

1 *Type of the Paper: Research Article*

2

3 **Phytostabilization of Zn and Cd in Mine Soil Using Corn in Combination with** 4 **Manure-Based Biochar and Compost**

5

6 **G.C. Sigua^{1*}, J.M. Novak¹, D.W. Watts¹, J.A. Ippolito², T.F. Ducey¹, M.G. Johnson³, and K.A. Spokas⁴**

7 *¹United States Department of Agriculture, Agriculture Research Service, Coastal Plains Soil, Water, and*
8 *Plant Research Center, Florence, South Carolina, 29501 USA*

9 *²Department of Soil and Crop Sciences, C006 Plant Sciences Building, Colorado State University, Fort*
10 *Collins, CO 80523-1170 USA*

11 *³United States Environmental Protection Agency, National Health and Environmental Effects Research*
12 *Laboratory, Western Ecology Division, 200 Southwest 35th Street, Corvallis, Oregon, 97333 USA*

13 *⁴United States Department of Agriculture, Agriculture Research Service, St. Paul, MN, USA*

14 *Corresponding Author: Gilbert C. Sigua; Work phone: 843-669-5203; email: gilbert.sigua@ars.usda.gov
15 ORCID: 0000-0001-5187-1883

16

17 **ABSTRACT.** Mining activities could produce a large volume of spoils, waste rocks, and tailings, which are
18 usually deposited at the surface and become sources of metal pollution. Phytostabilization of the mine spoils
19 could limit the spread of these heavy metals. Phytostabilization can be enhanced by using soil amendments
20 like manure-based biochar capable of immobilizing metal(lloid)s when combined with plant species that are
21 tolerant of high levels of contaminants while simultaneously improving properties of mine soils. However, the
22 use of manure-based biochar and other organic amendments for mine spoil remediation are still unclear. In
23 this greenhouse study, we evaluated the interactive effect of biochar application and compost on shoots
24 biomass yield (SBY), roots biomass yield (RBY), uptake, and bioconcentration factor (BCF) of Zn and Cd in
25 corn (*Zea mays* L.) grown in mine soil. Biochar sources (BS) consisted of beef cattle manure (BCM); poultry
26 litter (PL); and lodge pole pine (LPP) were applied at 0, 2.5, and 5.0% (w/w) in combination with different
27 rates (0, 2.5, and 5.0%, w/w) of cattle manure compost (CMC), respectively. Shoots and roots uptake of Cd
28 and Zn were significantly affected by BS, CMC, and the interaction of BS and CMC. Corn plants that
29 received 2.5% PL and 2.5% BCM had the greatest Cd and Zn shoot uptake, respectively. Corn plants with 5%
30 BCM had the greatest Cd and Zn root uptake. When averaged across BS, the greatest BCF for Cd in the shoot
31 of 92.3 was from the application BCM and the least BCF was from the application of PL (72.8). Our results
32 suggest that incorporation of biochar enhanced phytostabilization of Cd and Zn with concentrations of water-
33 soluble Cd and Zn lowest in soils amended with both manure-based biochars while improving biomass
34 productivity of corn. Overall, phytostabilization technique and biochar application have the potential to be
35 combined in the remediation of heavy metals polluted soils.

36

37 **Keywords:** biochar, phytoextraction, corn, uptake, mine soils, heavy metals, root biomass, shoot biomass

38

39 **1. Introduction**

40 Mining activities usually produces a large volume of spoils, waste rocks, and tailings, which are
41 usually deposited at the soil surface. If the spoils contain heavy metals that are soluble, there is a potential of
42 heavy metal pollution contamination and off-site movement. Mined areas near Webb City in Jasper County,
43 Missouri, contained mine waste piles that were removed, but still provide a source of heavy metal
44 contamination, particularly Zn and Cd in the underlying soil. Mining activities can lead to extensive

45 environmental pollution of terrestrial ecosystem due to deposition of heavy-metal containing waste materials,
46 tailings, and lagoon wastes [1,2,3].

47 Metal (loid) contaminants such as Cd and Zn are significant issues, not only for the environment, but
48 especially for human health [4,5,6]. These contaminated areas present a health risk and are recognized as areas
49 that need to be remediated to allow for crop phytostabilization to occur [1]. Often, contaminated sites are not
50 conducive for plant growth due to metal toxicity, lack of soil nutrients, low pH values, poor microbial activity,
51 and unsuitable physical soil properties. Both physical and chemical techniques have been considered in mine
52 spoil remediation, but these methods have flaws, are expensive, and can be disruptive to soils. Remediation of
53 these contaminated and hazardous soils by conventional practices using excavation and landfilling is arguably
54 unfeasible on large scales because these techniques are cost-prohibitive and environmentally disruptive [7,8].
55 Phytostabilization techniques that involve the establishment of plant cover on the surface of contaminated
56 sites could serve as an efficient alternative remediation approaches as they provide low-cost and
57 environmentally friendly options [7,9]. For this reason, remediation of contaminated sites using
58 phytostabilization techniques require the amendment to improve soil-plant relationships thereby stimulating
59 plant growth.

60 Remediation of mine spoil can be a complex process due to several chemical and physical factors that
61 can limit plant growth [10]. Bolan et al. [11] summarized the different factors affecting phytostabilization. For
62 example, soil, plant, contaminants, and environmental factors determine the successful outcome of
63 phytostabilization technology in relation to both the remediation and revegetation of contaminated sites. Mine
64 spoils can have unfavorable soil chemical characteristics, e.g., very low pH, phytotoxic metals [12,13],
65 physical limitations (e.g., high bulk density, low soil moisture retention, poor aggregation [14]; and unsuitable
66 microbial habitat conditions, e.g., low soil organic matter and poor nutrient turnover [15]. These aspects can
67 severely limit plant growth. As such, reclamation plans usually involve applying soil amendments (i.e.,
68 composts, lime) to neutralize their low pH, and to raise organic matter levels that favors organic binding of
69 metals, along with enhanced microbial enzymatic activity for nutrient cycling [16].

70 Phytostabilization can be enhanced by using soil amendments that immobilize metal(loid)s when
71 combined with plant species that are tolerant of high levels of contaminants while simultaneously improving
72 the physical, chemical, and biological properties of mine soils. Some previously used amendments to improve
73 soil conditions include biosolids, lime, green waste, or biochars. Among these amendment types, the use of
74 biochar has recently been investigated for *in situ* remediation of contaminated lands in association with plants
75 [10,17,18,19]. The incorporation of organic amendments improves the quality of mine soils and makes it
76 possible for vegetation to be established [20,21]. Recent studies have highlighted that biochars are effective
77 soil amendments in that they improve soil conditions to raise the agronomic values of soils [22,23,24,25].

78 Numerous studies had shown that adding organic amendments (e.g., biochars, sewage sludge,
79 manures) to soil promotes phytoextraction process [26,27], but only few studies have evaluated the combined
80 effect of organic amendments and phytostabilization with corn in Cd and Zn contaminated mine soils. There is
81 a lack of agreement over the influence of organic amendments such as biochars on metal immobilization in
82 soil. Moreover, application of biochars to contaminated soil systems has not been systematically investigated
83 to any great extent. Biochar may be a tool for mine spoil remediation; however, its mechanisms for achieving
84 this goal are still not well understood. Therefore, we evaluated the interactive effect of manure-based biochar
85 application and compost on shoots and roots biomass production, uptake, and bioconcentration factor (BCF)
86 of Zn and Cd in corn grown in mine soil.

88 **2. Materials and methods**89 *2.1 Site description, soil characterization, and soil preparation*

90 A field for sampling soil was selected near Webb City in Jasper County, MO (latitude 37.13°,
91 longitude 94.45°). This location is a part of the Oronogo-Duenweg mining area of Southwest MO. Mining of
92 lead (Pb) and zinc (Zn) ore has occurred across the country with leftover milling waste discarded in chat piles.
93 The chat piles contain residual Pb and Zn concentrations that in some locations moved into the underlying
94 soil.

95 Prior to mining disturbance, soil in this field was mapped as a Rueter series, which is classified using
96 USDA Taxonomic terminology as a loamy-skeletal, siliceous, active, mesic Typic Paleudalf. Examination of
97 the Reuter soil profile reveals that it has extremely gravelly silt loam textured soil horizons that formed in
98 colluvium over residuum derived from limestone (Soil Survey of Jasper County, MO, 2002).

99 For our purposes, a backhoe was used to collect a few hundred kg of C horizon material down from
100 60- to 90-cm deep. The soil along with coarse fragments was placed in plastic-lined metal drums and
101 transported to the ARS-Florence, SC location. The C horizon materials was removed from the drums and
102 aired-dried. Because of the presence of large cobbles, the soil was screened using a 12.7-cm diameter sieve to
103 collect soil material more appropriate for use in a potted greenhouse experiment. Sieving the soil revealed that
104 it contained approximately 30% (w/w) coarse fragments that were > 12.7-cm in diameter. Soil that passed
105 through the sieve was stored in the plastic line drums for characterization and used in our greenhouse
106 experiment.

