O_2 reaction coefficient k_{eff} can be increased by maximizing both the
309 specific surface area of the scaffold and the flowrate through its pores. This is evident from Figure 6.

310 Interestingly, the conclusion that an increased flow rate improves the O_2 delivery to the cells has
311 also been reported by Bergemann et al. [4]. However, increasing it indefinitely is not an option,
312 because there is a trade-off with the shear forces exerted on the cells by the flow. Specifically, values
313 in the range of 0.1 - 25 dynes/cm² [36-38] are generally considered to be beneficial because they mimic
314 the natural microenvironment in bone canaliculi [9,10] and has been shown to promote tissue
315 regeneration [39-42]. On the other hand, an excessive shear in the range of 26-54 dynes/cm² and higher
316 can cause cell lysing and/or detachment from the scaffold [43,44]. Therefore, there is some optimal
317 flow rate, which was found to be 45 L/min by the Bergemann et al. study [4]. However, this value
318 is specific to their scaffold-and-cell combination, and it could vary for other alternatives. Therefore,
319 both image-based numerical simulations and cell viability assays are necessary for tuning the optimal
320 conditions for other types of cultures. Whereas, at least the physical understanding provided in our
321 study should be applicable across all scaffold types, because they are expressed in terms of the
322 specific surface area.

323 Finally, Figure 7 in our manuscript provides insight into how the O_2 transport depends on its
324 consumption by the cells. In this case, we are not assuming that the cells are O_2 -starved (and as a
325 result take up every oxygen molecule that collides with them). Instead, we vary consumption rate of
326 the O_2 at the scaffold surface, in order to measure how this affects its transport in the scaffold. The
327 results reported in this figure allow other researchers to understand the changes in the scaffold's
328 transport microenvironment over time. They also show how the flowrate and specific surface area
329 trends are affected by the cell-specific O_2 consumption rates.

330 The limitations of our study are that the cells are assumed to have a uniformed coverage on the
331 scaffold surface. In reality, they would likely prefer some areas of the scaffolds more than others.
332 Furthermore, the tissue they lay down and the forces they exert on the scaffold would likely alter the
333 internal structure of the scaffold (and in turn the flow field in its pores). Unfortunately, our model
334 does not account for these types of influences by the cells on the mass transfer of O_2 . Additionally,
335 the scaffold's structure in the real experiment could change due to wetting forces, fiber flexibility,
336 and the natural degradation of PLLA. The latter produces acidic byproducts, whose removal is
337 facilitated by the fluid flow [45]. Yet, in our study the scaffold's structure remains static throughout
338 the virtual experiment.

339 However, the results presented in this manuscript expose qualitative trends that should hold
340 true regardless of the necessary simplifications. Therefore, it is expected that they should contribute
341 significantly to the field of bone tissue engineering scaffold design and experiment optimization.

342 5. Conclusions

343 Mass transfer of O_2 in scaffolds cultured in perfusion bioreactors is of interest to the fields of
344 bone, and other types of, tissue engineering. Specifically, understanding how to control it can be
345 instrumental to resolving product size limitations, when it comes to culturing organ-sized scaffolds.

346 Therefore, we performed an image-based simulation study, in which we showed that the scaffolds
347 with the higher surface area-to-solid volume ratio result in a more efficient transfer of O₂.
348 Additionally, we showed that the effect can be increased further by flowing the cell culture media
349 through the scaffold faster. Serendipitously, this also delivers the O₂ deeper into the scaffold pores,
350 which is key to overcoming the product-size limitations mentioned earlier. Furthermore, we
351 provided a parametric sweep over the rates of O₂ consumption by the cells situated on the scaffold
352 surfaces. This visual aid yields insight into how the different cell affinities for consuming the O₂ can
353 affect the molecule's transport through the biological porous media. Finally, the computational
354 framework presented in this study can serve as a viable tool for optimizing the scaffold design, and
355 experimental culturing protocols, for other types of tissue engineering as well.

