Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 6 May 2019 d0i:10.20944/preprints201905.0036.v1

An Algorithmic Random Integer
(Generator based on Prime Numbers
Distribution

Bertrand Teguia Tabuguia

May 1, 2019

© 2019 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints201905.0036.v1
http://creativecommons.org/licenses/by/4.0/

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 6 May 2019 d0i:10.20944/preprints201905.0036.v1

A PRNG based on prime numbers

Abstract

More than a philosophic thinking, we combine two researchers wishes on randomness repro-
duction and prime numbers distribution. Indeed, up to now we cannot rigorously answer the
question on randomness of primes [0, page 1|. We then propose an example of algorithms
that can be deduced by that connection. For this purpose, our main procedure uses prime
gap sequence variation. An evaluation on randomness reproduction is made at the end for a
conclusion about prime numbers distribution and its implications.

Contents

Introductionl 1
(1 Structure of Pseudo Random Integer (zenerator]| 2
2 First Left Minimum (flm) Function| 2
[3 Definition of Our Pseudo Random Integer Generator| 3

4 Application and Tests|

[4.1 Probability variation of the prime gap sequence|

4.2 y*— test of independence|.

Conclusion| 10

Introduction

The use of randomness is needed in almost all areas, some critical to mention are cryptography
[4] and bioinformatics [I]. The latter article gives an alert about the use of built in random
implementations. In general, we do not produce random since the approach is algorithmic,
hence the common name pseudo random number generator (PRNG). PRNG’s are all periodic,
and obviously larger periods give better random imitation, so the issue about the period
might sometimes be neglected. Another common issue with PRNG algorithms is the seeding
or the initialization, since this is actually the construction of a sequence following states,
two sequences having the same initial state must definitely be identical. Nevertheless a good
seeding may result from the aim of the random implementation, for example in the P&C
Game [7] where the random algorithm is actually the one presented here, the author uses the
first click of the player to seed the generator.

We then come to the main core of a PRNG which is the black box to test for acknowledgment
of pseudo randomness. Our algorithm is constructed to play that role. Positive integers
having only two divisors, 1 or themselves, simple definition for big theories. These numbers

1 Bertrand Teguia

https://doi.org/10.20944/preprints201905.0036.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 6 May 2019 d0i:10.20944/preprints201905.0036.v1

A PRNG based on prime numbers

called primes apart from belief up to now are not understood. And that is our concern,
because randomness can be seen as a missing of information and so the question is why do
not we use our ignorance to produce ignorance? This gives the importance of such a study
because with enough improvement we may say that either we have produced random or
understood primes distributions which turns out to be of great interest in research.

We have some interesting results and guess about primes seen as collection of numbers, we
mention here the unsolved twin prime conjecture [§] which for prime gap might keep the
randomization. Indeed this calls another interest in our algorithm because as we will see the
twin prime conjecture has to be verified in order to keep all choices possible among the given
labels.

In the sequel, after a brief presentation of a PRNG structure we will be giving details of our
algorithm according to the given PRNG description. That is to define what we call first left
minimum function (flm), and the update states. We end up with some tests for recognition
of pseudo-randomness.

1 Structure of Pseudo Random Integer Generator

As basically presented in [2, chapter 3|, typically there is a set S of states, and a function
f: S — S for state update. There is an output space O and function h: S — O. Usually
the output space is taken to be the interval (0,1), however in our case we will consider any
finite set of labels or integers for simplicity. After choosing the seed, the sequence of random
integers are generated as follows

Sy = f(Su_1), n=2,34,...
O, = h(Sh) (1)

2 First Left Minimum (flm) Function

Let G = (91,92, ---,9,) € E", where E is a non empty ordered set of objects. We define the
first left minimum of G as

(g1 if g1 < go

g if go < g3 and go < g1

g3 ifgs<gs and g3 < go <y

fim, (G) = flm, (91,92, .- ., gn) = . (2)
In-1 lf Gn—-1 < gn and In-1 < 9n—2 <...< g1

\gn ifgnggn—1<gn—2<---<gl

indeed it is the first left minimum value between two consecutive components of G,, starting
on the left.

