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Abstract: 3D city models are being extensively used in applications such as evacuation scenarios1

and energy consumption estimation. The main standard for 3D city models is the CityGML data2

model which can be encoded through the CityJSON data format. CityGML and CityJSON use3

polygonal modelling in order to represent geometries. True topological data structures have proven4

to be more computationally efficient for geometric analysis compared to polygonal modelling. In a5

previous study, we have introduced a method to topologically reconstruct CityGML models while6

maintaining the semantic information of the dataset, based solely on the combinatorial map (C-Map)7

data structure. As a result of the limitations of C-Map’s semantic representation mechanism, the8

resulting datasets could suffer either from semantic information loss or the redundant repetition9

of them. In this article, we propose a solution for a more efficient representation of both geometry,10

topology and semantics by incorporating the C-Map data structure in the CityGML data model and11

implementing a CityJSON extension to encode the C-Map data. In addition, we provide an algorithm12

for the topological reconstruction of CityJSON datasets to append them according to this extension.13

Finally, we apply our methodology to three open datasets in order to validate our approach when14

applied to real-world data. Our results show that the proposed CityJSON extension can represent all15

geometric information of a city model in a lossless way, providing additional topological information16

for the objects of the model.17

Keywords: 3D city model; Topology; Combinatorial Map; Linear Cell Complex; CityJSON; CityGML18

1. Introduction19

3D city models have been increasingly adopted in modern analysis of urban spaces, such as20

the simulation of evacuation scenarios [1] and optimisation of energy consumption for city districts21

[2,3]. Their key benefit is that they can describe complex 3D geometries of city objects, such as22

buildings, vegetation and roads; and their semantic information, such as their purpose of use and year23

of construction.24

CityGML is the most commonly used data model for the representation of 3D city models [4],25

which can be encoded in JSON through the CityJSON data format. The data model incorporates the26

Simple Feature Specification (SFS), which describes the geometric shapes by their boundaries through a27

method that is referred as “polygonal modelling”. While polygonal modelling is generally considered28

a robust representation of 2D data, it has been proven inefficient when representing 3D objects. This29

reflects to the limited number of 3D processing algorithms that can be easily applied to polygonal30

modelling [5].31

Topological data structures have been introduced in GIS as an alternative to polygonal modelling.32

Their main characteristic is that they explicitly describe the adjacency and incidence relationships33

between geometric objects. Those relationships can improve the performance of geometric processing.34

For example, Maria et al. [6] exploited the topological properties of geometries in order to improve the35

efficiency of ray tracing in architectural models . Furthermore, topological data structures have the36

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 5 May 2019                   doi:10.20944/preprints201905.0024.v1

©  2019 by the author(s). Distributed under a Creative Commons CC BY license.

Peer-reviewed version available at ISPRS Int. J. Geo-Inf. 2019, 8, 347; doi:10.3390/ijgi8080347Peer-reviewed version available at ISPRS Int. J. Geo-Inf. 2019, 8, 347; doi:10.3390/ijgi8080347

https://doi.org/10.20944/preprints201905.0024.v1
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/ijgi8080347
https://doi.org/10.3390/ijgi8080347


2 of 15

ability to scale to higher dimensions without adding unnecessary complexity [7]. Therefore, typical37

GIS operations can be described as dimension-agnostic algorithms which can be applied in an arbitrary38

number of dimensions. For example, Arroyo Ohori et al. [8] have proposed a solution for the extrusion39

of objects of any number of dimension.40

For this reason, we have investigated the use of ordered topological structures and, more41

specifically, combinatorial maps (C-Maps) as an alternative to the SFS for the representation of42

geometric information in 3D city models. C-Maps combine the powerful algebra of geometric simplicial43

complexes with the ease of construction of polygonal modelling [7]. Regarding the practical aspect,44

they are implemented in a software package as part of CGAL 1 and they are efficient with respect to45

memory usage [9]. While C-Maps originally store only topological relationships between objects, they46

can be easily enhanced with the association of coordinates to vertices, which results in a linear cell47

complex (LCC) that incorporate both geometric and topological information.48

LCCs based on C-Maps have been used before in 3D city models. Diakité et al. [10] have proposed49

a methodology on the topological reconstruction of existing buildings that are represented through50

polygonal modelling. They, then, use the topological information in order to simplify the building’s51

geometry. This approach is based on the extraction of a soup of triangles from the original geometry52

which are later stitched together according to their common edges in order to identify the topological53

relationships. During this intermediate step, the semantic information of the original model, such as54

hierarchical relationships, are lost as the soup does not retain the information of the original model.55