356 **Author Contributions:** Conceptualization, Sikavitsas V.I. and Voronov R.S.; methodology, Nguyen T.D., Kadri
357 O.E.; software, Voronov R.S.; validation, Nguyen T.D., and Kadri O.E.; formal analysis, Nguyen T.D., and Kadri
358 O.E.; investigation, Nguyen T.D., and Kadri O.E.; resources, Sikavitsas V.I.; data curation, Nguyen T.D.;
359 writing—original draft preparation, Nguyen T.D. and Kadri O.E.; writing—review and editing, Nguyen T.D.,
360 Kadri O.E., Sikavitsas V.I. and Voronov R.S.; visualization, Nguyen T.D. and Kadri O.E.; supervision, Voronov
361 R.S.; project administration Voronov R.S.; funding acquisition, Voronov R.S.

362 **Funding:** This research was funded by Gustavus and Louise Pfeiffer Research Foundation Major Research
363 Investment Grant.

364 **Acknowledgments:** Financial support from Gustavus and Louise Pfeiffer Research Foundation is gratefully
365 acknowledged. We also acknowledge the computing for this project was performed at the OU Supercomputing
366 Center for Education & Research (OSCER) at the University of Oklahoma (OU) and Texas Advanced Computing
367 Center (TACC) at The University of Texas – Austin. Both have contributed to the research results reported within
368 this paper. URLs: <http://www.ou.edu/oscer.html> and <http://www.tacc.utexas.edu>, respectively. This work also
369 used the Extreme Science and Engineering Discovery Environment (XSEDE)[46], which is supported by
370 National Science Foundation grant number ACI-1548562. Allocations: TG-BCS170001 and TG-BIO160074.
371 The Xradia micro-CT scans were made by Mark E. Curtis. Fiber fabrication was performed by Taren Blue, who
372 was studying under the guidance of Prof. Robert L. Shambaugh at OU. Scaffolds were cultured by Sam
373 VanGordon and Cortes Williams also at OU. We gratefully acknowledge their expertise and assistance.

374 **Conflicts of Interest:** The authors have no competing financial interests to declare.

375 References

1. American Academy of Orthopaedic Surgeons, A. One in two Americans have a musculoskeletal condition. Availabe online: <https://www.sciencedaily.com/releases/2016/03/160301114116.htmEnglish> (accessed on 06/13).
2. Administration, U.S.F.a.D. Approved Cellular and Gene Therapy Products. Availabe online: <https://www.fda.gov/BiologicsBloodVaccines/CellularGeneTherapyProducts/ApprovedProducts/default.htm> (accessed on 02/20/2018).
3. Simmons, A.D.; Williams, C.; Degoix, A.; Sikavitsas, V.I. Sensing metabolites for the monitoring of tissue engineered construct cellularity in perfusion bioreactors. *Biosensors and Bioelectronics* **2017**, *90*, 443-449.
4. Bergemann, C.; Elter, P.; Lange, R.; Weissmann, V.; Hansmann, H.; Klinkenberg, E.D.; Nebe, B. Cellular Nutrition in Complex Three-Dimensional Scaffolds: A Comparison between Experiments and Computer Simulations. *Int J Biomater* **2015**, *2015*, 584362, doi:10.1155/2015/584362.
5. Gilkes, D.M.; Semenza, G.L.; Wirtz, D. Hypoxia and the extracellular matrix: drivers of tumour metastasis. *Nature Reviews Cancer* **2014**, *14*, 430.
6. Spill, F.; Reynolds, D.S.; Kamm, R.D.; Zaman, M.H. Impact of the physical microenvironment on tumor progression and metastasis. *Current opinion in biotechnology* **2016**, *40*, 41-48.

391 7. Nguyen, T.D.; Song, M.S.; Ly, N.H.; Lee, S.Y.; Joo, S.W. Nanostars on Nanopipette Tips: A Raman Probe
392 for Quantifying Oxygen Levels in Hypoxic Single Cells and Tumours. *Angew Chem Int Ed Engl* **2019**, *58*,
393 2710-2714, doi:10.1002/anie.201812677.

394 8. Zhang, S.; Vijayaventaraman, S.; Lu, W.F.; Fuh, J.Y. A review on the use of computational methods to
395 characterize, design, and optimize tissue engineering scaffolds, with a potential in 3D printing fabrication.
396 *Journal of Biomedical Materials Research Part B: Applied Biomaterials* **2018**.

