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Abstract: The main objective of this article is to explore the causes of household electricity poverty
in Spain from an innovative perspective. Based on evidence of energy inequality across households
with different income levels, a quantile regression approach was used to better capture the
heterogeneity of determinants of energy poverty across different levels of electricity expenditure.
The results illustrate some interesting and counter-intuitive findings about the relationship between
household income and electricity poverty, and the technical efficiency of quantile regression
compared to the imprecise results of a standard single coefficient/OLS approach.
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1. Introduction

Energy poverty and vulnerability are critical issues. According to current research, the problem
is extensive and even severe in many countries. Recent data available from the EU survey on Income
and Living Conditions estimates that around 11% of the EU population were unable to keep their
home adequately warm. In the particular case of Spain, where a long and serious economic crisis
have greatly deteriorated living conditions for millions of people, some recent reports have warned
about the extent of this problem [1], urging politicians and energy companies to take an active role in
the debate.

The main objective of this article is to explore the causes of household electricity poverty in
Spain, with a special focus on the impact of household income levels on electricity power
expenditure.

Standard analyses of electricity consumption for a given country, region or area, frequently use
average household expenditure ratios that do not fairly represent the whole population they attempt
to describe. The average value of energy household spending is not of real interest if different levels
of energy consumption are caused, affected or reversed by different factors with different intensity.
In this context, electricity poverty, understood as an extreme value of energy relative expenditure,
deserves particular attention. Lessons learnt from empirical studies that aimed to explain electricity
household consumption as a whole, might not be extrapolated to the poorest households and are not
of particular interest when it comes to determining how to tackle electricity poverty at the household
level.

Although ordinary regression (OLS) has been the most used technique to estimate energy
poverty drivers, nowadays, the availability of microdata allows more granular and accurate estimates
of the effects of each of the explanatory variables within this phenomenon. The implicit simplification
of the classical regression (focusing in the mean) can be useful for aggregate data but it can also
obscure the very interesting nuances that we can discover using microdata. When exploring poverty
drivers, it is crucial to focus on vulnerable populations, however, by using segmented samples and
subsamples, the statistical results will be biased.

Additionally, the presence of heteroscedasticity and frequent outliers in microdata dramatically
affects the OLS estimates. Conversely, quantile regression (based on absolute errors instead of square
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errors, and also using the total sample, but differently weighted by subsamples) produces consistent
and efficient estimates even in data showing these potential problems.

Finally, it is worth mentioning that quantile regression can produce different coefficients for the
same driver (explanatory variable) depending on the referred electricity poverty quantile. As we
want to focus on a vulnerable population, it is not necessary to have a mean coefficient for the entire
population, but rather, a very specific coefficient for the poorest population. OLS does not allow such
a distinction and produces a mean coefficient. As we will show below, quantile regression is a useful
tool for discovering the real effect of each one of the drivers on electricity poverty.

Consequently, quantile regression emerges as the most suitable technique to perform a fruitful
analysis of the explanatory variables of electricity household relative expenditure. As will be shown
later, estimated coefficients for the main drivers of electric energy household consumption present
very different values across different energy relative expenditure quantiles.

The present paper clearly complements the existing literature in this field. Firstly, although there
exists a vast amount of literature on the causes of average energy consumption using standard
econometrics, a quantile approach is not that common. Additionally, even though the drivers of
electricity consumption or saving have received extensive attention in the economic literature at a
cross-country level, there are very few studies specifically related to electricity poverty (or
vulnerability) in a developed context, and at the household level [2].

Specific attention to household behaviour and causes of electricity poverty for families is crucial
from a policy perspective at a time when debates about different dimensions of economic and social
exclusion have gained momentum in the political arena, even in the context of well-developed EU
countries. In the age of new technologies and globalization of mass communication, electricity
scarcity not only affects basic needs such as heating, food or sanitation, but also hinders access to
communication, e-learning activities, e-commerce, etc.; electricity poverty emerges as a
contemporary driver of social inequality.

Not all explanatory variables of energy poverty are available or accurately measured in the
available statistics. In this article, we were able to find a wide set of variables referring to household
equipment, the characteristics of the people who live there, socio-economic status, and even several
behaviour-related variables (gender, studies, nationality, etc.). Unfortunately, many other variables
such as physical characteristics of the building, available electrical appliances, and indoor-outdoor
temperature difference were not available.