2 Bertrand Teguia

https://doi.org/10.20944/preprints201905.0036.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 6 May 2019 d0i:10.20944/preprints201905.0036.v1

A PRNG based on prime numbers

Example: Let E = N, and consider G; = (5,4,3,6,5),Go = (1,3,5,4,2), and G3 =
(8,7,5,4,2). Then we have

ﬁm5(G1)
ﬁm5(G2)
ﬂm5(G3)

3
1
2

From the definition of an flm function, one can easily deduce the following properties

Proposition 1. Let E be a non empty ordered set. We have

a)

flm,: E" — E

G — flm, (G).
b) flmy = min.
C) Let G = (917927 s 7gn) S En’

flm,, (G) = min {g1, g2} 0g, (min {g1, g2})

+ 0y, (min {g1, g2 }) (min 192, 93} 09, (min {gz, g3}) + g, (min {g, g3}) (=

+ 0y, (min{g,—2, gn—1}) (min{gn—1, gu} (9, (min{gn—1, gu}) + &, (min{gn-1.9.}))) - -))
(4)
where min return the minimum value of its argument set and o, denotes the Kronecker symbol

of g defined as

0 otherwise

For c), if we take G' = (g1, 92, g3) we have
fims(G) =

min{gi, g2 }dg, (min{ gy, ga })+9,, (min{gi, g2 }) (min{ga, g3} (04, (min{ga, gs}) + gy (min{gs, g3})))

3 Definition of Our Pseudo Random Integer Generator

Instead of non empty as before, here we need an infinite countable ordered set. And for
simplicity we consider E = N since in any case [E can always be assimilated to a subset of
N by bijection. Given N > 2 integers ki, ks, ..., ky for a random choice among them, we

3 Bertrand Teguia

https://doi.org/10.20944/preprints201905.0036.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 6 May 2019 d0i:10.20944/preprints201905.0036.v1

A PRNG based on prime numbers

consider the set of states as a N—tuple of N consecutive prime gaps. If we denote by o, a
translation of the starting point in the primes set based on the seeding, then the set of state
can be defined as

S = {Sn = (gn+17gn+2a s 7.gn+N)a gj = Po(j+1) — Pa(4)» Po(y) primes, I < .] —n < N7 })
(5)

where n is a non negative integer.

The update state function is defined as the next ordered N —tuple of the prime gap sequence
starting at g,, = flmy(S,), n+1<m <n+ N, that is

f: 5 — S
Sn = (g7Z+17 nt2, - .- 7972+N) — f(SN) = Spq1 = (gma ImA-1s - -+ agm—l—N—l)) (6>
gm = my(Sh), 9j = Po(i+1) = Poi), 0<j—m < N — 1.

Finally the output function is given by

h: S — {ki, ke, ... kn}
Sn — h(Sn) = kindeXOf(ﬂmN(SnLSn)’ (7)

where indexOf(g;, S,,) returns the index of g; in the tuple S,, counted from the left.

Remark: The seed impact is an important aspect to highlight, because it tells us how o is
chose. Indeed if for example we have o(j) = j+4, then g1 = po(2)—Po(1) = Ps—ps = 13—11 = 2
and go = 17 — 13 = 4. In such a case for N = 2 we obtain k; as the first output. Thus
depending on the situation, one has to define his own ¢ from the seed.

However, as the goodness of the algorithm also depends on the period, a question to answer
is the one related to an estimation of the period. This of course rely on the prime number
theorem which states the following

Theorem 3.1 (Prime Number Theorem (see [6])). The number of primes less than a given
nteger n 1s
(1+ en)ll, lim ¢, = 0. (8)

nn n—00

Where In denotes the natural logarithm.

Therefore given the maximal integer reachable by the working programming language or soft-
ware one can estimate the period of our PRNG algorithm using the prime number theorem.
Having such an estimation, extremity (max and min) behavior has to be defined to make
sure the algorithm continues, basically the need is to define the gap between the maximum
prime and 2.

Nevertheless there are infinitely many primes, so as far as the system can go in the calcu-
lation of large prime numbers as big will be the period of the algorithm. But in revenge,
the apparent concern will be the speed that could reduce the largest possible period to the
largest accessible in a short time.

4 Bertrand Teguia

https://doi.org/10.20944/preprints201905.0036.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 6 May 2019 d0i:10.20944/preprints201905.0036.v1

A PRNG based on prime numbers

Remark:

e If the twin primes conjecture is verified, then we are sure that our algorithm will always
be able to change the component choice in a state .S, since twin primes give the smallest
prime gap for high integers.

e More generally, any unstable behavior of primes can be used in this way to imitate
random. The gap variation is just an example since we cannot be sure on its increasing,
decreasing or constant behavior.

Next, we evaluate our algorithm. This may give us a probabilistic argument about primes
distribution.

4 Application and Tests

For tests, we consider the two labels case. This corresponds to Carole’s behavior in the P&C
Game for the Prime level (see [7]). We are going to generate a sequence of sequence of 0, 1
following our pseudo random algorithm and make a test on independence and uniformity as
explain in [2, chapter 3|. Indeed let n,d be two large enough integers. We generate n d—tuple
of {0,1} by our algorithm and check uniformly distribution with the y?—test.