Diakité et al. [11] have further refined this process and applied it to BIM and GIS models, in order to56

exploit the topological information to identify specific features of buildings. Although this application57

includes the reconstruction of CityGML models, it results in a semantic-free model where the original58

city objects’ subdivision is lost.59

Previously, we have introduced a methodology for the topological reconstruction of CityGML60

models to LCCs based on C-Maps with preservation of semantics [12]. Due to the fact that this61

methodology was relying solely on the C-Maps data structure for the representation of all information62

of the 3D city model, the resulting model would suffer from either occasional loss of the semantic63

subdivision of city object, or a redundancy of information. For example, in that article we have64

topologically reconstructed the 3D city model of Agniesebuurt, a neighbourhood of Rotterdam, which65

was missing intermediate walls between adjacent building. As a consequence of the missing walls,66

multiple individual buildings where merged under the same volumes in the resulting C-Map. This67

causes the loss of semantic information of some buildings during the reconstruction as only one city68

object’s information could be attached in the resulting volume.69

In this paper we propose an improved methodology for the topological representation of CityGML70

models, in order to avoid the limitations of semantics representation in the C-Maps data structure71

and the limitations of topological representations in CityGML. In order to achieve that, we integrate72

the original CityGML data model with C-Maps in order to combine the semantic-representation73

capabilities of the first with the benefits of a topological data structure. This topologically-enhanced74

data model is implemented in CityJSON through an extension. We, also, develop an algorithm in order75

to transform existing CityJSON datasets. Finally, we apply our algorithm to several open datasets in76

order to assess the robustness of our method and evaluate the ability of the proposed data model to77

represent the peculiarities of various datasets.78

1 The Computational Geometry Algorithms Library (http://www.cgal.org)
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Figure 1. The UML diagram that describes CityGML’s top level class hierarchy of city objects.

2. Related work and background information79

2.1. The CityGML data model80

CityGML is a data model and an XML-based format that has been standardised through81

the Open Geospatial Consortium (OGC) in order to store and exchange 3D city models [4]. It82

defines an object-oriented approach for the representation of city objects, utilising techniques such as83

polymorphism in order to provide enough flexibility.84

In CityGML, a city model contains a number of city objects of different types, all of which inherit85

from the basic abstract class CityObject. Different types of objects can be represented through derived86

classes which can be: (a) composite objects, such as CityObject Group; (b) specialised abstract classes,87

such as AbstractBuilding; or (c) actual city objects, such as CityFurniture and LandUse (Figure 1). Given88

that a CityGML dataset has a tree structure, the objects can be either listed as immediate child nodes in89

the model or they can be represented in a deeper layout by grouping objects using the CityObjectGroup90

class.91

CityGML is a schema that extends the geographic markup language (GML) [4], therefore it follows92

GML’s geometric representation which is based on the simple feature specification (SFS) [13]. Every93

CityObject contains one or more Geometry objects according to the SFS representation. They Geometry94

object can be extended through composition, therefore a geometry can be a primitive or a composite95

object of multiple geometries.96

According to the CityGML data model, city object semantics are represented through two97

mechanisms: object types and attributes. The type of a CityObject is derived from the class used in order98

to represent it. Then, additional information for every CityObject can be stored in the model through99

attributes which are described by the CityGML specification. A user can enhance the data model with100

additional attributes related to their domain requirements, either by using the GenericAttribute class or101

by developing an application domain extension (ADE).102

2.2. The CityJSON data format103

CityJSON is a data format which uses the JavaScript Object Notation (JSON) encoding in order to104

implement a subset of the CityGML data model. Its goal is to serve as an alternative to the CityGML105
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data format, which is verbose and complex due to its GML (and, thus, XML) nature. For example,106

there are at least 26 different ways to encode a simple four-points’ square in GML 2.107