397 9. Verbruggen, S.W.; Vaughan, T.J.; McNamara, L.M. Fluid flow in the osteocyte mechanical environment: a
398 fluid-structure interaction approach. *Biomech Model Mechanobiol* **2014**, *13*, 85-97, doi:10.1007/s10237-013-
399 0487-y.

400 10. Guyot, Y.; Luyten, F.P.; Schrooten, J.; Papantoniou, I.; Geris, L. A three-dimensional computational fluid
401 dynamics model of shear stress distribution during neotissue growth in a perfusion bioreactor. *Biotechnol
402 Bioeng* **2015**, *112*, 2591-2600, doi:10.1002/bit.25672.

403 11. Ferroni, M.; Giusti, S.; Nascimento, D.; Silva, A.; Boschetti, F.; Ahluwalia, A. Modeling the fluid-dynamics
404 and oxygen consumption in a porous scaffold stimulated by cyclic squeeze pressure. *Med Eng Phys* **2016**,
405 *38*, 725-732, doi:10.1016/j.medengphy.2016.04.016.

406 12. Fiedler, T.; Belova, I.V.; Murch, G.E.; Poologasundarampillai, G.; Jones, J.R.; Roether, J.A.; Boccaccini, A.R.
407 A comparative study of oxygen diffusion in tissue engineering scaffolds. *J Mater Sci Mater Med* **2014**, *25*,
408 2573-2578, doi:10.1007/s10856-014-5264-7.

409 13. Arrigoni, C.; Bongio, M.; Talò, G.; Bersini, S.; Enomoto, J.; Fukuda, J.; Moretti, M. Rational design of
410 prevascularized large 3D tissue constructs using computational simulations and biofabrication of
411 geometrically controlled microvessels. *Advanced healthcare materials* **2016**, *5*, 1617-1626.

412 14. Li, E.; Chang, C.; Zhang, Z.; Li, Q. Characterization of tissue scaffolds for time-dependent biotransport
413 criteria—a novel computational procedure. *Computer methods in biomechanics and biomedical engineering* **2016**,
414 *19*, 1210-1224.

415 15. Yan, X.; Bergstrom, D.J.; Chen, X.B. Modeling of cell cultures in perfusion bioreactors. *IEEE Trans Biomed
416 Eng* **2012**, *59*, 2568-2575, doi:10.1109/TBME.2012.2206077.

417 16. Voronov, R.; Vangordon, S.; Sikavitsas, V.I.; Papavassiliou, D.V. Computational modeling of flow-induced
418 shear stresses within 3D salt-leached porous scaffolds imaged via micro-CT. *Journal of Biomechanics* **2010**,
419 *43*, 1279-1286, doi:10.1016/j.jbiomech.2010.01.007.

420 17. VanGordon, S.B.; Voronov, R.S.; Blue, T.B.; Shambaugh, R.L.; Papavassiliou, D.V.; Sikavitsas, V.I. Effects
421 of Scaffold Architecture on Preosteoblastic Cultures under Continuous Fluid Shear. *Industrial &
422 Engineering Chemistry Research* **2011**, *50*, 620-629, doi:10.1021/ie902041v.

423 18. Papavassiliou, D.V.; Pham, N.H.; Kadri, O.E.; Voronov, R.S. Chapter 23 - Lattice Boltzmann Methods for
424 Bioengineering Applications. In *Numerical Methods and Advanced Simulation in Biomechanics and Biological
425 Processes*, Academic Press: 2018; doi: 10.1016/B978-0-12-811718-7.00023-Xpp. 415-429.

426 19. Alam, T.A.; Pham, Q.L.; Sikavitsas, V.I.; Papavassiliou, D.V.; Shambaugh, R.L.; Voronov, R.S. Image-based
427 modeling: A novel tool for realistic simulations of artificial bone cultures. *Technology* **2016**, *1*-5.

428 20. Voronov, R.S.; VanGordon, S.B.; Sikavitsas, V.I.; Papavassiliou, D.V. Efficient Lagrangian scalar tracking
429 method for reactive local mass transport simulation through porous media. *International Journal for
430 Numerical Methods in Fluids* **2011**, *67*, 501-517, doi:10.1002/fld.2369.