For application we seed the generator with the s*® prime number as the minimal prime of
the initial gap, where s is taken randomly on a certain interval in the system used. For this
purpose, simple codes to generate a csv test file, can be written in python 2.7 [3] as follows

e random code:
#BTrandom2.py file
#By Bertrand Teguia
#Random code for two labels (0,1) based on prime numbers distribution
from math import *

import random

def nextprime(p):

if p > 2:
value = p
while True:

i=23

value += 2

q = int(floor(sqrt(value)))

while i <= q and value % i:
i+=2

if 1 > q:

5 Bertrand Teguia

https://doi.org/10.20944/preprints201905.0036.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 6 May 2019 d0i:10.20944/preprints201905.0036.v1

A PRNG based on prime numbers

break
return value
value = 3 if p==2 else 2
return value

def nthprime(n):
cpt=1
p=2
while cpt<n:
p=nextprime (p)
cpt+=1
return p

def BTrandom2():
global prime
global gap
prevprime = prime
prime = nextprime(prime)
prevgap = gap
gap = prime - prevprime;
if prevgap < gap:
return 0
else:
return 1

seeding
s = nthprime(random.randint (10000, 20000))
prime = nextprime(s)
gap = prime - s
e csv file creator code:
#BTrandom2_test.py file
#By Bertrand Teguia
#Random code csv generator of n d-tuple for BTrandom2

from BTrandom2 import *

import csv

6 Bertrand Teguia

https://doi.org/10.20944/preprints201905.0036.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 6 May 2019

d0i:10.20944/preprints201905.0036.v1

A PRNG based on prime numbers

d = 100
n = 100

lines = []
for i in range(n):
row = []
for j in range(d):
row.append (BTrandom2())
lines.append(row)

with open(’BTrandom2_test.csv’, ’w’) as writeFile:
writer = csv.writer(writeFile)
writer.writerows(lines)

writeFile.close()

Running the file BTrandom2_test.py in the same folder with BTrandom2.py produces a csv
file named BTrandom?2_ test.csv. We can thus generate many files as we want for experiences.

4.1 Probability variation of the prime gap sequence

Before going through the y?—test, let us first give an estimation of the probability p that
1 appears. Thus we use the law of large numbers [5], so we consider the outcomes from
our generator to be independent. As seen in our code, especially for this part we consider
n = d = 100. The law of large number tells us that an estimation of the expectation of the
distribution follow by our generator, which is the expectation of distribution followed by the
prime gap increasing behavior at any index, is the limit

>

s j=1
E= dh—r>noo d

, (9)

where z;, 1 < j < d denote the observations of the trial processes of a row in our generated
csv files. After many computations from csv files we realized that the expectation oscillates
between 0.48 and 0.57, and moreover using again the law for the estimated expectations on
each raw gives us amazingly almost exactly in all the cases the value 0.52.

Note that the second use of the law of large numbers adds the hypothesis that each row are
taken independently which is natural from the first independence hypothesis. Furthermore,
due to the experience characteristics, one trivially sees that we are in the case of a Bernoulli
picture. Therefore since the expectation of a Bernoulli experience is the winning probability
we have our estimation, that is to say that the probability that the prime gap sequence
increases at any index is given by

p=FE =052, (10)

7 Bertrand Teguia

https://doi.org/10.20944/preprints201905.0036.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 6 May 2019 d0i:10.20944/preprints201905.0036.v1

A PRNG based on prime numbers

or rigorously, in the convenient probability space with the probability P, given any three
consecutive prime numbers

Pn < Prn+1 < Pn42, T € N7

we have

P {pnt2 — Pnt1 = Dny1 — Pn} = 0.52. (11)

n+2

1-p=0.48 p=0.52

P Pat1

) ©
&

Figure 1: Prime numbers occurrence

By the closure of the value obtained with 0.5 (uniformity), from this result one might say
that the variation of the prime gap sequence is random. So we may think at this stage that
our random integer generator produces a good imitation of randomness. Note however that
talking about random for a sequence of numbers, is more for the unknowns or not computed
values of that sequence when going to infinity. Indeed there is no random to expect from
value that we already have. Though it might be a shock for us mathematicians, one should
rigorously talk this way. A picture of this result is given in Figure [T

Notice that, using the y?—test for individual variation as we have just done will lead to the
same conclusion. In the next paragraph, we give the result from the y2— test on a different
view of the prime gap sequence.

