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A PRNG based on prime numbers

Abstract

We talk about random when it is not possible to determine a pattern on the observed out-
comes. A computer follows a sequence of fixed instructions to give any of its output, hence
the difficulty of choosing numbers randomly from algorithmic approaches. However, some
algorithms based on mathematical formulas like the Linear Congruential algorithm and the
Lagged Fibonacci generator appear to produce "true" random sequences to anyone who does
not know the secret initial input [1]. Up to now, we cannot rigorously answer the question
on the randomness of prime numbers [2, page 1] and this highlights a connection between
random number generator and the distribution of primes. From [3] and [4] one sees that it
is quite naive to expect good random reproduction with prime numbers. We are, however,
interested in the properties underlying the distribution of prime numbers, which emerge as
sufficient or insufficient arguments to conclude a proof by contradiction which tends to show
that prime numbers are not randomly distributed. To achieve this end, we use prime gap
sequence variation. The algorithm that we produce makes possible to deduce, in the case of
a binary choice, a uniform behavior in the individual consecutive occurrence of primes, and
no uniformity trait when the occurrences are taken collectively.

1 Introduction

The use of randomness is needed in almost all areas, including cryptography [5] and bioinfor-
matics [6]. The latter article gives an alert about the use of built in random implementations.
In general, we do not produce true randomness, since the approach is algorithmic; hence we
more commonly use pseudo random number generator (PRNG). PRNGs are periodic, and
larger periods give better random imitation; that is why a major consideration in the choice
of a pseudo random number generator is the size of its period, because this directly affects
the frequency that a generator can be used. Another common issue with PRNG algorithms is
the seeding or the initialization, since this is actually the construction of a sequence following
states, two sequences having the same initial state must be identical. Nevertheless a good
seeding may result from the aim of the random implementation; for example, in P&C Game
[7], the author uses the first click of the player to seed the generator.

The main core of a PRNG is the black box to test for acknowledgment of pseudo-randomness.
Among the most well-known pseudo-random number generator is the linear congruential
generator. The formula for the algorithm it uses is sn+1 ≡ (a · sn + c)[m], where ≡ ·[m]
denotes the arithmetic modulo m. There is a lot of investigations in the choice of the integers
a and c to get a good quality of that PRNG. The most popular PRNG used is the Mersenne
Twister which relies on Feedback Shift Registers by generating numbers mathematically in
terms of hardware. The procedure can be seen as follows: an even number of positions are
selected, the generator operates by performing XOR on the bits at these positions, taking
the result as the new leftmost bit, and shifting the rest of the string right by one [1].

Positive integers having only two divisors, 1 or itself. These numbers called primes apart from
belief up to now, are not well understood. And that is our concern, because randomness can
be seen as a missing of information and so the question is why do not we use our ignorance
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A PRNG based on prime numbers

to produce ignorance? This gives the importance of such a study because with enough
improvement we may say that either we have produced random or got a better understanding
of the distribution of primes. However, Lemke Oliver and Soundararajan saw that in the first
billion primes, a 1 is followed by a 1 about 18% of the time, by a 3 or a 7 each 30% of the
time, and by a 9 22% of the time. They found similar results when they started with primes
that ended in 3, 7 or 9: variation, but with repeated last digits the least common. The
bias persists but slowly decreases as numbers get larger [3] [8]. Therefore, there is not much
randomness as one imagines, and the expected results are more related to the understanding
of the distribution of prime numbers.

From Zhang’s Theorem [9], we know that there exists a bound B < 7 ·107 such that there are
infinitely many integers pairs of prime numbers p < q < p+B. Some other works that we will
not mention have been done in that direction. Our algorithm for random integer generator
uses the variation of the prime gap sequence. Given two different prime gaps gi, gj 6 B,
Zhang’s Theorem allows us to say that there are infinitely many pairs of primes p, p+ gi and
p, p+ gj. So we can say that the prime gap progress is not monotone, because gi and gj can
certainly appear in decreasing and increasing order. Although Zhang result does not prove
the twin prime conjecture [10], these works ensure altogether the consistency of an algorithm
to produce "random" behavior relying on the variation of the prime gap sequence.

In the sequel, after a brief presentation of a PRNG structure we will be giving details of
our algorithm according to the given PRNG description. That is to define what we call first
left minimum function (flm), and the update states. We end with some tests of pseudo-
randomness.

2 Structure of Pseudo Random Integer Generator

Typically, there is a set S of states, and a function f : S −→ S for state update (see [11,
chapter 3]). There is an output space O and function h : S −→ O. Usually the output space
is taken to be the interval (0, 1), but that correspond to a generator of real number. In our
case however, we consider any finite set of labels or integers for simplicity. After choosing
the seed, the sequence of random integers are generated as follows

Sn = f(Sn−1), n = 2, 3, 4, . . .