CityJSON uses a simpler structure that allows for less ambiguity and verboseness. First of all, it108

uses the JSON encoding, which is easier to parse and write. This is due to its representation, which can109

be mapped directly to the data structures that are supported by most modern programming languages:110

key-value pairs (known as maps or dictionaries) and arrays. Second, CityJSON promotes a “flat” list111

of city objects, while hierarchy can be implied through internal attributes (through the parents and112

children attributes).113

Similar to ADEs for the CityGML data format, CityJSON also provides an extension mechanism114

for defining domain-specific city objects and attributes. Through CityJSON Extensions, one can115

introduce new type of city objects or append existing ones with attributes related to the subject of the116

extension.117

2.3. Combinatorial Maps118

A combinatorial map (C-Map) is a data structure that represents a topological partition of119

n-dimensional space[14]. The partitions of this space are called cells and they are of any dimension in120

this space. For example, in a 3-dimensional space a C-Map denotes 0-cells which are vertexes, 1-cells121

which are edges, 2-cells which are facets and 3-cells which are volumes.122

C-Map represent the space through dart elements. Darts are similar to half-edges for an arbitrary123

amount of dimensions: every part of an edge that belongs to every possible combination of i-cells124

(0 < i ≤ n) is a dart. Darts are connected through βi links (where 0 ≤ i ≤ n) so that every dart contains125

one βi∀i ∈ {1, . . . , n}. A βi is a link to the next dart in the i-cell. For example, in a 4D C-Map a β3126

of the dart d links to the dart that belongs to the same edge (1-cell) of the same facet (2-cell) of the127

same polychoron (4-cell) as d1, but is part of the adjacent volume (3-cell). A null dart (denoted as ∅) is128

introduced to the C-Map in order to represent darts that do not have adjacent cells. A dart with no129

adjacent i-cell has βi = ∅ and is called i-free.130

In order to modify C-Maps we define the sewing operation, according to which pairs of131

corresponding darts of two i-cells are linked in one dimension. A i-sew operation associates together132

two i-cells along their common incident (i− 1)-cell. This means that the βi’s of every pair of darts133

along the two (i− 1)-cells has to be linked.134

Cells in a C-Map can be associated to information through a mechanism of attributes. A dart135

holds a set of attributes, one for every dimension of the C-Map which is called the i-attribute of the136

dart. For example, in order to set a property of a facet (e.g. colour), one can set this colour value to the137

2-attribute of every dart of this facet (2-cell).138

By associating the vertexes of the C-Map with point of a n-dimensional geometric space and139

assuming that all geometries of the C-Map are linear we can represent a linear cell complex (LCC).140

Then, this LCC contains both geometric and topological information for the space.141

3. Topological representation of 3D city models142

In order to represent the topological information of city objects in a CityJSON file we followed143

two steps: first, we introduced the LCC entities into the CityGML data model; and second, we144

developed a CityJSON extension that provides the necessary encoding instruction in order to store145

those information in a CityJSON file. We have developed the extension definition according to the146

respective CityJSON specification3. The CityJSON extension definition is available as open source in147

GitHub4.148

2 https://erouault.blogspot.com/2014/04/gml-madness.html
3 http://www.cityjson.org/en/0.9/extensions/
4 https://github.com/tudelft3d/cityjson-lcc-extension
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Figure 2. The UML diagram that describes the Linear Cell Complex implementation of CGAL

3.1. Data model149

First, it must be possible to store darts in the city model. Second, every dart has to be linked150

with: (a) the point that defines the location of the dart’s 0-cell, (b) the city object that is associated to151

the dart’s 2-cell, (c) the semantic information associated with the dart’s 2-cell, and (d) its βi darts. It152

must be noted that β0 is not essential for the storage of the map, as it can be implied by the β1’s of the153

structure. Therefore, for a three-dimensional LCC β1, β2, and β3 are only required to be stored.154