431 21. Lu, L.C.; Peter, S.J.; Lyman, M.D.; Lai, H.L.; Leite, S.M.; Tamada, J.A.; Vacanti, J.P.; Langer, R.; Mikos, A.G.
432 In vitro degradation of porous poly(L-lactic acid) foams. *Biomaterials* **2000**, *21*, 1595-1605.

433 22. Alvarez-Barreto, J.F.; Sikavitsas, V.I. Improved mesenchymal stem cell seeding on RGD-modified poly(L-
434 lactic acid) scaffolds using flow perfusion. *Macromol Biosci* **2007**, *7*, 579-588, doi:DOI
435 10.1002/mabi.200600280.

436 23. Mikos, A.G.; Lyman, M.D.; Freed, L.E.; Langer, R. Wetting of poly(L-lactic acid) and poly(DL-lactic-co-
437 glycolic acid) foams for tissue culture. *Biomaterials* **1994**, *15*, 55-58.

438 24. Liu, X.; Ma, P.X. Polymeric scaffolds for bone tissue engineering. *Ann Biomed Eng* **2004**, *32*, 477-486.

439 25. Voronov, R.S.; VanGordon, S.B.; Shambaugh, R.L.; Papavassiliou, D.V.; Sikavitsas, V.I. 3D Tissue-
440 Engineered Construct Analysis via Conventional High-Resolution Microcomputed Tomography Without
441 X-Ray Contrast. *Tissue Engineering Part C-Methods* **2013**, *19*, 327-335, doi:10.1089/ten.tec.2011.0612.

442 26. Voronov, R. Fluid Shear Stress and Nutrient Transport effects via Lattice-Boltzmann and Lagrangian Scalar
443 Tracking Simulations of cell culture media perfusion through artificial bone engineering constructs imaged
444 with microCT[PhD Thesis]. Doctoral Dissertation, University of Oklahoma, 2010.

445 27. Porter, B.; Zuel, R.; Stockman, H.; Guldberg, R.; Fyhrie, D. 3-D computational modeling of media flow
446 through scaffolds in a perfusion bioreactor. *Journal of Biomechanics* **2005**, *38*, 543-549, doi:
447 10.1016/j.jbiomech.2004.04.011.

448 28. Shakhawath Hossain, M.; Bergstrom, D.J.; Chen, X.B. A mathematical model and computational
449 framework for three-dimensional chondrocyte cell growth in a porous tissue scaffold placed inside a bi-
450 directional flow perfusion bioreactor. *Biotechnology and bioengineering* **2015**, *112*, 2601-2610,
451 doi:10.1002/bit.25678.

452 29. Williams, C.; Kadri, O.; Voronov, R.; Sikavitsas, V. Time-Dependent Shear Stress Distributions during
453 Extended Flow Perfusion Culture of Bone Tissue Engineered Constructs. *Fluids* **2018**, *3*, 25.

454 30. Wang, J.; Zhang, X.; Bengough, A.G.; Crawford, J.W. Domain-decomposition method for parallel lattice
455 Boltzmann simulation of incompressible flow in porous media. *Physical Review E* **2005**, *72*, 016706,
456 doi:10.1103/PhysRevE.72.016706.

457 31. Kadri, O.E.; Williams, C., 3rd; Sikavitsas, V.; Voronov, R.S. Numerical accuracy comparison of two
458 boundary conditions commonly used to approximate shear stress distributions in tissue engineering
459 scaffolds cultured under flow perfusion. *Int J Numer Method Biomed Eng* **2018**, *34*, e3132,
460 doi:10.1002/cnm.3132.

461 32. Qian, Y.H.; Dhumieres, D.; Lallemand, P. Lattice Bgk Models for Navier-Stokes Equation. *Europhysics
462 Letters* **1992**, *17*, 479-484.

463 33. Bhatnagar, P.L.; Gross, E.P.; Krook, M. A Model for Collision Processes in Gases .1. Small Amplitude
464 Processes in Charged and Neutral One-Component Systems. *Physical Review* **1954**, *94*, 511-525.

465 34. Sukop, M.C.; Thorne, D.T.; NetLibrary Inc. Lattice Boltzmann modeling an introduction for geoscientists
466 and engineers. Springer: Berlin ; New York, 2006; pp ix, 172 p.