On = h(Sn) (1)
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A PRNG based on prime numbers

3 First Left Minimum (flm) Function

Let G = (g1, g2, . . . , gn) ∈ En, where E is a non empty ordered set of objects. We define the
first left minimum of G as

flmn(G) = flmn(g1, g2, . . . , gn) =



g1 if g1 < g2

g2 if g2 < g3 and g2 6 g1

g3 if g3 < g4 and g3 6 g2 6 g1

. . .

gn−1 if gn−1 < gn and gn−1 6 gn−2 6 . . . 6 g1

gn if gn 6 gn−1 6 gn−2 6 . . . 6 g1

. (2)

Indeed, it is the first left strict minimum value between two consecutive components of G
starting on the left; with the particularity that in the worst case where there is no left strict
minimum, the output is the last component.

Next, we show that, in any situation, flm gives an output.

Proof. Let E be a non empty ordered set of objects andN ∈ N. We takeG = (g1, g2, . . . , gN) ∈
EN . Let gj, 1 6 j < N be the element at the jth position in the tuple G. We assume that
g1 > g2 > . . . > gj, and thus we have to consider two cases:

• gj < gj+1, then flmN(G) = gj;

• gj > gj+1, then flmN(G) ∈ {gj+1, gj+2, . . . , gN}.

This leads us either to the output gj or to the same situation with gj+1. So it only remains
to make sure that flmN gives an output when j = N . This is satisfied, because, when j = N ,
the output is flmN(G) = gN which appears to be a situation when the components of G are
in decreasing (not necessarily strict) order from the left.

Example: Let E = N, and consider G1 = (5, 4, 3, 6, 2), G2 = (1, 3, 5, 4, 2),
G3 = (8, 7, 5, 4, 2), and G4 = (4, 4, 3, 2, 5) Then we have

flm5(G1) = 3,

flm5(G2) = 1,

flm5(G3) = 2, (3)
flm5(G4) = 2.

From the definition of an flm function, one can easily deduce the following properties.

Proposition 1. Let E be a non empty ordered set. We have

a)
flmn : En −→ E
G 7→ flmn(G).
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A PRNG based on prime numbers

b) flm2 = min.

c) Let G = (g1, g2, . . . , gn) ∈ En,

flmn(G) = min(g1, g2)δg1,min(g1,g2)δg1,g2

+ δg2,min(g1,g2)

(
min(g2, g3)δg2,min(g2,g3)δg2,g3 + δg3,min(g2,g3)

(
. . .

+ δgn−1,min(gn−2,gn−1)

(
min(gn−1, gn)

(
δgn−1,min(gn−1,gn)δgn−1,gn

+ δgn,min(gn−1,gn)

))
. . .

))
(4)

where min return the minimum value of its arguments and δgi,gj denotes the Kronecker symbol
defined as

δgi,gj =

{
1 if gi = gj

0 otherwise
.

For c), if we take G = (g1, g2, g3) we have

flm3(G) = min(g1, g2)δg1,min(g1,g2)δg1,g2+δg2,min(g1,g2) min(g2, g3)
(
δg2,min(g2,g3)δg2,g3 + δg3,min(g2,g3)

)
.

4 Definition of Our Pseudo Random Integer Generator

Instead of non-empty as before, here we need an infinite countable ordered set. And for
simplicity we consider E = N since in any case E can always be assimilated to a subset of
N by bijection. Given N > 2 integers k1, k2, . . . , kN for a random choice among them, we
consider the set of states as an N -tuple of N consecutive prime gaps. If we denote by σ a
translation of the starting point in the primes set based on the seeding, then the set of states
can be defined as

S =
{
Sn = (gn+1, gn+2, . . . , gn+N), gj = pσ(j+1) − pσ(j), pσ(j) primes, 1 6 j − n 6 N,

}
,
(5)

where n is a non negative integer.

The update state function is defined as the next ordered N -tuple of the prime gap sequence
starting at gm = flmN(Sn), n+ 1 6 m 6 n+N ; that is,

f : S −→ S

Sn = (gn+1, gn+2, . . . , gn+N) 7−→ f(Sn) = Sn+1 = (gm, gm+1, . . . , gm+N−1) , (6)
gm = flmN(Sn), gj = pσ(j+1) − pσ(j), 0 6 j −m 6 N − 1.

Finally the output function is given by

h : S −→ {k1, k2, . . . , kN}
Sn 7−→ h(Sn) = kflmpos(Sn), (7)
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where flmpos(Sn), returns the index position, counted from the left, of the flmN output
applied to the tuple Sn. In fact, flmpos can be defined as in (2), with the difference that the
output is the index of the output given by flm.