We decided to associate surfaces (2-cells) with the city objects’ semantic information, which might155

seem a counter-intuitive solution. Initially, volumes (3-cells) might seem as a more suitable match for156

association with city objects. After all, a city object is normally composed of volumes. Unfortunately,157

as we proved in Vitalis et al. [12], that is not always the case. In some city models there can be multiple158

city objects that topologically belong to one volume.159

While in Vitalis et al. [12] we have proposed a way of forcing 3-cells to be divided into multiple160

volumes, when their 2-cells belong to different city objects, the final result is not correct from a161

topological perspective. The key benefit of using a LCC data structure is to store the topological162

relationships of a city model’s geometry. Consequently, such a solution would largely undermine163

the benefits of using a topological representation in the first place. Therefore, we have decided to164

associate city objects’ semantic information with 2-cells in order to be able to maintain the binding of165

information in cases where one volume is associated with multiple city objects. This way, we ensure166

topological consistency and retain a complete association of semantics with the LCC.167

We have designed a data model that represents the LCC information through the Dart class168

(Figure 3). The class contains the necessary information as attributes: (a) the vertexPoint attribute169

points to the Vertex object that stores the coordinates of the 0-cell; (b) the parentCityObject attribute170

points to the CityObject associated with the dart’s 2-cell; (c) the semanticSurface attribute links171

the dart’s 2-cell with the semantic information of the incident surface; and (d) the beta attribute is a172

three-element array of Dart objects, representing β1, β2 and β3.173

While the Dart class and its attributes can represent a complete linear cell complex, they only174

preserve one-way links from the C-Map to the city model. Nevertheless, it is equally important to175

be able to identify the 3-cells that compose a city object without having to iterate through the whole176

linear cell complex. This is achieved by introducing the lccVolumes attributes in the CityObject class,177

which contains links to the 3-cells related to the city object. As it is not possible to directly link to the178

3-cells, this list contains one of the volume’s darts.179
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Figure 3. The UML diagram that describes the proposed Linear Cell Complex integration with the
CityGML data model.

3.2. CityJSON Extension180

We have, also, developed a CityJSON extension in order to implement the data model as described181

in section 3.1. This implementation follows the original principles of the CityJSON data format; aims182

to be easy-to-use and compact. For this reason, we have defined two optimisations in the specification183

of the extension.184

First, we reuse the "vertices" list as described in the CityJSON specification. This fits perfectly185

with the requirement of associating points to the 0-cells of the C-Map in order to achieve the linear186

geometric embedding. Therefore, it is sufficient for the completeness of the final dataset to store187

the dart information (their betas and parent object associations) and link them to the existing list of188

"vertices", instead of introducing a new list.189

Second, although in the data model a dart is considered as an object with four attributes ("betas",190

"parentCityObject", "semanticSurface" and "vertex"), such a structure would produce a verbose191

JSON encoding. That is due to the fact that for every dart in the dataset, the same attribute names192

would have to be repeated as keywords. Given the large amount of darts required in order to represent193

complicated cell complexes like 3D city models, this would result in a burst of the resulting file’s size.194

Instead, we decided to store the four attributes as lists with the same length, equal to the number195

of darts. This way we avoid the repetition of keywords as they only appear once in the file, thus196

minimizing its size.197

3.2.1. Darts representation198

In order to store the darts of the LCC we added the new "+darts" root property in the main199

"CityJSON" object. It contains four lists containing the values of the respective attributes of the LCCs200

darts: "betas", "parentCityObjects", "semanticSurfaces" and "vertices". The "+darts" object201

has also the "count" property which states the number of darts in the LCC. These lists are indexed, so202

the n-th element of every list corresponds to the respective attribute of the n-th dart of the LCC.5203

According to our implementation, a CityJSON file containing a LCC would contain the following204

properties:205

1 {206

2 "type": "CityJSON",207

3 "version ": "0.9" ,208

5 The lists are one-based numbered, therefore the first element of the list is denoted by the number ”1”
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4 "CityObjects ": {},209

5 "vertices ": [],210

6 "+darts ": {211

7 "count": 0,212

8 "betas": [],213

9 "parentCityObjects ": [],214

10 "semanticSurfaces ": [],215

11 "vertices ": []216

12 }217

13 "appearance ": {},218

14 }219

The "betas" property contains the βi’s of the darts. Every element of the list is an array of three220

integers which refer to the β1, β2 and β3 of the current dart, respectively. In case this dart is i-free, βi is221

set to -1. Otherwise, the bi refers to the respective dart’s index in the list.222