467 35. Matsumoto, M.; Nishimura, T. Mersenne twister: a 623-dimensionally equidistributed uniform pseudo-
468 random number generator. *ACM Trans. Model. Comput. Simul.* **1998**, *8*, 3-30, doi:10.1145/272991.272995.

469 36. Stolberg, S.; McCloskey, K.E. Can shear stress direct stem cell fate? *Biotechnology Progress* **2009**, *25*, 10-19,
470 doi:10.1002/btpr.124.

471 37. Raimondi, M.T.; Moretti, M.; Cioffi, M.; Giordano, C.; Boschetti, F.; Lagana, K.; Pietrabissa, R. The effect of
472 hydrodynamic shear on 3D engineered chondrocyte systems subject to direct perfusion. *Biorheology* **2006**,
473 43, 215-222.

474 38. Kim, K.M.; Choi, Y.J.; Hwang, J.-H.; Kim, A.R.; Cho, H.J.; Hwang, E.S.; Park, J.Y.; Lee, S.-H.; Hong, J.-H.
475 Shear Stress Induced by an Interstitial Level of Slow Flow Increases the Osteogenic Differentiation of

476 Mesenchymal Stem Cells through TAZ Activation. *PLOS ONE* **2014**, *9*, e92427,
477 doi:10.1371/journal.pone.0092427.

478 39. Miyashita, S.; Ahmed, N.E.M.B.; Murakami, M.; Iohara, K.; Yamamoto, T.; Horibe, H.; Kurita, K.; Takano-
479 Yamamoto, T.; Nakashima, M. Mechanical forces induce odontoblastic differentiation of mesenchymal
480 stem cells on three-dimensional biomimetic scaffolds. *Journal of Tissue Engineering and Regenerative Medicine*
481 **2017**, *11*, 434-446, doi:10.1002/term.1928.

482 40. Zhao, F.; Vaughan, T.J.; McNamara, L.M. Quantification of fluid shear stress in bone tissue engineering
483 scaffolds with spherical and cubical pore architectures. *Biomechanics and Modeling in Mechanobiology* **2016**,
484 *15*, 561-577, doi:10.1007/s10237-015-0710-0.

485 41. Sikavitsas, V.I.; Bancroft, G.N.; Holtorf, H.L.; Jansen, J.A.; Mikos, A.G. Mineralized matrix deposition by
486 marrow stromal osteoblasts in 3D perfusion culture increases with increasing fluid shear forces. *Proceedings
487 of the National Academy of Sciences* **2003**, *100*, 14683-14688, doi:10.1073/pnas.2434367100.

488 42. Yourek, G.; McCormick, S.M.; Mao, J.J.; Reilly, G.C. Shear stress induces osteogenic differentiation of
489 human mesenchymal stem cells. *Regenerative medicine* **2010**, *5*, 713-724, doi:10.2217/rme.10.60.

490 43. Brindley, D.; Moorthy, K.; Lee, J.-H.; Mason, C.; Kim, H.-W.; Wall, I. Bioprocess Forces and Their Impact
491 on Cell Behavior: Implications for Bone Regeneration Therapy. *Journal of Tissue Engineering* **2011**, *2011*,
492 620247, doi:10.4061/2011/620247.

493 44. Alvarez-Barreto, J.F.; Linehan, S.M.; Shambaugh, R.L.; Sikavitsas, V.I. Flow Perfusion Improves Seeding of
494 Tissue Engineering Scaffolds with Different Architectures. *Annals of Biomedical Engineering* **2007**, *35*, 429-
495 442, doi:10.1007/s10439-006-9244-z.

496 45. Agrawal, C.M.; McKinney, J.S.; Lanctot, D.; Athanasiou, K.A. Effects of fluid flow on the in vitro
497 degradation kinetics of biodegradable scaffolds for tissue engineering. *Biomaterials* **2000**, *21*, 2443-2452.

498 46. Towns, J.; Cockerill, T.; Dahan, M.; Foster, I.; Gaither, K.; Grimshaw, A.; Hazlewood, V.; Lathrop, S.; Lifka,
499 D.; Peterson, G.D., et al. XSEDE: Accelerating Scientific Discovery. *Computing in Science & Engineering* **2014**,
500 *16*, 62-74, doi:10.1109/MCSE.2014.80.

501