Certainly, this restriction limits the scope of the analysis, but conversely, several fundamental
variables such as income, the way of heating the home, ownership characteristics, etc., have been
shown to be useful for suggesting various political measures that could be promoted (see the
Discussion section). In addition, the selected technique makes it possible to eliminate the inherent
biases in the use of mean values, instead using those that are most appropriate for the vulnerable
population.

This article is structured as follows. In the second section, a review of the theoretical and
literature background is carried out, highlighting the main variables and estimation techniques
previously used in other texts. In the third section, we summarise some of the advantages of the
quantile regression approach in the context of electricity poverty analysis. In the fourth section, a
descriptive analysis of the data is conducted. In the fifth section, the results of the quantile regression
are discussed, and the main conclusions are outlined.

2. Definitions, Theoretical Background and Literature Review

2.1. Definition of Energy Poverty/Vulnerability

Day et al. [3] (p. 260) define “energy poverty” as “an inability to realise essential capabilities as
a direct or indirect result of insufficient access to affordable, reliable and safe energy services, and
taking into account available reasonable alternative means of realising these capabilities”. A similar
characterisation is used in [4] (p. 31): “the inability to attain a socially and materially necessitated
level of domestic energy services [...] tied to the ineffective operation of the socio-technical pathways
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that allow for the fulfilment of household energy needs”. This broad definition can be applied to all
socio-economic spectrum and is valid either for under-developed or well-developed countries; in the
case of our study in Spain, “insufficient accessibility” should be understood not as a physical barrier,
but as a budget constraint.

The term energy poverty is commonly associated with household energy deprivation and
commonly used in this sense across EU countries where, in recent years, this problem has gained
momentum as part of the political and social debate in the context of spreading inequality. The EU
“Third Energy Package” [5] also uses the term in this sense.

In our paper, we focus our econometrical analysis on the specific concept of “electricity poverty”
or “electricity vulnerability”. Electrical power can be considered the main and default source of
energy in a household, and therefore, it is the component that best captures the condition of energy
deprivation in a household. Also, we wanted to align our conclusions with public policy issues, and
in that sense, electricity poverty has become the public policy standard measure in Spain when it
comes to implementing aid programs for vulnerable families.

We should admit that the use of electricity poverty explicitly excludes household energy
expenditure for the basic need of heating homes in winter. In order to avoid bias in our analysis, we
will control for substitutive energy expenditures in the household given that, alternative sources of
energy used extensively by families in Spain such as natural gas for heating or boilers, may have a
clear impact on electricity expenditure. Including natural gas expenditure as a control variable is also
essential in the case of Spain given that temperatures are quite heterogeneous, to the point that heater
devices are almost never used during the whole year in parts of the country. The Household Budget
Survey (HBS) for 2015 shows that more than 33% families do not have heating systems in their homes.
The average percentage varies from 97% in Canary Islands, Ceuta or Melilla, to around 5% in central
regions, or 50% in southern coastal areas.

The UK was a pioneer in addressing this problem, and from early 1996 established some
mechanisms to help people expending more on household energy than a fixed percentage of their
total incomes (10%). As pointed out in [3] (p. 256): “Annual ‘excess winter deaths’ statistics for the
UK show every year a peak in the number of deaths during winter months that run to the tens of
thousands [...] a fact which is generally attributed to the poor energy efficiency of the UK housing
stock, making houses expensive to heat”.

On the other hand, the use of electricity as the pivotal variable to identify energy vulnerability
is especially suitable for Spain because of the widespread use of air conditioning during the hot
Spanish summer. While some authors consider that issues related to cooling households are not
essential and should not be included in the concept of “energy poverty”, other authors disagree (see
[6], for example). The effects of extremely high temperature on labour conditions, health, and quality
of life are obvious, and access to AC devices should be explicitly considered in terms of energy
poverty.

In the case of France, which is maybe more similar to the Spanish case (where heating is not
always the main problem), the definition of “energy precariousness” is “a person encountering
‘particular difficulties in their accommodation in accessing the necessary energy supply to satisfy
basic needs, due to inadequacy of financial resources or of housing conditions” [7] (p. 8).