107 The sieve C horizon materials (< 12.7-cm diameter) was characterized for its pH (4.40) using a 1:2
108 (w/w) soil:deionized water ratio. Additionally, bioavailable metal and total metal concentrations were
109 extracted using multiple extractants and acid digestion, respectively. Both deionized water and 0.01M CaCl_2
110 metal concentrations were determined in triplicate by extracting 30g soil with 60 mL of liquid extractant,
111 shaken for 30 m, and filtered using a nylon 0.45 μm filter syringe. Extraction with diethylenetriamine
112 pentaacetic acid (DTPA) was conducted in triplicate using 10g of soil with 20 mL of DTPA after shaking for
113 2 h, and filtration using 0.45 μm filter syringe. Total metal concentrations were determined in triplicate by
114 digestion of 10 g soil in 100 mL of 4M HNO_3 as described [28]. All metal concentrations including Cd and Zn
115 were quantified via Inductively Coupled Plasma spectroscopy (ICP). Data are presented in Table 1.
116

117 *2.2 Experimental Set-Up and Design*

118 The experimental treatments were consisted of biochar sources (BS): beef cattle compost (BCM);
119 poultry litter (PL); and lodge pole pine (LPP) that were applied at 0, 2.5, and 5.0% (w/w) in combination with
120 different rates (0, 2.5, and 5.0%, w/w) of beef cattle manure compost (CMC), respectively. Experimental
121 treatments were replicated three times using a 3 x 2 x 3 split-split plot arrangement in completely randomized
122 block design.

123 The treated and untreated C material soils were placed into triplicate plastic flower pots (15-cm top
124 diameter x 17-cm deep) and gently tapped to a bulk density of 1.5 g/cm^3 as outlined in Novak et al. (2018).
125 Eight corn seeds were then planted in each pot. The pots were transported to a greenhouse and randomly
126 placed on benches. Corn in the pots were kept in the greenhouse under a mean air temperature of about $21.8 \pm$
127 3.1°C and relative humidity of about 53±12.2%. On day 16, all pots were fertilized with a 10 mL solution of
128

129 **Table 1. Chemical and physical properties of compost and biochars (dry-basis).**

A. Ultimate and proximate analysis

Measurement (%)	<u>Beef cattle manure</u> <u>compost</u>	<u>biochar</u>	<u>Lodgepole pine</u> <u>biochar</u>	<u>Poultry litter</u> <u>biochar</u>
C	17.5	13.8	90.5	37.4
H	1.9	0.7	2.4	2.8
O	10.5	1.4	3.2	13.0
N	1.6	1.0	0.7	4.2
S	0.09	0.02	< 0.001	0.07
Ash	68.4	83.1	3.2	42.5
Fixed C	6.1	9.4	82.5	21.2
Volatile matter	25.5	7.5	14.3	36.3
pH	6.8	9.5	9.7	9.1
O/C	0.46	0.07	0.03	0.26
H/C	1.29	0.60	0.32	0.89

B. Elemental analysis of ash (%, ash wt basis)

Al	3.0	2.9	0.9	0.9
As	< 0.005	< 0.005	0.1	< 0.005
Ca	3.0	2.8	11.8	11.6
Cd	< 0.005	< 0.005	< 0.005	< 0.005
Cl	< 0.01	< 0.01	0.6	5.6
Cr	< 0.005	< 0.005	0.15	0.01
Cu	0.005	0.005	0.26	0.4
Fe	1.43	1.41	1.13	1.11
K	2.2	2.13	3.9	18.0
Mg	0.93	0.90	2.6	3.9
Mn	0.09	0.10	0.35	0.28
Na	0.31	0.30	1.1	4.5
Ni	0.005	0.006	0.03	0.016
P	0.67	0.68	0.4	8.6
Pb	< 0.005	< 0.005	0.09	< 0.005
S	0.25	0.22	0.58	4.9
Si	77.6	77.2	18.2	8.4
Zn	0.03	0.03	0.09	0.23

131 NH₄NO₃ that delivered an equivalent of 25 kg N ha⁻¹ because some treatments exhibited N deficient response
132 in corn leaves (yellowing). No inorganic P or K was added to the pots because these nutrients were supplied
133 with the amendments. The pots were water by hand using recycled water several times per week.

134

135 2.3 Feedstock collection, description, biochar production, and characterization

136 Three feedstocks were used to produce biochars in this experiment namely: beef cattle manure; lodge
137 pole pine; and poultry litter. Raw beef cattle manure was collected from a local feedlot operation near Webb
138 City, MO. The manure pile was exposed to the environment for a 1-2 year to allow for conversion into a
139 manure/compost mixture (George King, personal communication, 2015). A few kg of the manure compost
140 was transported to ARS-Florence location and sieved using a 6-mm sieve. A portion of the 6-mm sieved
141 manure compost was pyrolyzed at 500°C into biochar as outlined in Novak et al. [29]. The remaining two
142 biochars were available commercially and consisted of biochar produced from poultry litter and lodgepole
143 pine feedstocks. The poultry litter biochar was produced by gasification using a fixed-bed pyrolyzer and the
144 lodgepole pine biochar was produced using a slow pyrolysis process. The pyrolysis temperatures employed to
145 produce these two biochars are not available.

146 All three biochars were characterized for their pH and electrical conductivity in a 1:2 (w/w) biochar to
147 deionized water ratio [16]. All three biochars were also characterized chemically (ASTM D3176; Hazen
148 Research, Inc., Golden, CO, USA). The molar H/C and O/C ratios were calculated from the elemental
149 analysis. Total elemental composition of all three biochars was determined using concentrated HNO₃ acid
150 digestion described in US EPA 305b method [30] and were quantified using an Inductively Coupled Plasma
151 (ICP) spectroscopy. Similar characterization was performed on the beef cattle manure compost feedstock as
152 described above.

153

154 2.4 Tissue Analyses for Cadmium and Zinc Concentrations in Shoots and Roots of Corn

155 At day 35, corn roots were observed to grow out of the pot bottoms. The experiment was terminated,
156 and the corn shoots and roots were harvested from each pot, oven-dried (60°C), and digested as described by
157 Hunag and Schulte [31]. Snipped samples were digested in an auto-block using a mixture of nitric and
158 hydrogen peroxide. The concentrations of Cd and Zn in the tissues were analyzed using an ICP spectroscopy.
159 Tissue uptake of Cd and Zn were calculated using equation 1 for the shoot's uptake and equation 2 for the
160 root's uptake.

$$161 \text{MU}_{\text{Cd, Zn}} = [\text{CM}_{\text{Cd, Zn}}] \times \text{SBY} \quad (\text{Equation 1})$$

162 where: MU = metal uptake (kg ha⁻¹); CM = concentration of Cd and Zn (%) in corn shoot tissues; SBY = dry
163 matter yield of shoots (kg ha⁻¹).

$$164 \text{MU}_{\text{Cd, Zn}} = [\text{CM}_{\text{Cd, Zn}}] \times \text{RBY} \quad (\text{Equation 2})$$

165 where: MU = metal uptake (kg ha⁻¹); CM = concentration of Cd and Zn (%) in corn root tissues; RBY = dry
166 matter yield of roots (kg ha⁻¹).

167

168 2.5 Bioconcentration Factor of Cd and Zn in Shoots and Roots of Corn

169 The bioconcentration factor (**BCF**) in corn was calculated as the ratio between heavy metal
170 concentration in the plants (shoots and roots) and the total heavy metal in the soil as shown in equations 3 and
171 4.

$$172 \text{BCF}_{\text{shoots}} = [\text{CM}_{\text{Cd, Zn}}]_{\text{shoots}} \div [\text{CM}_{\text{Cd, Zn}}]_{\text{soils}} \quad (\text{Equation 3})$$

$$173 \text{BCF}_{\text{roots}} = [\text{CM}_{\text{Cd, Zn}}]_{\text{roots}} \div [\text{CM}_{\text{Cd, Zn}}]_{\text{soils}} \quad (\text{Equation 4})$$

174 where: BCF_{roots} = bioconcentration factor for Cd and Zn in the roots of corn; BCF_{shoots} = bioconcentration
175 factor for Cd and Zn in the shoots of corn; CM_{shoot} = concentration of Cd and Zn (%) in corn shoot; and
176 CM_{soils} = concentration of Cd and Zn (%) in the soil.

177

178

2.6 Statistical Analysis

179 To determine the effect of different biochar sources (BS) and rates of biochars (BR) with or without
180 the beef cattle manure compost (CR) on biomass and uptake (Cd and Zn) of corn grown in mine soils, data
181 were analyzed with a three-way ANOVA using PROC GLM [32]. For this study, F-test indicated significant
182 results at 5% level of significance, so means of the main treatments (sources of biochars, BS), sub-treatments
183 (rates of biochars, BR), sub-sub treatments (rates of compost, CR) were separated following the procedures of
184 Least Significance Differences (LSD) test, using appropriate mean squares [32].