The "parentCityObjects" and "vertices" properties are single lists. The first is composed of223

the IDs associated with the 2-cells of each dart; and the second is composed of the index of the vertex,224

from the CityJSON’s "vertices" list, associated with each dart’s 0-cell.225

The "semanticSurfaces" property associates the 2-cell of a dart with a semantic surface of the226

city model. Every item of this list is an array of two integer; they refer to the indexes of the geometry227

and the semantic surface, respectively, under the parent city object. If the 2-cell of a dart does not have228

a semantic surface associated, then the value of the second value is set to -1.229

The following is an example of a "darts" object that would represent a LCC with one triangle:230

1 "+darts ": {231

2 "betas": [232

3 [2, -1, -1],233

4 [3, -1, -1],234

5 [1, -1, -1]235

6 ],236

7 "parentCityObjects ": [237

8 "id -1",238

9 "id -1",239

10 "id -1"240

11 ],241

12 "semanticSurfaces ": [242

13 [0, 0],243

14 [0, 0],244

15 [0, 0]245

16 ],246

17 "vertices ": [247

18 0,248

19 1,249

20 2250

21 ]251

22 }252

3.2.2. CityObject to LCC association253

In order to be able to efficiently identify the 3-cells that compose a city object we added the254

"+lccVolumes" property in the "CityObject". The "+lccVolumes" property is a list of darts that255

belong to the respective 3-cells. It has to be noted that not all darts related to a city objects are stored in256

this list; instead, one dart per 3-cell is used as an index. Therefore, the number of elements in the list257

should be equal to the number of volumes associated with the city object.258

The following is an example of a city object which is associated to three volumes of the LCC.259

1 "CityObjects ": {260

2 "id -1": {261

3 "type": "Building",262

4 "attributes ": {...},263

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 5 May 2019                   doi:10.20944/preprints201905.0024.v1

Peer-reviewed version available at ISPRS Int. J. Geo-Inf. 2019, 8, 347; doi:10.3390/ijgi8080347Peer-reviewed version available at ISPRS Int. J. Geo-Inf. 2019, 8, 347; doi:10.3390/ijgi8080347

https://doi.org/10.20944/preprints201905.0024.v1
https://doi.org/10.3390/ijgi8080347
https://doi.org/10.3390/ijgi8080347


8 of 15

5 "geometry ": [...] ,264

6 "+ lccVolumes ": [0, 5, 28]265

7 }266

8 }267

4. Topological reconstruction of 3D city models268

4.1. Algorithm269

In order to validate our proposed extension, we have developed an algorithm that parses a270

CityJSON model and appends the LCC information to the model. In Vitalis et al. [12] we have proposed271

two variations of an algorithm that topologically reconstructs a CityGML model. For the purposes of272

the research presented in this article, we worked on the base of the “geometric-oriented” algorithm.273

We chose this variation because it results in a true topological representation of the model. In addition,274

our proposed extension does not lose semantic information as it associates 2-cells of the resulting LCC275

with the city model. Therefore, even when multiple city objects are represented under the same 3-cell,276

the semantic association is retained.277

We introduced a number of modifications to the original algorithm in order to adjust it towards278

the requirements of our research. First, the algorithm had to conform with a flat representation of city279

objects and geometries, as described by the CityJSON specification. Therefore, the recursive call in280

algorithm 2 have been removed. Second, we only have to define the essential information that ensure281

a complete association between city objects and cells, as described in 3.2. The resulting methodology is282

described by algorithms 1, 2, 3, 4, and 5.283

Initally, the reconstruction is conducted by the main body (algorithm 1). This function iterates284

through the city objects listed in the city model and calls ReadCityObject for every city object.285