As a final caveat, it is worth mentioning that measures of energy vulnerability or scarcity are
commonly addressed by computing energy consumption, but we need to realize that people do not
directly demand energy itself, but the services provided by electricity or other sources. Families
demand energy for washing, cooking, lighting, HVAC, mobility, etc. Therefore, some authors have
proposed a different focus called a services approach, where the level of satisfaction with these
services determine the definition of electricity poverty. Essentially, this is similar to measuring
income poverty by looking at material deprivation or affordability of some items thought to be
indispensable for people to have a satisfactory standard of living. Unfortunately, it is almost
impossible to get detailed household data about energy services available in households.

2.2. Measuring Electricity Poverty: the Income Effect
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There is no unique, consensual definition of how to identify households in energy poverty, but
using the idea of high spending/low-income, many authors, European countries” experts, and the EC
itself [8], continue to use the ratio of household expenditure on energy as an unbiased description of
energy poverty. For the particular case of electricity, a simple way of estimating the energy
vulnerability of a family is to examine the ratio between average per capita energy expenditure over
family income.

Electricity Expenditure
y EXp 100 (1

Total Revenues(Familylncome) i

By computing the decile thresholds for this ratio at the national level, we can then identify an
“at risk of energy poverty household” when the ratio for that household is above the 80% or 90%
decile threshold (or another similar arbitrary limit such as two times the national median).

Income dynamics and energy expenditure may follow different dynamics and be reactive to
different policy measures [9], but the aim of this relative measure is to relate energy poverty with
income poverty; the ratio may worsen if income conditions deteriorate, and/or energy expenditure
increases (due to changes in prices, temperature or living conditions).

This type of ratio has been criticized because families facing income restrictions may adjust their
energy expenditure, especially for heating their homes in winter, to under the optimum level [10].
Even if this is true for some countries and for some types of energy expenditure, the Spanish data for
electricity expenditure do not confirm this idea. Data shown in the table below illustrate that except
for the poorest households (There is another exemption for the highest revenue group but this could
be considered atypical or anecdotical because only 55 observations (out of a total of 21,735
households) were included in this sample group.), total electricity expenditure is quite inelastic to
household income levels, which supports the use of this standard ratio as our variable of analysis. In
effect, per capita electricity demand is around 369 euros for almost all of the revenue levels (see Table
1).

Table 1. Per capita yearly electricity expenditure. By monthly revenue level.

Monthly Revenue Mean Median  Std. Dev. Obs.
<500 euros 344.2473 2945735  222.4565 966
500-1000 euros 391.3066  340.3448  256.0153 3731
1001-1500 euros 375.3440 3229200  253.1211 4503
1500-2000 euros 370.9687  317.6848  243.9479 3640
2000-2500 euros 363.8701  311.5983  228.3826 3039
2500-3000 euros 352.2644  306.3529  237.3860 2345
3000-5000 euros 350.2464  300.0000  222.2108 2850
5000-7000 euros 363.5584  313.6333  233.3433 470
7000-9000 euros 378.5435  326.0500  209.2936 136
>9000 euros 588.7737  375.0000  676.7883 55
GLOBAL 368.8893  316.6667  243.7883 21,735

Source: Own calculations with 2015 data from Household Budget Survey (National Institute of
Statistics-INE). OECD house size equivalence was taken to estimate the per capita expenditure.

The reason for this inelasticity in the Spanish case could be that electricity is used for heating
only in a small number of dwellings, as most are located in warm locations. Services provided by
electricity expenditure are so essential (lighting and plug-in devices such as fridge, washing machine,
and ceramic hobs) that electrical bills becomes quite difficult to adjust below a certain minimum level.
If this hypothesis is true, we can then assume that an increase in family revenue will not automatically
produce an increase in the electricity bill (except for poorest households) but a change in the
electricity poverty ratio. It should be remembered, that the relationship between income and energy
poverty is central in our article: we do not only want to determine the main causes of electricity
poverty but to explore the differential effects of the factors across different income levels.
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2.3. Drivers of Household Electricity Poverty

Household energy poverty usually occurs because of a triad of high-energy prices, low income
and poor energy efficiency in the residence (see Figure 1).