185

186

3. Results

187

3.1 Soil pH and Water-Soluble Cd and Zn Concentrations in mine soils

188 Soil pH and concentrations of water-soluble Cd and Zn in mine spoil soils varied significantly with BS
189 ($p \leq 0.0001$), BR ($p \leq 0.0001$), and CR ($p \leq 0.0001$). While soil pH was not affected by the interaction effect of
190 BR x CR, soil pH and concentrations of Cd and Zn in the soils were significantly affected by the interactions
191 of BS x BR x CR (Table 2). Incorporation of 5% PL with 5% CR resulted in significantly higher soil pH
192 (6.61 ± 0.01), but significantly lower concentrations of Cd ($0.63 \pm 0.16 \text{ mg kg}^{-1}$) and Zn ($10.69 \pm 1.95 \text{ mg kg}^{-1}$)
193 when compared with the control soils (pH of 4.73 ± 0.32 ; Cd of $1.89 \pm 0.35 \text{ mg kg}^{-1}$; Zn of $63.89 \pm 11.08 \text{ mg kg}^{-1}$).
194 Results have shown the beneficial effects of BS, BR, and CR on enhancing soil pH while decreasing the
195 concentrations of water-soluble Cd and Zn in mine soils.

196 Of the different sources of biochar (BS) when averaged across BR and CR, the greatest soil pH
197 increase was from soil treated with PL (6.06 ± 0.18) followed by BCM (5.39 ± 0.21), LPP (4.78 ± 0.26) and
198 control soil (4.73 ± 0.32). The effect of BS on water-soluble Cd (mg kg^{-1}) is as follows: LPP (2.10 ± 0.51) >
199 control (1.89 ± 0.35) > PL (1.58 ± 0.62) > BCM (1.32 ± 0.34). The greatest concentration of water-soluble Zn
200 (mg kg^{-1}) was from soil treated with LPP (65.87 ± 8.61) followed by control soil (63.89 ± 11.08), BCM
201 (45.52 ± 8.99), and PL (41.10 ± 28.54) (Table 2).

202 Overall, pH of mine soils was significantly affected by increasing rate (2.5% to 5.0%) of different BS
203 (Table 2). Soil pH of mine soil treated with 2.5% and 5.0% BCM was increased from 5.18 ± 0.13 to 5.61 ± 0.30 .
204 Similarly, pH of soils treated with 2% and 5% LPP was increased from 4.75 ± 0.26 to 4.81 ± 0.26 . A much
205 higher increase in pH of mine soils when treated with 2.5% PL (5.63 ± 0.23) and 5% PL (6.49 ± 0.13). On the
206 other hand, the concentration of water-soluble Cd showed a decreasing trend with increasing rate of BS
207 application (i.e., 2.5% to 5%). The concentration of water-soluble Cd (mg kg^{-1}) in soils was reduced from
208 1.41 ± 0.29 to 1.22 ± 0.39 ; 2.13 ± 0.57 to 2.08 ± 0.44 ; and 2.27 ± 0.89 to 0.89 ± 0.26 when treated with 2.5% and 5%
209 BCM; LPP; and PL, respectively. The concentrations of Cd in the soils were also reduced significantly
210 following addition of raw beef cattle manure (Table 2). The concentrations of water-soluble Zn (mg kg^{-1}) in
211 the soil also showed decreasing trends following the additions of increasing rates of biochars and beef cattle
212 manure compost. The concentration of water-soluble Zn (mg kg^{-1}) in soils was reduced from 49.73 ± 7.22 to
213 41.31 ± 10.76 ; 67.85 ± 6.14 to 63.89 ± 11.08 ; and 67.35 ± 23.93 to 14.85 ± 4.61 when treated with 2.5% and 5%
214 BCM; LPP; and PL, respectively (Table 2). Again, results have shown the beneficial effects of increasing
215 rates of biochar in combination with increasing rates application of compost beef cattle manure on enhancing
216 soil pH while decreasing the concentrations of water-soluble Cd and Zn in mine soils.

217 **Table 2. Average concentrations of water-soluble Cd and Zn and pH in mine spoil soil.**

218

Biochar Sources	Biochar Rate (%)	Compost Rate (%)	pH	Cd (mg/kg)	Zn (mg/kg)
Control	0	0	4.40±0.06	2.05±0.22	62.06±6.21
	0	2.5	4.69±0.05	2.12±0.13	70.38±4.20
	0	5.0	5.10±0.03	1.51±0.08	57.12±9.68
	Mean		4.73±0.32	1.89±0.35	63.89±11.08
Beef Cattle Manure	0	0	5.07±0.14	1.75±0.15	56.32±5.06
	2.5	2.5	5.19±0.07	1.37±0.11	51.11±3.51
	2.5	5.0	5.28±0.12	1.10±0.05	42.77±2.72
	Mean		5.18±0.13	1.41±0.29	49.73±7.22
Lodge Pole Pine	0	0	5.31±0.22	1.68±0.14	53.81±3.81
	5.0	2.5	5.61±0.14	1.04±0.15	37.25±4.52
	5.0	5.0	5.91±0.14	0.94±0.26	32.85±7.84
	Mean		5.61±0.30	1.22±0.39	41.31±10.76
Poultry Litter	0	0	4.37±0.01	2.57±0.59	75.22±7.26
	2.5	2.5	4.77±0.07	2.31±0.12	75.08±4.69
	2.5	5.0	5.10±0.03	1.50±0.04	53.27±1.10
	Mean		4.75±0.26	2.13±0.57	67.85±6.14
Mean	0	0	4.47±0.02	2.56±0.04	70.86±1.96
	5.0	2.5	4.89±0.10	1.69±0.32	52.35±9.91
	5.0	5.0	5.05±0.05	2.04±0.27	68.47±9.21
	Mean		4.81±0.26	2.08±0.44	63.89±11.08
Mean	0	0	5.46±0.16	3.38±0.89	94.02±22.62
	2.5	2.5	5.58±0.24	1.94±0.02	60.48±6.42
	2.5	5.0	5.85±0.02	1.49±0.13	47.53±3.42
	Mean		5.63±0.23	2.27±0.98	67.35±23.93
Mean	0	0	6.33±0.03	1.19±0.02	20.57±1.17
	5.0	2.5	6.53±0.01	0.84±0.07	13.28±1.08
	5.0	5.0	6.61±0.01	0.63±0.16	10.69±1.95
	Mean		6.49±0.13	0.89±0.26	14.85±4.61

Sources of Variations**Level of Significance**

Biochar Sources (BS)	***\$	***	***
Rate of Biochar (BR)	***	***	***
Compost Rate (CR)	ns	***	***
BS x BR	***	***	***
BS x CR	**	**	***
BR x CR	ns	ns	ns
BS x BR x CR	ns	**	*

219 \$ ***- Significant at $p \leq 0.0001$ **- Significant at $p \leq 0.001$ 220 *- Significant at $p \leq 0.01$ ns – not significant

221

222

223 *3.2 Concentrations of Cd and Zn in Corn shoots and roots*

224 Except for the concentration of Cd in the shoots, all other concentrations of Cd and Zn in the shoots
225 and roots varied significantly with BS ($p \leq 0.0001$), BR ($p \leq 0.0001$), and CR ($p \leq 0.0001$). The interactions of BS
226 x BR and BS x CR showed highly significant effects on the Cd and Zn concentrations both in corn shoots and
227 roots (Table 3).

228 Overall, the concentrations of Cd and Zn in the shoots and roots with different sources of biochars
229 when averaged across BR and CR were significantly lower than the concentrations of Cd and Zn in the shoots
230 and roots of untreated corn (Table 3). Applications of 2.5% and 5% PL resulted in the most significant
231 reductions of Cd and Zn concentrations (mg kg^{-1}) in the shoots and roots of corn when compared with BCM
232 and LPP with mean values of 172.7 ± 48.1 to 61.9 ± 16.9 ; 531.3 ± 121.8 to 214.9 ± 63.4 ; and 2354.4 ± 158.9 to
233 531.3 ± 121.8 ; and 2072.3 ± 238.4 to 753.8 ± 116.8 , respectively (Table 3). These values were significantly lower
234 than the concentrations of Cd and Zn both in the shoots and roots of untreated corn, suggesting the beneficial
235 effects of biochar applications in phytostabilizing Cd and Zn using corn in mine soils.

236

237 *3.3 Corn Shoots and Roots Biomass*

238 The greatest total corn biomass (kg ha^{-1}) was from soils treated with PL (7,122.3) followed by BCM
239 (7,005.6), and LPP (5,008.7). The lowest total biomass of corn was from the untreated soils with a mean value
240 of $5,201.6 \text{ kg ha}^{-1}$ (Figure 1). Shoot biomass varied significantly with BS ($p \leq 0.0001$) and CR ($p \leq 0.0001$), but
241 not with BR (Table 3). On the other hand, root biomass varied significantly with BS ($p \leq 0.0001$), BR ($p \leq 0.05$),
242 and CR ($p \leq 0.05$). The interaction effects of BS x BR x CR failed to significantly affect the shoots and roots
243 biomass of corn (Table 4 and Table 5).