Remark: The seed impact is an important aspect to highlight, because it tells us how σ
is chosen. Indeed, if for example, we have σ(j) = j + 4, then g1 = pσ(2) − pσ(1) = p6 − p5 =
13−11 = 2 and g2 = 17−13 = 4. In such a case, for N = 2, we obtain k1 as the first output.
Thus depending on the situation, one has to define a proper σ from the seed.

However, as the goodness of the algorithm also depends on the period, a question to answer
is the one related to an estimation of the period. This of course relies on the prime number
theorem which states the following

Theorem 4.1 (Prime Number Theorem [2]). The number of primes less than a given integer
n is

(1 + εn)
n

lnn
, lim

n→∞
εn = 0. (8)

Where ln denotes the natural logarithm.

Therefore, given the maximal integer reachable by the working programming language or
software, one can estimate the period of our PRNG algorithm using the prime number the-
orem. Having such an estimation, extremity (max and min) behavior has to be defined to
make sure the algorithm continues; the need is to define the gap between the maximum prime
and 2.

Nevertheless, there are infinitely many primes, so as far as the system can go in the calculation
of large prime numbers, as large as the period of the algorithm will be. But on the other
hand, the apparent concern will be the speed that could reduce the largest possible period
to the largest accessible in a short time.

Remark:

• If the twin primes conjecture is verified, then our algorithm will always be able to
change the component choice in a state Sn, since twin primes give the smallest prime
gap for high integers.

• More generally, any unstable behavior of primes can be used in this way to try ran-
domness imitation. The gap variation is just an example, since we cannot be sure of
its increasing, decreasing or constant behavior.

Next, we evaluate our algorithm. This may give us a probabilistic argument about the
distribution of primes.
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5 Application and Tests

For tests, we consider the two-labels case. This corresponds to Carole’s behavior in the P&C
Game for the Prime level [7]. We are going to generate a sequence of sequence of {0, 1}′s
following our pseudo random integer generator algorithm and make a test on independence
and uniformity as explained in [11, chapter 3]. Let n, d be two large enough integers. We
generate n d-tuples of {0, 1} by our algorithm and check uniformly distribution with the
χ2-test.

For application, we seed the generator with the sth prime number as the minimal prime of
the initial gap, where s is taken randomly on a certain interval in the system used. For this
purpose, simple codes to generate a csv test file, can be written in python 2.7 [12] as follows

• random code:

#BTrandom2.py file
#By Bertrand Teguia
#Random code for two labels (0,1) based on prime numbers distribution

from math import *
import random

def nextprime(p):
if p > 2:

value = p
while True:

i = 3
value += 2
q = int(floor(sqrt(value)))
while i <= q and value % i:

i += 2
if i > q:

break
return value

value = 3 if p==2 else 2
return value

def nthprime(n):
cpt=1
p=2
while cpt<n:

p=nextprime(p)
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cpt+=1
return p

def BTrandom2():
global prime
global gap
prevprime = prime
prime = nextprime(prime)
prevgap = gap
gap = prime - prevprime;
if prevgap < gap:

return 0
else:

return 1

# seeding
s = nthprime(random.randint(10000, 20000))
prime = nextprime(s)
gap = prime - s

• csv file creator code:

#BTrandom2_test.py file
#By Bertrand Teguia
#Random code csv generator of n d-tuple for BTrandom2

from BTrandom2 import *

import csv

d = 100
n = 100

lines = []
for i in range(n):

row = []
for j in range(d):

row.append(BTrandom2())
lines.append(row)

with open(’BTrandom2_test.csv’, ’w’) as writeFile:
writer = csv.writer(writeFile)
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writer.writerows(lines)

writeFile.close()

Running the file BTrandom2_test.py in the same folder with BTrandom2.py produces a csv
file named BTrandom2_test.csv. We can thus generate as many files as we want.

5.1 Probability variation of the prime gap sequence

Before going through the χ2-test, let us first give an estimation of the probability p that 1
appears. Thus we use the law of large numbers [13], so we consider the outcomes from our
generator to be independent. As seen in our code, we consider n = d = 100. The law of
large number tells us that an estimation of the expectation of the distribution followed by
our generator, which is the expectation of distribution followed by the prime gap increasing
behavior at any index, is the limit

E = lim
d−→∞

∑d
j=1 xj

d
, (9)

where xj, 1 6 j 6 d denote the observations of the trial processes of a row in our generated
csv files. After computations from csv files we realized that the expectation oscillates between
0.48 and 0.57; and moreover, using again the law for the estimated expectations on each row
gives us amazingly in all the cases the value 0.52.