HIGH
ENERGY
Indicators: BILLS
- Income .
. Indicators:
- *

- E::g:gz prices - Energy consumption
i type)*
consumption ( .
(level) ’ LS ENERGY - Type of heating

AFFORDABILITY USE system & share of
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POOR

INL(?(;’:IE ENERGY
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* 1 exogenous
Figure 1. Energy poverty triad. Source: Pye et al. [11].
Different variables for these three different areas and intersections are commonly used in the
literature. Following this approach, we also use a four group classification of explanatory variables

that could be related to electricity consumption (see table 2).

Table 2. Classification of variables driving electricity poverty.

Neighbourhood Density
Heating and Cooling Degree-Days
Climate
Urban Structure
Gender
Nationality
Usage/Behavioural variables Professional occupation
Educational skills
Household size and family age structure

Environment /Geographical Variables

Geometry, envelope fabric
Equipment and appliances
Ind t t
Dwelling / Infrastructural variables REOOT Temperatues
Heating system
Equipment use

Building age

Ownership status (tenure)

Housing t
Family status ou.sm'g ype
Family income

Occupancy schedules

In a recent study, Middlemiss and Gillard [2] carried out an interview among “vulnerable
families” in the UK. Based on their qualitative assessment, they found six categories of variables that
were significantly related to vulnerability: quality of dwelling fabric, energy costs and supply issues,
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stability of household income, tenancy relations, social relations within the household and outside,
and ill health. The main contribution of this paper is their findings in regard to the private and public
efficiency of the strategies to cope with vulnerability.

Most of the variables included in the previous table have a clear connection with electricity
consumption.

Geographical context is normally a clear determinant of electricity consumption. In the case of
Spain, there are regional disparities in climate conditions, but considering that electricity is not
commonly used for heating (only around 14% of dwellings according to the Families Budget Survey,
2018), the impact of regional climate may not be very relevant. Nevertheless, regional average
electricity consumption shows large heterogeneity across Spain (see Table 3 below) suggesting the
need to add a regional dummy indicator as a control variable. This variable would account for other
climate conditions such as sunlight hours, and at the same time, would control for other sources of
unobserved regional heterogeneity that may bias the rest of the coefficients.

Table 3. Regional electricity consumption per dwelling (MW).

Interquantile % of

Percentile Percentile Difference (Difference

Mean 25 Median 75 between the 75% and 25%
Percentiles Divided by the
Median)
Andalucia 715 420 623 894 76.0%
Aragén 668 399 570 789 68.5%
Asturias 584 344 491 709 74.4%
Baleares 865 480 736 1100 84.1%
Canarias 584 336 509 720 75.5%
Cantabria 598 360 518 727 70.8%
Castillay 576 340 493 708 74.6%
Leon
Castilla-La 755 404 606 900 81.7%
Mancha
Cataluna 659 366 544 816 82.8%
Valencia 701 406 600 882 79.4%
Extremadura 681 371 577 840 81.4%
Galicia 630 360 537 791 80.2%
Madrid 653 384 557 804 75.4%
Murcia 752 420 660 960 81.8%
Navarra 581 365 512 720 69.3%
Pais Vasco 583 355 500 720 72.9%
La Rioja 552 354 490 692 69.0%
Ceuta 452 282 408 581 73.2%
Melilla 660 420 600 780 60.0%

Source: Own Elaboration from Household Budget Survey 2012 and 2016 (INE) and own calculations.

The variables related to dwelling characteristics and household equipment are of great
importance but, unfortunately, for most of countries, it is very difficult or impossible to gather
homogeneous micro data at a national level. In the Spanish case, we do not have this type of data,
but at least for those households who spend on electricity we were able to examine the Household
Budget Survey (HBS). Our proposal is, at least, to control for building age (disposable at the level of
the household data) as a proxy of several variables related to dwelling infrastructure. We expect that
an older dwelling will be associated with higher electricity consumption because of poorer energy
efficiency [12,13]. For the size and type of electrical appliances, family income will probably work as
a proxy variable.
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In the category of family status, household size and family composition are often identified as
very important variables to define energy demand [14,15]. Some authors have also highlighted the
indeterminate effect of tenure in dwelling consumption. Sardianou [16] and Vaage [14] found that
owners tend to consume more energy than tenants. Conversely, Rehdanz [17] and Meier and
Rehdanz [18] found negative or no significant effect.