Function ReadCityObject (algorithm 2) iterates through the geometries of the city object. For286

every geometry, function ReadGeometry is called and, then, the created darts’ 2-attributes are associated287

to the object’s id and geometry’s id.288

The ReadGeometry function (algorithm 3) parses the geometry by getting all polygons that bound289

the object. For every polygon, the algorithm iterates through the edge and created a dart that represents290

this edge, by calling GetEdge. The newly created dart that represents the edge is, then, associated with291

the semantic surface of the polygon by assigning the respective 2-attribute value. Finally, the algorithm292

accesses the items of index I3 in order to find adjacent 3-free 2-cells, in which case the two 2-cells must293

be 3-sewed.294

Function GetEdge (algorithm 4) creates a dart that represents an edge, given the two end points295

of the edge. It gets one dart per point by calling the GetVertex function and then conducts a 1-sew296

operation between them. Finally, it iterates through index I2 in order to find adjacent 2-free 1-cells so297

that they can be 2-sewed.298

Finally, function GetVertex (algorithm 5) is responsible for creating darts that represent a vertex299

in the LCC. The function iterates through the LCC in order to find existing 1-free darts with the same300

coordinates as the point provided; if such a dart is found, it is returned. If no dart is found, the301

algorithm creates a new dart, associates the coordinates to it’s 0-attribute, and returns it.302

4.2. Implementation303

We have implemented the proposed algorithms in computer software using the C++ programming304

language. We used the CGAL LCC package6 for the data structure that keeps the topological305

information. JSON for Modern C++7 by Niels Lohmann was used for CityJSON.306

6 https://doc.cgal.org/latest/Linear_cell_complex/index.html
7 https://github.com/nlohmann/json
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Algorithm 1: Main body of reconstruction
Input: city model cm to be processed
Output: linear cell complex lcc that contains the geometry and semantics of the provided city

model

1 R← Get all root objects of cm;
2 I2 ← An empty index of darts;
3 I3 ← An empty index of darts;
4 lcc← ∅;
5 foreach obj ∈ R do
6 ReadCityObject(lcc, I2, I3, obj);

7 return lcc

Algorithm 2: ReadCityObject
Input: linear cell complex lcc where the geometry of the city object will be added,

index I2 of 2-free darts in lcc,
index I3 of 3-free darts in lcc,
city object obj to be processed

Result: Updates the lcc and I variables according to the provided city object

1 G ← Get all geometries of obj;
2 gid ← 0;
3 foreach g ∈ G do
4 D ← ReadGeometry(lcc, I2, I3, g);
5 foreach d ∈ D do
6 2-attr-object(d)← id(obj);
7 2-attr-geometry(d)← gid;

8 gid ← gid + 1;

Algorithm 3: ReadGeometry
Input: linear cell complex lcc where the new 2-cell will be created,

index I2 of 2-free darts in lcc,
index I3 of 3-free darts in lcc,
geometry g that a set of polygons

Result: a new 2-cell is created in lcc and I2 and I3 are updated accordingly
Output: darts D that were used for the creation of the 2-cell

1 D ← ∅;
2 P← Get all polygons of g;
3 foreach poly ∈ P do
4 foreach vcur ∈ poly except the last do
5 vnext ← Get next vertex of poly;
6 dnew = GetEdge(vcur, vnext, I2);

7 2-attr-semantic-surface(dnew)← Semantic surface id of poly;

8 push(D, dnew);

9 foreach d ∈ D do
10 if ∃dop ∈ I3 : reverse key of d = key of dop then
11 Sew(d, dop, 3);
12 Remove dop from I3;

13 else
14 Add d to I3;

15 return D;
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Algorithm 4: GetEdge
Input: linear cell complex lcc where the new edge belongs

index I2 of 2-free darts in the lcc
vertex v1 that will be the starting point of the edge
vertex v2 that will be the ending point of the edge

Output: dart dnew that describes the edge in lcc

1 dnew ← GetVertex(v1, 1);
2 dnext ← GetVertex(v2, 0);
3 Sew(dnew, dnext, 1);
4 if ∃dop ∈ I2 : 0-attr(dop) = v2 and 0-attr(β1(dop) = v1) then
5 Sew(dnew, dop, 2);
6 Remove dop from I2;

7 else
8 Add dnew to I2;

9 return dnew;

Algorithm 5: GetVertex
Input: linear cell complex lcc where the output dart belongs

vertex v to set of the output dart
degree of freedom i that the output dart must have

Output: dart d that belongs to lcc, have the vertex v and is i-free

1 D ← Get all darts of lcc;
2 foreach d ∈ D do
3 if 0-attr(d) = v ∧ βi(d) = ∅ then
4 return d;

5 d← Create new dart of lcc;
6 0-attr(d)← v;
7 return d;
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The tool created is a command-line application that is available under the MIT license in an public307

repository8. It creates an executable file that can be provided with an existing CityJSON file and create308

a LCC that represents its geometry. The resulting LCC can be saved either as a CGAL C-Map file309