4.2 x?— test of independence

We are going to check if the row in our generated csv files are uniformly distributed over
{0,1}¢, we then choose d = 4 and n = 10000. This tests the independence to some extends
but it only tests if d consecutive calls of our generator are independent. Note however that the
code producing the csv file has to change a little bit, because we prefer to count occurrences
directly in python. The new code looks as follow

8 Bertrand Teguia

https://doi.org/10.20944/preprints201905.0036.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 6 May 2019 d0i:10.20944/preprints201905.0036.v1

A PRNG based on prime numbers

#BTrandom2_testX2.py file
#By Bertrand Teguia
#Random code csv generator for a X°2 test of BTrandom2

from BTrandom2 import *

import csv

d
n

2
20000

lines = []
for i in range(n):
row = []
for j in range(d):
row.append (BTrandom2())
lines.append(’’.join(map(str, row)))

lines = map(lambda y: y.split(),list(set(map(lambda x:\
x+" "+str(lines.count(x)), lines))))

with open(’BTrandom2_testX2.csv’, ’w’) as writeFile:
writer = csv.writer(writeFile)
writer.writerows(lines)

writeFile.close()

Running this update python code lead us to the following table |1, where E; = np;, with
pi = % denote the expectation of O; : occurrence number of the label i. o; is the observed

value. Remember that our null hypothesis is to have uniform distribution (p; = %, Vi).

9 Bertrand Teguia

https://doi.org/10.20944/preprints201905.0036.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 6 May 2019 d0i:10.20944/preprints201905.0036.v1

A PRNG based on prime numbers

Table 1: xy?—test of independence for 4 consecutive variations of the prime gap sequence

1 O; E; —(OiTE?)Z
1111 | 104 625 434,3056
0000 49 625 530,8416
0011 | 501 625 24,6016
0111 | 399 625 81,7216
1010 | 1326 625 786,2416
1101 | 818 625 59,5984
1100 | 490 625 29,16
1000 | 275 625 196
0010 | 676 625 4,1616
1001 | 859 625 87,6096
1011 | 835 625 70,56
1110 | 422 625 65,9344
0110 | 944 625 162,8176
0001 | 236 625 242,1136
0101 | 1414 625 996,0336
0100 | 652 625 1,1664
10000 | 10000 | 3772.8672 | Total ‘

As we have 16 — 1 = 15 degrees of freedom, from the y?—distribution table one sees that
we are really far away from uniformity, so we reject our null hypothesis. Thus despite the
random behavior observed previously, the prime gap sequence rather appears to not behave
randomly when you consider collection of its different variations.

Conclusion

Terence Tao concluded «Individual primes are believed to behave randomly, but the collective
behavior of the primes is believed to be quite predictable»|6]. Here we have find out an
argument to improve that statement and rather say that consecutive primes appear randomly
but taken as small groups the argument of randomness for primes is rejected. Thus our
random imitation from prime numbers is actually not a good random. Nevertheless, for its
use in the P&C Game [7], the author is right on using this algorithm. Indeed, as seen in the
previous section, a consecutive constant behavior of the prime gap sequence variation does
not happen often. That means the average displacement of a player during a game play is
less in general.

For the study of primes occurrence, we think that a good recommendation for further un-
derstanding on their behavior is to consider them on small groups or better small groups of
consecutive primes.

10 Bertrand Teguia

https://doi.org/10.20944/preprints201905.0036.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 6 May 2019 d0i:10.20944/preprints201905.0036.v1

A PRNG based on prime numbers

Furthermore, as coming from a natural phenomenon, here prime numbers appearance, our
algorithm might produce interesting study subject in term of precess.

Acknowledgments: I would like to thank AIMS-Cameroon for the facility that they give
to do research.

11 Bertrand Teguia

https://doi.org/10.20944/preprints201905.0036.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 6 May 2019 d0i:10.20944/preprints201905.0036.v1

A PRNG based on prime numbers

References

[1] David Jones. Good practice in (pseudo) random number generation for bioinformatics
applications. URL hitp://www.cs.ucl.ac.uk/staff/d.jones/GoodPracticeRNG.pdf, 2010.

[2] Tom Kennedy. Monte Carlo Methods - a special topics course. University of Arizona,
2016.

[3] Python Software Foundation. Python 2.7.0 release. 2019.
[4] OF TRUE RANDOMNESS. The importance of true randomness in cryptography.
[5] John Renze and Eric W. Weisstein. Law of large numbers.

[6] Terence Tao. Structure and randomness in the prime numbers. In An Invitation to
Mathematics, pages 1-7. Springer, 2011.

[7] Bertrand Teguia T. P&C Game. 2019.

[8] Eric W Weisstein. Twin primes. 2003.

12 Bertrand Teguia

https://doi.org/10.20944/preprints201905.0036.v1

	Introduction
	Structure of Pseudo Random Integer Generator
	First Left Minimum (flm) Function
	Definition of Our Pseudo Random Integer Generator
	Application and Tests
	Probability variation of the prime gap sequence
	2- test of independence

	Conclusion