244 The effect of BS on shoot biomass (kg ha^{-1}) is as follows: PL (2,856.6) > BCM (2,480.4) > Control
245 (2,145.2) > LPP (1,559.6) while the effect of BS on root biomass is the following: PL (4,265.8) > BCM
246 (4,525.2) > LPP (3,449.1) > Control (3,056.4). The mean shoot biomass (kg ha^{-1}) of corn following
247 application of 2.5% BCM was about $2,621.6 \pm 785.0$ compared with $2,339.2 \pm 651.4$ from corn treated with 5%
248 BCM. Application of 2.5% LPP and 5% LPP resulted in $1,476.6 \pm 702$ and $1,642.6 \pm 873.7$ while application of
249 2.5% PL and 5% PL resulted in $2,893.8 \pm 706.4$ and $2,819.1 \pm 608.7 \text{ kg ha}^{-1}$ of shoots biomass (Table 4). The
250 effect of increasing rates of beef manure biochar was more significant because of the increasing trend in root
251 biomass.

252 Application of 2.5% LPP and 5% LPP resulted in $3,326.6 \pm 174.7$ and $3,571.7 \pm 189.2$ while
253 application of 2.5% PL and 5% PL resulted in $4,13.8 \pm 762.6$ and $4,517.8 \pm 339.7 \text{ kg ha}^{-1}$ of roots biomass. The
254 mean corn root biomass (kg ha^{-1}) following application of 2.5% BCM was about $4,013.3 \pm 579.5$ compared
255 with $5,036.9 \pm 964.2$ from corn treated with 5% BCM. These roots biomass following application of 2.5% and
256 5% BCM, 2.5% and 5% LPP, and 2.5% and 5% PL were 31.3% and 64.8%, 8.8% and 16.8%, and 31.3% and
257 47.8% more when compared with root biomass from the untreated corn plants, respectively (Table 4). Overall,
258 our results show the beneficial effects of biochars in combination with compost on enhancing shoot and root
259 biomass of corn grown in this mine soil.

260

261 *3.4 Uptake and Bioconcentration factor of Cd and Zn by shoots and roots of corn*

262 Except for LPP, all applications of biochars had significantly enhanced shoot uptake of Cd and Zn
263 when compared to Cd and Zn uptake of untreated corn (Table 4). Similarly, all applications of biochar had
264 significantly enhanced root uptake Cd and Zn, except for LPP when compared with the Cd and Zn uptake of
265 the control plants (Table 5). Compared to shoot uptake (kg ha^{-1}) of Cd and Zn by the control plants of
266 18.0 ± 4.9 and 298.7 ± 86.4 , application of BCM, LPP, and PL resulted in average increased of Cd shoot uptake

267 Table 3. Average concentrations of Cd and Zn in shoots and roots biomass of corn.

268

Biochar Sources	Biochar Rate (%)	Compost Rate (%)	Cd (mg/kg)	Zn (mg/kg)	Cd (mg/kg)	Zn (mg/kg)
				<u>Shoots</u>	<u>Roots</u>	
Control	0	0	210.7±49.8	3485.3±874.6	150.1±29.2	3235.2±354.4
	0	2.5	145.5±20.9	3870.1±512.4	255.3±67.2	3686.7±801.8
	0	5.0	99.1±12.8	3165.5±363.6	246.9±19.5	3531.7±240.2
Mean			151.7±55.9	3506.9±477.3	217.5±62.7	3484.5±496.0
Beef Cattle	0	0	202.8±20.9	4881.1±239.3	270.9±32.7	4390.2±442.9
	0	2.5	123.1±17.3	3591.3±313.5	277.2±31.9	3569.1±466.1
	0	5.0	96.7±7.1	2716.7±151.6	245.7±50.4	2863.8±211.5
Mean			140.8±49.9	3729.7±966.3	264.6±36.9	3607.7±512.8
Manure	0	0	178.5±7.4	4437.5±42.9	282.3±44.0	3723.2±266.3
	0	2.5	99.2±8.3	2508.5±282.6	216.8±18.8	2681.2±158.9
	0	5.0	69.1±0.4	1575.2±121.6	188.7±45.3	2053.1±417.6
Mean			115.6±49.3	2840.4±273.7	229.3±42.8	2819.2±512.8
Lodge Pole Pine	0	0	154.4±59.9	2611.1±123.9	151.2±38.7	2666.9±557.3
	0	2.5	170.4±26.9	4145.5±448.9	228.1±74.3	3273.6±736.1
	0	5.0	155.6±16.9	4236.9±618.1	229.2±3.0	3102.9±194.2
Mean			160.1±34.8	3664.5±440.4	202.9±57.1	3014.5±554.0
Poultry Litter	0	0	214.3±42.8	3273.8±645.9	152.9±16.9	2933.0±498.4
	0	2.5	167.1±23.2	3920.8±340.7	172.2±38.1	2985.4±432.2
	0	5.0	139.8±12.1	3577.4±252.6	210.3±36.1	2850.4±253.9
Mean			173.7±41.2	3590.7±477.3	178.5±37.4	2922.9±358.3
Poultry Litter	0	0	231.4±21.2	3127.1±112.9	227.9±45.2	2222.9±177.9
	0	2.5	160.6±13.1	2227.8±171.4	256.8±77.6	2101.7±170.4
	0	5.0	126.2±11.6	1681.3±157.2	159.8±23.7	1892.5±287.8
Mean			172.7±48.1	2345.4±158.9	214.9±63.4	2072.3±238.4
Mean			61.9±16.9	531.3±121.8	64.2±18.8	753.8±116.8
Sources of Variations				Level of Significance		
Biochar Sources (BS)			***\$	***	***	***
Rate of Biochar (BR)			***	***	***	***
Compost Rate (CR)			ns	**	***	***
BS x BR			***	***	***	***
BS x CR			**	***	**	***
BR x CR			ns	ns	ns	ns
BS x BR x CR			ns	ns	**	*

269 ***- Significant at $p \leq 0.0001$ 270 *- Significant at $p \leq 0.01$ 271 **- Significant at $p \leq 0.001$

272 ns – not significant

271

272

273

274

275

Figure 1. Shoots, roots, and total biomass yield of corn applied with different sources of biochars.

276

277

278

279 of 112.2%, -26.7%, and 121.7% and Zn shoot uptake of 214.3%, -46.3%, and 58.8%, respectively (Table 4).
 280 On the root uptake of Cd and Zn, application BCM, LPP, and PL resulted in 127.3% and 63.8%, -20.2% and
 281 -31.8%, 62.4% and -21.9% over the untreated plants, respectively (Table 5). These results suggest that effects
 282 of biochar application on shoot and root uptake of Cd and Zn by corn may vary significantly with biochars
 283 produced from different feedstocks.

284 The interaction effects of BS x BR x CR did not affect the shoot and root uptake of Cd and Zn by
 285 corn (Tables 4 and 5). However, shoot uptake of Zn by corn varied significantly with the interaction of BS x
 286 BR x CR (Table 3). The greatest shoot uptake of Zn was from corn plants treated with 2.5% BCM while the
 287 least amount of Zn shoot uptake was from plants applied with 5% PL in combination with 5% raw beef
 288 manure. The shoot and root uptake of Cd and Zn by corn varied significantly with the interaction effects of
 289 BS x BR (Tables 4 and 5). Figures 2 to 5 showed mixed results on the interaction effects of BS x BR on shoot
 290 and root uptake of Cd and Zn. The greatest shoot uptake of Cd (48.1 kg ha^{-1}) was from plant treated with 2.5%
 291 PL while the least amount of Cd shoot uptake was from plants treated with 5% PL (Figure 2). Application of
 292 5% BCM resulted in greatest root uptake of Cd (114.1 kg ha^{-1}) while application of 5% PL had the least
 293 amount of Cd root uptake of 31.1 kg ha^{-1} (Figure 3). Corn plants treated with 2.5% BCM (919.4 kg ha^{-1}) had
 294 the greatest shoot uptake of Zn while the least Zn shoot uptake by corn was from the application of 5% PL
 295 with mean value of 150.3 kg ha^{-1} (Figure 4). Similarly, the greatest Zn root uptake of $1,427.4 \text{ kg ha}^{-1}$ was from
 296 corn treated with 2.5% BCM and the least amount of root uptake of Zn was from plants applied with 5% PL
 297

298 **Table 4. Average shoots biomass (SBY) and uptake of Cd and Zn in shoot biomass of corn.**