(.3map) or as a new CityJSON.310

5. Validation of methodology311

In order to verify the completeness of our proposed methodology we have applied it to three312

open datasets and visualised their topological and semantic information.313

5.1. Datasets314

We used the software described in 4.2 in order to reconstruct three existing open dataset available315

as CityJSON files:316

• Den Haag dataset of buildings and terrain9,317

• Rotterdam’s Delfshaven dataset of buildings10, and318

• A dataset representing a landscape around a railway, originally introduced to demonstrate a319

plethora of CityGML 2.0 city object types.320

5.1.1. Den Haag321

This is a dataset of buildings and the terrain provided by the municipality of the Hague. The322

model was created in 2010 and is based on the aerial photos acquired and the registration of buildings323

(BAG11) of that year. The dataset concerns around 112.500 buildings of the municipality of the Hague324

and the neighbouring municipalities, divided in 152 tiles.325

We tested our methodology against the first tile of the dataset, which is available as example326

dataset for CityJSON12. The file contains 2498 city objects, of which one is a TINRelief and the rest are327

Building objects. It contains 1991 LOD2 geometries of MultiSurface and CompositeSurface type,328

with semantic surfaces RoofSurface, WallSurface and GroundSurface present.329

5.1.2. Delfshaven330

This is the first version of Rotterdam’s 3D city model which was released as open data in 2010. It331

was created based on the basic topolographical map of the Dutch Kadaster (BGT13) and LiDAR data332

for the extrusion of the buildings. It is divided in 92 files separated according to the municipalities333

neighbourhood administration boundaries.334

In the research described in this article we have worked with the CityJSON file containing the335

Delfshaven neighbourhood. The file contains 853 building objects of LOD2 and a respective number336

of MultiSurface geometries with three semantic surfaces present: RoofSurface, WallSurface and337

GroundSurface.338

In this dataset the walls between adjacent buildings are missing. This causes multiple buildings339

to merge under one volume, topologically, instead of being individual volumes one next to the other.340

5.1.3. Railway demo341

This datasets is a procedurally produced 3D city model with the intention to demonstrate most342

of CityGML 2.0 city object types. It is available in CityJSON format and contains 121 city objects of343

8 https://github.com/tudelft3d/cityjson-lcc-reconstructor
9 https://data.overheid.nl/dataset/48265-3d-lod2-stadsmodel-2010-den-haag-citygml
10 http://rotterdamopendata.nl/dataset/rotterdam-3d-bestanden
11 https://zakelijk.kadaster.nl/bag
12 http://www.cityjson.org/en/0.9/datasets/
13 https://zakelijk.kadaster.nl/bgt
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fourteen different types. It, also, contains 105 MultiSurface and CompositeSurface geometries with344

semantic surfaces.345

5.2. LCC Viewer346

We have built a viewer to evaluate the topologically reconstructed CityJSON files14. Our viewer’s347

source code is based on CGAL’s demo 3D viewer of the LCC data structure. We added two features348

that we needed for our experiments: a) the ability to load CityJSON files with a LCC; and b) an option349

to render surfaces, thus objects, in three different ways: per volume, per semantic surface type and per350

city object id.351

5.3. Reconstruction and evaluation of datasets352

Using our software (section 4.2) we have topologically reconstructed the three datasets and353

created three CityJSON files containing the LCC according to the proposed extension (section 3.2). The354

characteristics of the resulting datasets is shown in table 1.355

Dataset Filesize (MB) Number of
Original Final City objects Geometries Darts 0-cells 1-cells 2-cells 3-cells

Den Haag 3,00 8,56 2498 1991 84795 24835 42658 21804 1991
Delfshaven 2,60 7,08 853 853 68500 26782 42644 15484 1192
Railway demo 4,31 18,92 121 105 243491 76821 135514 65196 5789

Table 1. Statistics of the datasets that were reconstructed from our software

The resulting datasets have significantly grown in size after the reconstruction. We identified356

that the main factor of growth is the number of darts, which seemed to contribute consistently on the357

added space of the resulting file. On average, the three datasets required about 65 bytes per dart.358