Note that the second use of the law of large numbers adds the hypothesis that each row is
taken independently, which is natural from the first independence hypothesis. Furthermore,
due to the experience characteristics, one trivially sees that we are in the case of a Bernoulli
scheme. Therefore, since the expectation of a Bernoulli experience is the winning probability
we have our estimation; that is the probability that the prime gap sequence increases at any
index is given by

p = E ≈ 0.52, (10)

or, rigorously, in the convenient probability space with the probability P , given any three
consecutive prime numbers

pn < pn+1 < pn+2, n ∈ N,

we have

P {pn+2 − pn+1 > pn+1 − pn} ≈ 0.52. (11)
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Figure 1: Occurrence of prime numbers

By the closure of the value obtained with 0.5 (uniformity), from this result one might say
that the variation of the prime gap sequence is "random". So we may think at this stage
that our random integer generator produces a good imitation of randomness. Note, however,
that talking about randomness for a sequence of numbers is more for the unknowns or not-
computed values of that sequence when going to infinity. Indeed, there is no randomness to
expect from value that we already have. A picture of this result is given in Figure 1.

Notice that, using the χ2-test for individual variation as we have just done will lead to the
same conclusion. In the next paragraph, we give the result from the χ2− test on a different
view of the prime gap sequence.

5.2 χ2-test of independence

To check if the rows in our generated csv files are uniformly distributed over {0, 1}d, we
choose d = 4 and n = 10000. This tests the independence to some extent, but it only tests if
d consecutive calls of our generator are independent. Note, however, that the code producing
the csv file has to change, because we prefer to count occurrences directly in python. The
new code looks as follows.

#BTrandom2_testX2.py file
#By Bertrand Teguia
#Random code csv generator for a X^2 test of BTrandom2

from BTrandom2 import *

import csv

d = 2
n = 20000

lines = []
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for i in range(n):
row = []
for j in range(d):

row.append(BTrandom2())
lines.append(’’.join(map(str, row)))

lines = map(lambda y: y.split(),list(set(map(lambda x:\
x+" "+str(lines.count(x)), lines))))

with open(’BTrandom2_testX2.csv’, ’w’) as writeFile:
writer = csv.writer(writeFile)
writer.writerows(lines)

writeFile.close()

Running this update python code lead us to the following table 1, where Ei = npi, with
pi =

1
16

denote the expectation of Oi : occurrence number of the label i. oi is the observed
value. Remember that our null hypothesis is to have uniform distribution (pi = 1

16
, ∀i).

Table 1: χ2-test of independence for four consecutive variations of the prime gap sequence

i Oi Ei
(Oi−Ei)

2

Ei

1111 104 625 434,3056
0000 49 625 530,8416
0011 501 625 24,6016
0111 399 625 81,7216
1010 1326 625 786,2416
1101 818 625 59,5984
1100 490 625 29,16
1000 275 625 196
0010 676 625 4,1616
1001 859 625 87,6096
1011 835 625 70,56
1110 422 625 65,9344
0110 944 625 162,8176
0001 236 625 242,1136
0101 1414 625 996,0336
0100 652 625 1,1664

10000 10000 3772.8672 Total

As we have 15 degrees of freedom, from the χ2-distribution table, one sees that we are far
from uniformity, so we reject our null hypothesis. Thus despite the random behavior observed
previously, the prime gap sequence appears to not behave randomly when collection of its
consecutive variations is considered.
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Conclusion

Terence Tao concluded "Individual primes are believed to behave randomly, but the collective
behavior of the primes is believed to be quite predictable" [2]. Here we have find out an
argument for sufficient progress towards improving that statement; and rather say, we can
behave that individual consecutive primes appear randomly, but taken as small groups, the
argument of randomness for primes is rejected. Thus our random imitation from prime
numbers does not satisfy all the criteria used for acknowledgment of pseudo-randomness
reproduction. This give us an understanding of the P&C Game [7], because as seen in the
previous section, a consecutive constant behavior of the prime gap sequence variation does
not happen often. That means the average displacement of a player during a game play is
less in general.

For the study of the occurrence of primes, we think that a good recommendation for further
understanding of their behavior is to consider them in small groups or better small groups
of consecutive primes.

In a further study, since the hypothesis of uniformity is not accepted for consecutive groups of
the prime gap sequence, interesting results for classification of prime numbers can be obtained
considering the irregularity of these groups. Thus, we may probably deduce mathematical
formulas hidden behind certain probabilistic arguments on primes.

Acknowledgments: I would like to thank AIMS-Cameroon for the facility that they give
to do research.
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