299

Biochar Sources	Biochar Rate (%)	Compost Rate (%)	SBY (kg/ha)	Cd (kg/ha)	Zn (kg/ha)
Control	0	0	850.3±49.7	18.0±4.9	298.7±86.4
	0	2.5	2119.1±139.5	30.7±2.9	816.3±74.8
	0	5.0	3466.1±711.3	33.8±2.9	1079.1±103.4
	Mean		2145.2±189.6	27.5±7.9	731.6±352.7
Beef Cattle Manure	0	0	2020.4±428.6	40.4±4.03	979.8±161.5
	2.5	2.5	2300.4±506.7	27.8±2.79	817.2±119.3
	2.5	5.0	3544.2±225.7	34.2±2.28	961.1±40.3
	Mean		2621.6±785.0	34.1±6.1	919.4±128.2
Lodge Pole Pine	0	0	2024.8±380.8	35.9±5.4	897.9±163.4
	0	2.5	2524.4±968.9	24.6±7.4	626.4±215.5
	0	5.0	2468.4±623.3	17.1±4.4	387.5±91.1
	Mean		2339.2±651.4	25.9±9.7	637.3±263.2
Poultry Litter	0	0	781.1±150.5	12.6±7.1	214.4±127.8
	2.5	2.5	1427.9±150.5	23.5±6.7	579.0±187.4
	2.5	5.0	2220.8±314.9	34.2±2.0	930.6±74.4
	Mean		1476.6±702.6	23.4±10.6	574.6±332.3
BS x BR	0	0	654.3±71.1	13.9±3.0	212.8±39.0
	0	2.5	1979.1±248.5	32.9±4.2	774.4±97.3
	0	5.0	2294.5±845.0	31.8±10.6	819.3±91.8
	Mean		1642.6±873.7	26.2±10.9	602.2±331.2
BS x CR	0	0	2368.2±607.5	54.2±11.2	737.9±174.4
	0	2.5	3125.7±980.3	49.9±14.6	689.6±181.7
	0	5.0	3187.5±203.1	40.2±2.8	538.1±82.5
	Mean		2893.8±706.4	48.1±11.2	655.2±160.4
BR x CR	0	0	3242.1±861.6	25.5±7.3	208.4±50.8
	0	2.5	2766.1±272.5	15.1±1.8	127.9±9.0
	0	5.0	2449.2±433.1	12.3±0.9	114.7±12.8
	Mean		2819.1±608.7	17.6±7.1	150.3±51.3

Sources of Variations**Level of Significance**

Biochar Sources (BS)	***\$	**	***
Rate of Biochar (BR)	ns	***	***
Compost Rate (CR)	***	ns	***
BS x BR	ns	***	***
BS x CR	**	***	*
BR x CR	*	ns	**
BS x BR x CR	ns	ns	**

300 § ***- Significant at $p \leq 0.0001$ **- Significant at $p \leq 0.001$ 301 *- Significant at $p \leq 0.01$

ns – not significant

302

303 **Table 5. Average roots biomass (RBY) and uptake of Cd and Zn in root biomass of corn.**

304

Biochar Sources	Biochar Rate (%)	Compost Rate (%)	RBY (kg/ha)	Cd (kg/ha)	Zn (kg/ha)
Control	0		2010.7±122.6	45.0±7.5	972.7±94.1
	0	2.5	2738.1±496.6	71.5±30.5	1025.8±181.8
	5.0		3420.4±456.9	84.2±8.4	1202.8±123.7
	Mean		3056.4±453.9	66.9±23.7	1067.1±231.1
Beef Cattle Manure	0		3667.9±414.8	99.7±19.2	1615.8±293.9
	2.5	2.5	4079.1±592.7	111.8±3.7	1437.8±56.6
	5.0		4292.8±719.2	104.9±27.0	1228.6±224.8
	Mean		4013.3±579.5	105.5±17.5	1427.4±251.4
Lodge Pole Pine	0		4211.7±210.1	104.9±27.0	1570.3±169.6
	5.0	2.5	5570.5±840.5	119.5±23.6	1493.9±241.6
	5.0		5328.8±179.7	120.2±15.3	1101.3±339.8
	Mean		5036.9±964.2	114.0±25.5	1388.5±313.3
Poultry Litter	0		2586.3±180.1	39.4±11.9	695.1±186.9
	2.5	2.5	2670.3±338.2	61.9±26.6	887.2±301.6
	5.0		4723.1±989.8	108.4±23.6	1473.5±367.1
	Mean		3326.6±174.7	69.9±35.8	1018.6±434.2
Poultry Litter	0		2125.0±310.2	32.5±6.3	631.8±197.2
	5.0	2.5	3547.1±263.2	60.4±99.6	1051.4±69.5
	5.0		5042.9±806.2	99.6±37.2	1394.7±648.8
	Mean		3571.7±189.2	64.2±34.9	1025.9±475.1
Poultry Litter	0		4195.5±864.4	93.8±13.9	931.3±202.9
	2.5	2.5	3704.8±610.5	97.6±40.5	783.5±76.7
	5.0		4141.0±994.6	67.4±24.4	799.3±298.3
	Mean		4013.8±762.6	86.3±28.4	838.0±212.8
Sources of Variations		Level of Significance			
Biochar Sources (BS)		****	***	***	
Rate of Biochar (BR)		*	**	*	
Compost Rate (CR)		*	ns	ns	
BS x BR		ns	**	*	
BS x CR		**	**	*	
BR x CR		ns	ns	ns	
BS x BR x CR		ns	ns	ns	

305

****- Significant at $p \leq 0.0001$

306

*- Significant at $p \leq 0.01$

307

**- Significant at $p \leq 0.001$

308

ns – not significant

309 with mean uptake of 361.4 kg ha⁻¹ (Figure 5). Our results suggest that corn is an efficient plant in
310 phytostabilizing Cd and Zn when applied with 2.5% biochar with or without compost.

311 The bioconcentration factor or BCF of Cd and Zn, which is related to the shoot and root uptake of Cd
312 and Zn as affected by BS and BR is shown in Table 6. When averaged across BR, the greatest BCF for Cd
313 was in the shoot of 92.28 due to application BCM and the least BCF was from the application of PL (72.81).
314 The BCF for Zn in the shoot is in the order: BCM (71.88) > LPP (55.10) > PL (35.30). Similarly, both the Cd
315 and Zn BCF in the roots are in the order: BCM (187.80 and 70.39) > LPP (90.54 and 45.08) > PL (83.40 and
316 40.76), respectively (Table 6). These results suggest beneficial effect of biochar application in enhancing the
317 phytostabilization capacity of corn roots and shoots for Cd and Zn.

318

319 4. Discussion

320 Overall, our results showed that mine spoil remediation can be potentially enhanced by using soil
321 amendments capable of immobilizing metal(loid)s when combined with plant species that are tolerant of high
322 levels of contaminants. The incorporation of organic amendments improves the quality of mine soils and
323 makes it possible for vegetation to be established [20,21]. Our study and other recent studies have highlighted
324 that biochars are effective soil amendments because they improve soil conditions to raise the agronomic
325 values of soils [22,23,24,25].

326 Our results validate the beneficial effects of biochars in combination with beef cattle manure compost
327 on enhancing shoot and root biomass and nutritional uptake of corn grown in mine soil with heavy metal
328 contaminations. The greatest total corn biomass was from soils treated with manure-based biochars (PL and
329 BCM) and the least total biomass was from wood-based biochar (LPP) and untreated soils. Shoot and root
330 biomass varied significantly with different biochar sources. Results have suggested that biochar applications
331 in mine soils are more likely to influence the biomass, and effect could be long lasting. Several factors could
332 have had affected the outcome of our study. For instance, differences in the rapidity of decomposition and
333 chemical stability between manure-based and wood-based biochars. In addition, the C:N ratio of the biochars,
334 age of feedstocks, and the degree of disintegration or particle size of the biochars can govern the amount of
335 nutrients released in the soil [33,34]. The C:N ratio of the different biochars that were used in the study are as
336 follows: poultry litter (8.9) < beef cattle manure (13.8) < lodgepole pine (129.3). Lodgepole pine with wide
337 C:N ratio and low nitrogen content (Table 1) is associated with slow decay while PL and BCM with narrow
338 C:N ratio and containing higher nitrogen content may undergo rapid mineralization. The profound differences
339 in the C:N ratio of these biochars can explain the striking difference in the decomposition rates, hence faster
340 release of nutrients from these sources to the soils. The rates of mineralization in biochars may have had
341 significant effect on biomass and nutrient uptake of crop. Our results confirmed the significant effects
342 different sources of biochars with or without beef cattle manures on biomass productivity and Cd and Zn
343 uptake of corn. As observed in our study, improvements in corn biomass yield after biochar addition are often
344 attributed to increased water and nutrient retention, improved biological properties and CEC and
345 improvements in soil pH.

346 Manure-based biochars, particularly when pyrolyzed at higher temperatures (500 °C and above), have
347 been shown to have strong metal binding capabilities [35]; results which are supported by this study with
348 concentrations of water-soluble Cd and Zn lowest in soils amended with both manure-based biochars (PL and
349 BCM). Concomitantly, additions of PL and BCM resulted in increased total plant biomass yields as compared
350 with the untreated soils and wood-based biochar amendments (PLL). These results are potentially indicative
351

352
353
354
Figure 2. Cadmium uptake of corn shoots as affected by different sources of biochars.

355
356
357
358
Figure 3. Cadmium uptake of corn roots as affected by different sources of biochars.