In order to verify the complete representation of semantics and cells association we inspected359

the final datasets in our viewer (section 5.2). Every dataset was visualised with three different facet360

colouring methods: per individual volume, per semantic surface type and per city object id (figure 4).361

The per-volume facet formatting highlights the topological characteristics of the dataset. Using the362

per-city-object facet formatting we verified that the association between the semantics of the dataset363

and the cells of the LCC are retained and complete. Finally, using the per-semantic-surface formatting364

we verified that association between surfaces and its semantic information in the respective geometry365

of the original model were also maintained.366

The inspection proved that the proposed CityJSON extension is complete enough to provide the367

association between semantics and cells. The viewer successfully highlighted the datasets according to368

both topology (volumes) and semantics (city object ids and semantic surfaces).369

During the inspection of the statistics and the visualisation we identified a degenerate case. We370

would have expected the Delfshaven dataset to have less volumes (3-cells) than city objects, given371

that multiple buildings where merged during the reconstruction. Nevertheless, that did not occur as,372

according to table 1, the number of 3-cells was greater than the number of city objects. After further373

investigation of the model, we identified two reasons for this: first, a small number of the 3-cells was374

composed by single facets which were topologically invalid with their surroundings, therefore they375

weren’t merged to the same volume as the rest of the surfaces of those objects; second, a great number376

of 3-cells was “noise” in the LCC, as they were single edges without surface or volume (figure 5). We377

verified that those edges were present in the initial model as zero-area surfaces and they were retained378

in the resulting LCC.379

14 https://github.com/liberostelios/lcc-viewer
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(a) Every facets (2-cells) is coloured according to the city object in the CityJSON structure. This figure proves that
buildings that are merged in the same volume (3-cell) maintain their association with the original city objects.

(b) All facets (2-cells) that are incident to
the same volume (3-cell) have the same
colour. This figure highlights the topological
characteristics of the dataset and shows that
multiple semantically individual buildings have
been merged, topologically, under the same
volume.

(c) Every facet (2-cell) is being coloured according
to the semantic surface related to it: red highlights
roof surfaces and white highlight walls. This figure
proves that the the resulting dataset maintains the
association between facets (2-cells) and semantic
surfaces in the CityJSON structure.

Figure 4. The Delfshaven dataset visualised in the LCC viewer according to three different colour
formatting options
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Figure 5. Topologically invalid surfaces and “noisy” single-edged volumes were identified in the
Delfshaven LCC when the buildings of the area where hidden.

6. Conclusions380

In this article we propose a topological representation for 3D city models by incorporating a LCC381

based on the C-Map data structure in the CityGML data model. We materialized this solution by382

developing an extension for CityJSON and the respective algorithms that can compute the topological383

links based on the geometry of an existing dataset. Furthermore, we implemented this solution384

in a computer software and applied it to three open CityJSON datasets in order to evaluate the385

completeness of the proposed solution.386

Our results show that it is possible to represent any CityGML dataset based on the C-Map data387

structure without missing semantic information from the original dataset. In addition, the proposed388

two-way linking mechanism between the entities of the data model and the LCC, provides access389

to the efficient resulting 3D city model based on either a semantic-oriented traversal—by iterating390

through every city object of the model—or a geometric-oriented traversal—by visiting all darts of the391

LCC—.392

We believe that our solution can provide useful information for the geometrical processing of 3D393

city models. For example, it can assist on the repair of invalid geometries, such as non-watertight solid,394

based on the existence of 2-free darts in the LCC. In addition, our findings regarding “noisy” 3-cells395

in the Delfshaven dataset (section 5.3) proves that LCC statistics can provide useful insights for the396

identification of invalid or erroneous data. In the future, we indent to utilise this CityJSON extension397

in order to conduct analysis on the topological matching of existing multi-LoD datasets. We are, also,398

planning to use the proposed data structure in order to represent those datasets in four dimensions.399
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C-Map combinatorial map
LCC linear cell complex
GML geography markup language
SFS simple feature specification
BIM building information modelling
GIS geogrphic information system
JSON JavaScript Object Notation
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