359

360

361

Figure 4. Zinc uptake of corn shoots as affected by different sources of biochars.

362

363

364

365

Figure 5. Zinc uptake of corn roots as affected by different sources of biochars.

366 **Table 6. Bioconcentration factor of Cd and Zn in corn as affected by different sources and rates of**
 367 **biochar application.**

368

Biochar Sources	Biochar Rate (%)	Cd Shoots	Zn Shoots	Cd Roots	Zn Roots
Beef Cattle	2.5	99.81	74.99	187.65	72.54
Manure	5.0	94.75	68.76	187.95	68.24
<i>Mean</i>		92.28	71.88	187.80	70.39
Lodge Pole	2.5	75.16	54.00	95.26	44.42
Pine	5.0	83.50	56.20	85.82	45.75
<i>Mean</i>		79.39	55.10	90.54	45.08
Poultry	2.5	76.07	34.82	94.67	30.77
Litter	5.0	69.55	35.78	72.13	50.75
<i>Mean</i>		72.81	35.30	83.40	40.76

369

370

371

372 of reduced plant toxicity, though another possibility is that reductions in available soil Zn and Cd resulted in
 373 reduced stress on soil rhizosphere communities. Rhizospheric microbial communities provide critical
 374 ecosystem services, including nutrient cycling and uptake [36], which result in increased soil fertility. Ippolito
 375 et al. [37] previously demonstrated that heavy metal concentrations can have a deleterious effect on microbial
 376 community diversity, and additional studies have shown reductions in microbial abundance when faced with
 377 increased soil heavy metal concentrations, both of which can negatively impact soil health.

378 The use of biochar has been investigated for *in situ* remediation of contaminated lands associated with
 379 plants [19, 38,39]. Our results suggest that incorporation of biochar enhanced phytostabilization of Cd and Zn
 380 with concentrations of water-soluble Cd and Zn lowest in soils amended with both manure-based biochars (PL
 381 and BCM) while improving biomass productivity of corn. Biochar application has been shown to be effective
 382 in metal immobilization, thereby reducing the bioavailability and phytotoxicity of heavy metals. They also
 383 reported that addition of biochars improve agronomic properties by increasing nutrient availability and
 384 microbial activity. The uptake of heavy metals by most plant species decreases in the presence of biochars
 385 [40,41,42]. Further benefits of adding biochars to soil have also been reported; these include the adsorption of
 386 dissolved organic carbon [43], increases in soil pH and key soil macro-elements [44], and reductions in trace
 387 metals in leachates. Our results support the idea that biochar has proven to be effective at reducing high
 388 concentration of soluble Cd and Zn originating from a contaminated soil and we can now more affirmatively
 389 say that sorption is one of the mechanisms by which those metals are retained [45].

390 The concentrations of water-soluble Cd and Zn in the soil treated with 2.5% and 5% biochars in
 391 combination with increasing beef cattle manure were considerably lower when compared with the control.
 392 These results showed effective lowering of Cd and Zn in mine soils after harvesting of corn may well related
 393 to soil pH and phytostabilization of Cd and Zn due to application of different sources of biochars, especially
 394 the manure-based biochar. Sorption of Cd and Zn in biochars can be due to complexation of the heavy metals
 395 with different functional groups present in the biochar, such as Ca^{+2} and Mg^{+2} [46], K^+ , Na^+ and S [47], or due
 396 to physical adsorption [47]. Some other compounds present in the ash, such as carbonates, phosphates or

397 sulphates [48,49] can also help to stabilize heavy metals by precipitation of these compounds with heavy
398 metals [13].

399 Overall, pH of mine soils was significantly affected by increasing rate (2.5% to 5.0%) of different
400 sources of biochars. Soil pH of mine soil treated with 2.5% and 5.0% BCM was increased from 5.2 to 5.61.
401 Similarly, pH of soils treated with 2% and 5% LPP was increased slightly from 4.7 to 4.8. A much higher
402 increase in pH of mine soils with 5% PL (6.5) when compared with the control. The application of biochar in
403 our study increased soil pH and thus enhanced the phytostabilization of metals and our results agreed with the
404 findings of Park et al. [49] and Zhang et al. [50]. The specific mechanism of metal immobilization in the
405 biochar treatments, with increased in soil pH, was likely a result in the formation of precipitates such as
406 Cd(OH)₂ and Zn(OH)₂. For Cd and Zn, the speciation of which in soil solution is more dominated by free
407 metal ion. Shuman [51] reported that at pH above 8, chemical precipitation took place and therefore retention
408 of Zn in the soil was due to fixation as solid phase. Singh and Abrol [52] also concluded that above pH 7.9,
409 pH-pZn curves for different soil systems merged and precipitation reactions were controlling Zn retention.

410 Metal adsorption in the soil, in addition to pH, organic matter has overriding importance on metal
411 solubility and retention in many soils [53]. Few reports in the literature about soil amendments, such as lime
412 and compost being used to reduce the bioavailability of heavy metals [54]. Biochars can also stabilize heavy
413 metals in soils and thus reduce plant uptake [13]. Addition of soil organic matter in the form of BCM has been
414 recognized as a critical component in the retention of heavy metals in our study. For example, soils treated
415 with 5% BS (PL, BCM, or LPP) when combined with 5% BCM had the lowest concentrations of water-
416 soluble Cd and Zn in the soil. A decreasing trend was noted on the concentrations of water-soluble Cd and Zn
417 in soils with increasing rates of BCM (compost). The addition of raw BCM organic materials may have had
418 assisted in the redistribution of Cd and Zn fractions in the soils and enhanced the phytostabilization and
419 bioavailability of these metals. Organic matter contains S, O, and N functional groups that bind heavy metals
420 strongly [55]. Our results showed that heavy metal concentrations of Cd and Zn in the plants could be
421 profoundly affected by the amount of plant available heavy metals in the soil. Additionally, it is possible that
422 the increase in soil pH caused by biochar application could have had enhanced the adsorption and
423 complexation of Cd and Zn on biochar, which caused a decrease in water-soluble Cd and Zn in the soil at 5%
424 level of biochars in our study. It has been shown that organic materials can strongly bind heavy metals such as
425 Cu, Pb, Cd, Zn, and Ni. The solubility of the metals depends mainly on the metal loading over soil sorbents,
426 pH, and the concentration of dissolved organic matter in the soil solution [56].

427 Another important part of this study is on the effect of different sources and application rates of
428 biochars on the bioconcentration factor (BCF) of Cd and Zn in corn shoots and roots. Plant's ability to
429 accumulate metals from soils can be estimated using BCF, which is defined as the ratio of metal concentration
430 in the shoots or roots to that in the soil. Plant's ability to translocate metals from the roots to the shoots is
431 measured using the translocation factor (TF), which is defined as the ratio of the metal concentration in the
432 shoots to the roots. As shown in our data (Table 6), corn has demonstrated high degree of tolerance factor
433 because we did not see restriction in soil-root and root-shoot transfers. Corn grown in contaminated mine soils
434 can be considered as hyperaccumulator because it has actively taken up and translocate Cd and Zn into their
435 biomass. Our results showed that BCF of Cd and Zn varied significantly with the different sources and
436 application rates of biochars. Corn applied with 2.5% BCM has the greatest Cd and Zn BCF in the shoots and
437 these results suggest that corn can accumulate large quantities of metal in their shoot tissues when grown in
438 contaminated mine soils. Based on averaged BCF in corn with different sources and rates of biochars, corn

439 can be considered minor accumulator of Cd and Zn. However, the BCF values of Cd and Zn in corn (Table 6)
440 were much greater than 1, are evident that Cd and Zn in mine soils were highly bio-accumulated and
441 phytostabilized. Lu et al. [57] from their study on removal of Cd and Zn by water hyacinth suggested that
442 water hyacinth as a moderate accumulator of Cd and Zn with BCF values of 622 and 789, respectively. Other
443 study on the use of biochar and phytostabilization using *Brassica napus* L. was conducted to target Cd-
444 polluted soils [7]. Additionally, the results of Hartley et al. [58] and Case et al. [59] showed that biochar can
445 be used in combination with Miscanthus for phytostabilization of Cd and Zn in contaminated soils. Novak et
446 al. [60] from their most recent study on using blends of compost and biochars concluded that designer biochar
447 is an important management component in developing successful mine site phytostabilization program.
448

449 **5. Summary and Conclusions**

450 In our study, we evaluated the interactive effects of manure- and plant-based biochar applications
451 with or without compost on shoots and roots biomass production, uptake, and BCF of Zn and Cd of corn
452 grown in mine soil. Biochars may have several effects on heavy metals and can offer several advantages,
453 alone or in combination with other amendments during remediation of soils contaminated with heavy metals.
454 Results of our study can be summarized as follows:

- 455 1. with increasing rates of biochar in combination with increasing rates application of compost beef
456 cattle manure enhanced soil pH and decreased the concentrations of water-soluble Cd and Zn in
457 mine soils;
- 458 2. effects of biochar application on shoot and root uptake of Cd and Zn by corn varied significantly
459 with biochars produced from different feedstocks; and
- 460 3. the BCF values of Cd and Zn in corn were considerably greater than 1, which are evident that
461 Cd and Zn in mine soils were highly bio-accumulated and phytostabilized due to biochar and
462 phytostabilization using corn.

463 Overall, our results suggest that phytostabilization when combined with biochar application have
464 the potential for the remediation of heavy metals polluted soils. Biochars can reduce the bioavailability of
465 heavy metals while phytostabilization can reduce the amount of soil heavy metals in polluted areas.
466 Additionally, our study validates the findings that biochars can be designed to modify soil condition (i.e., soil
467 pH) to reduce bioavailable Cd and Zn concentrations in contaminated mine soils.
468

469 **Acknowledgements**

470 Gratitude is expressed to the staff of the ARS especially Mr. William Myers, the US EPA locations, and team
471 at the Webb City, MO water treatment facility for their work and diligence with sample collection, preparation
472 and analyses. This work was made possible through an Interagency Agreement between the United States
473 Department of Agriculture-Agricultural Research Service (60-6657-1-204) and the US EPA (DE-12-
474 92342301-2). Approval does not signify that the contents reflect the views of the USDA-ARS or the US EPA,
475 nor does mention of trade names or commercial products constitute endorsement or recommendation for their
476 use. USDA is an equal opportunity provider and employer.
477

478 **Author contributions**

479 All authors contributed to this research project. Individual contributions to the following categories are as
480 follows: 1) Research Conceptualization: G.C. Sigua, J.M. Novak, M.G. Johnson, J. Ippolito, T.D. Ducey, and
481 K. Spokas; 2) Methodology: J.M. Novak, G.C. Sigua, T.D. Ducey, and D.W. Watts 3) Data Analysis: G.C.

482 Sigua; 4) Writing—Original draft preparation: G.C. Sigua; and 5) Review and editing: J.M. Novak, J.
483 Ippolito, M.G. Johnson, K. Spokas, T.D. Ducey, and D. Watts.
484

485 **Conflict of Interest:**

486 There is no conflict of interests.
487

488 **References**

1. Lebrun, M.; Macri, Carmelo; Miard, F.; Hattab-Hambli, N.; Motelica-Heino, M.; Moarabito, D.; Bourgerie, S. Effect of biochar amendments on AS and Pb mobility and phytoavailability in contaminated mine technosols phytoremediated by Salix. *Jour. Geochemical Exploration*. **2017**, *182*, 149-156.
2. Rodriguez-Vila, A.; Covelo, E.F.; Forjan, R.; Asensio, V. Recovering a copper mine soil using organic amendments and phytomanagement with *Brassica juncea* L. *Jour. Environ. Mgt.* **2015**, *147*, 73-80.
3. Vega, F.A.; Covelo, E.F.; Andrade, M.L. Limiting factors for reforestation on mine spoil from Galicia (Spain). *Land Degrad. Dev.* **2005**, *16*, 27-36.
4. Puga, A.P.; Melo, L.C.A; De Abreau, A.; Coscione, A.R.; Paz-Ferreiro, J. Leaching and fractionation of heavy metals in mining soils amended with biochar. *Soil Tillage Res.* **2016**, *164*, 25-33.
5. Kloss, S.; Zehetner, F.; Oburger, E.; Buecker, J.; Kitzler, B.; Wenzel, W.W.; Wimmer, B.; Soja, G. Trace element concentration in leachates and mustard plant tissue (*Sinapis alba*, L) after biochar application to temperature soils. *Sci. Total Environ.* **2014**, *481*, 498-508.
6. Ali, H.; Khan, E.; Muhammad, A.S. Phytoremediation of heavy metals – concept and applications. *Chemosphere* **2013**, *91*, 869-881.
7. Houben, D.; Evrard, L.; Sonnet, P. Beneficial effects of biochar application to contaminated soils on the bioavailability of Cd, Pb, and Zn and the biomass production of rapeseed (*Brassica napus* L.) *Biomass Bioenerg.* **2013**, *57*, 196-2014.
8. Conesa, H.M.; Evangelou, M.W.H.; Robinson, B.H.; Schulin, R.A. A critical view of current state of phytotechnology to remediate soils: still a promising tool? *Scientific World Journal*. **2012**, *150-158*.
9. Arthur, E.L.; Rice, P.J.; Anderson, T.A.; Baladi, S.M.; Henderson, K.L.D. Phytoremediation—an overview. *Crit. Rev. Plant Sci.* **2005**, *24*, 109-122.
10. Novak, J. M.; Ippolito, J.A.; Ducey, T.F.; Watts, D.W.; Spokas, K.A.; Trippe, K.M.; Sigua, G.C.; Johnson, M.G. Remediation of an acidic mine spoil: Miscanthus biochar and lime amendment affects metal availability, plant growth, and soil enzyme activity. *Chemosphere* **2018**, *205*, 709-718.
11. Bolan, N.S.; Park, J.H.; Robinson, B.; Naidu, R.; Huh, K.Y. Phytostabilization: a green approach to contaminant containment. *Adv. Agronomy* **2013**, *112*, 145-202.
12. Dudka, S.; Adriano, D.C. Environmental impacts of metal ore mining and processing: a review. *J. Environ. Qual.* **1997**, *26*, 590-602.
13. Paz-Ferreiro, J.; Lu, H.; Fu, S.; Mendez, A.; Gasco, G. Use of phytoremediation and biochar to remediate heavy metal polluted soils: a review. *Solid Earth* **2014**, *5*, 65-75.
14. Mendez, M.O.; Maier, R.M. Phytostabilization of mine tailings in arid and semiarid environments—an emerging remediation technology. *Environ. Health Perspect.* **2008**, *116*, 278-283.
15. Gentcheva-Kostadinova, S.; Zheleva, E.; Petrova, R.; Haigh, M.J. Soil constraints affecting the forest-biological recultivation of coalmine spoil banks in Bulgaria. *Int. J. Surf. Min. Reclamat. Environ.* **1994**, *8*, 47-54.

525 16. Novak, J.M.; Cantrell, K.B.; Watts, D.W.; Busscher, W.J.; Johnson, M.G. Designing relevant biochar as
526 soil amendments using ligno-cellulosic-based and manure-based feedstocks. *J. Soils Sediments* **2014**, *14*,
527 330-343

528 17. Rees, F.; Germain, C.; Sterckeman, T.; Morel, L. Plant growth and metal uptake by non-
529 hyperaccumulating species (*Lolium perenne*) and a Cd-Zn hyperaccumulator (*Noccaea caerulescens*) in
530 contaminated soils amended with biochar. *Plant Soil* **2015**, *395*, 57-73.

531 18. Beesley, L.; Moreno-Jimenez, E.; Gomez-Eyles, J.L.; Harris, E.; Robinson, B.; Sizmur, T. A review of
532 biochars potential role in the remediation, vegetation and restoration of contaminated soils. *Environ.*
533 *Pollut.* **2011**, *159*, 3269-3282.

534 19. Park, J.H.; Choppala, K.G.; Bolan, N.; Chung, J.W.; Chuasavathi, T. Biochar reduces the bioavailability
535 and phytotoxicity of heavy metals. *Plant Soil.* **2011**, *348*, 439-451.

536 20. Asensio, V.; Vega, F.A.; Andrade, M.L.; Covelo, E.F. Technosols made of wastes to improve physico-
537 chemical characteristics of a copper mine soils. *Pedosphere* **2013**, *23*, 1-9.

538 21. Sohi, S.P.; Krull, E.; Lopez-Capel, E.; Bol, R. A review of biochars and its use and function in soil. In:
539 Sparks, D.L. (ed). *Advances in Agronomy*. Academic Press. **2010**, pp. 47-82.

540 22. Sigua, G.C.; Novak, J.M.; Watts, D.W.; Johnson, M.G.; Spokas, K. Efficacies of designer biochars in
541 improving biomass and nutrient uptake of winter wheat grown in a hard setting subsoil. *Chemosphere*
542 **2016**, *142*, 176-183.

543 23. Laird, D.A.; Fleming, P.; Davis, D.D.; Horton, R.; Wang, B.; Karlen, D.L. Impact of biochar amendments
544 on the quality of a typical Midwestern agricultural soil. *Geoderma* **2010**, *158*, 443-449.

545 24. Hossain, M.K.; Strezov, V.; Chan, K.Y.; Nelson, P.F. Agronomic properties of wastewater sludge biochar
546 and bioavailability of metals in production of cherry tomato (*Lycopersicon esculentum*). *Chemosphere*
547 **2010**, *78*, 1167-1171.

548 25. Asai, H.; Samson, B.K.; Stephan, H.M.; Songyihangsuthor, K.; Homma, K.; Kiyono, Y.; Inoue, Y.;
549 Shiraiwa, T.; Horie, T. Biochar amendment techniques for upland rice production in Northern Laos 1. Soil
550 physical properties, leaf SPAD and grain yield. *Field Crop Res.* **2009**, *111*, 81-84.

551 26. Dede, G.; Ozdemir, S.; Hulusi, D.O. Effect of soil amendments on phytoextraction potential of *Brassica*
552 *junccea* growing on sewage sludge. *Int. J. Environ Sci. Technol.* **2012**, *9*, 559-564.

553 27. Wei, S.; Zhu, J.; Zhou, Q.X.; Zhan, J. Fertilizer amendment for improving the phytoextraction of
554 cadmium by hyperaccumulator *Rorippa globose* (Turcz) J. *Soils Sediment.* **2011**, *11*, 915-922.

555 28. Bradford, G.R.; Page, A.L.; Lund, L.J.; Olmstead, W. Trace element concentrations of sewage treatment
556 plant effluents and sludges: their interactions with soil and uptake by plants. *J. Environ. Qual.* **1975**, *4*,
557 123-127.

558 29. Novak, J.M.; Busscher, W.; Laird, D.L.; Ahmedna, M.A.; Watts, D.A.; Niandou, M.A.S. Impact of
559 biochar amendment on soil fertility of a southeastern coastal plain soil. *Soil Science* **2009**, *174*, 105-112.

560 30. United States Environmental Protection Agency (US EPA). Method 3050B: Acid digestion of Sediments,
561 Sludges, and Soils, Part of Test Methods for Evaluating Solid Waste, Physical/Chemical Methods. **1996**.
562 SW-846. Available at: <https://www.epa.gov/sites/production/files/2015-12/documents/3050.pdf>.

563 31. Hunag, C.Y.L.; Schulte, E.E. Digestion of plant tissue for analysis by ICP emission spectroscopy.
564 *Commun. Soil Sci. Plant Anal.* **1985**, *16*, 943-958.

565 32. SAS Institute. SAS/STAT User's Guide. Release 6.03. SAS Institute, Cary, NC. **2000**.

566 33. Sigua, G.C.; Novak, J.M.; Watts, D.W.; Cantrell, K.B.; Shumaker, P.D.; Szogi, A.A.; Johnson, M.G.
567 Carbon mineralization in two Ultisols amended with different sources and particle sizes of pyrolyzed
568 biochar. *Chemosphere* **2014**, *103*, 313-321.

569 34. Novak, J.M.; Busscher, W.J. Selection and use of designer biochars to improve characteristics of
570 southeastern USA Coastal Plain degraded soil. **2012**. In: Lee, J.W. (ed). Advanced biofuels and
571 bioproducts. Springer, New York. pp. 69-96.

572 35. Uchimiya, M.; Cantrell, K.B.; Hunt, P.G.; Novak, J.M.; Chang, S. Retention of Heavy Metals in a Typic
573 Kandiudult Amended with Different Manure-based Biochars. *J. Environ. Qual.* **2012**, *41*, 1138-1149.

574 36. van der Heijden, M.G.A.; Bardgett, R.D.; van Straalen, N.M. The unseen majority: soil microbes as
575 drivers of plant diversity and productivity in terrestrial ecosystems. *Ecol. Lett.* **2008**, *11*, 296-310.

576 37. Ippolito, J.A.; Ducey, T.; Tarkalson, D. Copper impacts on corn, soil extractability, and the soil bacterial
577 community. *Soil Sci.* **2010**, *175*, 586-592.

578 38. Uchimiya M.; Lima, I.M.; Klasson, T.; Wartelle, L.H.; Rodgers, J.E. Immobilization of heavy metal ions
579 by broiler litter-derived biochars in water and soil. *J. Agric. Food Chem.* **2010**, *58*, 5538-5544.

580 39. Yu, X.Y.; Ying, G.G.; Kookana, R.S. Reduced plant uptake of pesticides with biochar additions to soil.
581 *Chemosphere* **2009**, *76*, 665-671.

582 40. Rees, F.; Sterckeman, T.; Morel, L. Root development of non-accumulating and hyperaccumulating plants
583 in metal-contaminated soil amended with biochar. *Chemosphere* **2016**, *142*, 48-55.

584 41. Zheng, R.L.; Cai, C.; Liang, J.H.; Huang, Q.; Chen, Z.; Huang, Y.Z.; Arp, H.P.H.; Sun, G.X. The effects
585 of biochar from rice residue on the formation of iron plaque and the accumulation of Cd, Zn, Pb, As in
586 rice (*Oryza sativa* L.) seedlings. *Chemosphere* **2012**, *89*, 865-862.

587 42. Karami, N.; Clemente, R.; Moreno-Jimenez, E.; Lepp, N.W. Beesley, L. Efficiency of green waste
588 compost and biochar amendments for reducing lead and copper mobility and uptake to ryegrass. *J.*
589 *Hazard. Mater.* **2011**, *191*, 41-48.

590 43. Pietikainen, J.; Kiikkila, O.; Fritze, H. Charcoal as a habitat for microbes and its effect on the microbial
591 community of the underlying humus. *Oikos* **2000**, *89*, 231-242.

592 44. Beesley, L.; Moreno-Jimenez, E.; Gomez-Eyles, J.L. Effects of biochar and greenwaste compost
593 amendments on mobility, bioavailability and toxicity of inorganic and organic contaminants in a multi-
594 element polluted soil. *Environmental Pollution* **2010**, *158*, 2228-2287.

595 45. Beesley, L.; Marmiroli, M. The immobilization and retention of soluble arsenic, cadmium and zinc by
596 biochar. *Environmental Pollution* **2011**, *159*, 474-480.

597 46. Lu, H.; Zhang, Y.Y.; Huang, X.; Wang, S.; Qiu, R. Relative distribution of Pb²⁺ sorption mechanisms by
598 sludge-derived biochar. *Water Res.* **2012**, *46*, 854-862.

599 47. Uchimiya, M.; Chang, S.C.; Klasson, K.T. Screening biochars for heavy metal retention in soils: Role of
600 oxygen functional groups. *J. Hazard. Mater.* **2011**, *190*, 432-444.

601 48. Park, J.H.; Choppala, G.H.; Lee, S.J.; Bolan, N.; Chung, J.W.; Edraki, M. Comparative sorption of Pb and
602 Cd by biochars and its implication for metal immobilization in soil. *Water, Air, Soil Poll.* **2013**, *224*,
603 1711-1718.

604 49. Cao, X.D.; Ma, L. N.; Gao, B.; Harris, W. Dairy-manure derived biochar effectively sorbs lead and
605 atrazine. *Environ. Sci. Technol.* **2009**, *43*, 3285-3291.

606 50. Zhang, X.; Wang, H.; He, L. Using biochars for remediation of soils contaminated with heavy metals and
607 organic pollutants. *Environ. Sci. Pollut. Res.* **2013**, *20*, 8472-8463.

608 51. Shuman, L.L. The effect of soil properties on zinc adsorption by soils. *Soil Sci. Soc. Am. J.* **1975**, *43*,
609 454-458.

610 52. Singh, M.V.; Abrol, I. P. Solubility and adsorption of zinc in sodic soils. *Soil Sci.* **1985**, *140*, 406-411.

611 53. McBride, R.; B.K., Steenhuis. Bioavailability and crop uptake of trace elements in soil columns amended
612 with sewage sludge products. *Plant Soil* **2004**, *262*, 71-84.

613 54. Komarek, M.; Vanek, A.; Ettler, V. Chemical stabilization of metals and arsenic in contaminated soils
614 using oxides-a review. *Environ. Pollut.* **2013**, *172*, 9-22.

615 55. Martinez, C.E.; McBride, M.B. Dissolved and labile concentrations of Cd, Cu, Pb, and Zn in aged
616 ferrihydrite-organic matter systems. *Environ. Sci. Technol.* **1999**, *33*, 745-750.

617 56. Weng, L.; Temmighoff, E.; Loft, S.; Tipping, E.; Riemsdijk, W.H. Complexation with dissolved organic
618 matter and solubility control of heavy metals in a sandy soil. *Environ. Sci. Technol.* **2002**, *36*, 4804-4810.

619 57. Lu, X.; Kruatrachue, M.; Pkethitiyook, P.; Homyok, K. Removal of cadmium and zinc by water hyacinth,
620 *Eichhornia crassipes*. *ScienceAsia* **2004**, *30*, 93-103.

621 58. Hartley, W.; Dickinson, N.M.; Riby, P.; Lepp, N.W. Arsenic mobility in brownfield soil amended with
622 green waste compost or biochar and planted with *Miscanthus*. *Environ. Pollut.*, **2009**, *157*, 2654-2662.

623 59. Case, S.D.; McNamara, N.P.; Reay, D.S.; Whitaker, J. Can biochar reduce soil greenhouse gas emission
624 from a *Miscanthus* bioenergy crop? *GCB Bioenergy*, **2014**, *6*, 76-89.

625 60. Novak, J.M.; Ippolito, J.A.; Watts, D.W.; Sigua, G.C.; Ducey, T.F.; Johnson, M.G. Biochar compost
626 blends switchgrass growth in mine soils by reducing Cd and Zn bioavailability. *Biochar*. **2019**, doi:
627 10.1007/s42773-019-00004-7.