In the group including usage/behavioural variables, some characteristics related to educational
skills, gender, nationality and household age structure are encompassed. Using similar sets of
variables, Ping Du et al. [19] and Belaid and Garcia [20] emphasized the crucial role of personal
behaviour in final electricity consumption. Based on previous findings [21], the authors verified that
household energy consumption can vary up to three times because of behavioural patterns, even
when the buildings share similar characteristics.

Regarding electricity price, 95% of consumers pay the so-called “last resource tariff” in Spain so,
in our view, it is not crucial to have a measure of prices using a cross section analysis.

3. Methodology

There is a vast amount of literature on estimating electricity consumption or saving behaviour
at the dwelling level, but it is not so common to find specific studies about electricity poverty or
electricity vulnerability.

The technical or statistical approaches used to analyse energy or electricity consumption drivers
are very heterogeneous [22]. Swan and Urgusal [23] propose a simple classification of different
techniques depending on the initial approach defined by researchers: top-bottom or bottom-up. In
both cases, time series analysis of electricity demand is more frequently used than cross-sectional
data analysis.

From a top-down point of view, a macroeconomic approach rules the individual’s typical
consumption behaviour. For the bottom-up approach, available temporal and cross-sectional
microdata allow more or less accurate predictions of short-term future consumption by family units.
Focusing on the latter, because it is the approach selected in this paper, authors frequently distinguish
between statistical and engineering techniques. In the first case, they highlight regression, conditional
demand analysis, and neural networks as the preferred methods to estimate the relationship among
selected explanatory variables and electricity demand. In the second case, population distribution,
archetype and sampling methods are the most common techniques.

In a recent article, Fumo and Biswas [24] suggest that the use of traditional regression analysis
in this area of research has become quite common in recent years due to the availability of more micro
residential data on energy habits and consumption. Technological advances, for accurate
measurements of electricity consumption per hour, partially explain the re-adoption of regression to
understand family patterns of spending. Even by using such a simple model, we get reasonable
accuracy in short-term forecasting.

Although traditional regression has been the preferred technique to estimate electricity demand,
some authors have pointed out the difficulties of this analytical tool in capturing the marginal effects
at the individual level. The huge and very informative heterogeneity observed in micro data is
somewhat ignored when using traditional regression because it mainly focuses on the average
behaviour [25].

Additionally, a rigid standard regression would normally fail in the presence of
heterocesdasticity, frequent outliers, non-normality, non-linearity, and/or non-permanent
coefficients for each explanatory variable, depending on the relative level of the final electricity
consumption.

As is well known, the basic linear regression model rests on the assumptions of Gauss-Markov
compliance to ensure that the obtained estimators are linear, unbiased, optimal and consistent. These
imposes several conditions on the model: the hypotheses of linearity in the mathematical relations;
null mean, homoscedasticity and non-autocorrelation in the perturbations; and strict exogeneity
(random perturbations will not be conditioned by the values of the explanatory variables).
Additionally, the maximum likelihood estimator (GLS) will coincide with the Ordinary Least Square
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(OLS) estimator only if the random perturbations are distributed as normal, with zero mean and
constant variance.

The proposed framework for making estimates using OLS in the regression to the usual mean is
frequently violated. Maintaining equal response proportions of the explained variable to changes in
the explanatory variable (linearity) does not always seem congruent. In this research, it seems
reasonable to suppose, for example, that the response on electricity consumption for a very high-
income situation cannot be the same as for a very low income. The economic effort involved in the
first deciles of consumption for a low-income earner is surely much greater than that in the case of a
high-income earner. In other words, covering a minimum electricity cost for those with low incomes
will require a great deal of effort, while it will be practically irrelevant for those with high incomes.

Second, the hypothesis of homoscedasticity (variance of constant random disturbance
throughout the sample) is also frequently violated in our case. It seems plausible that the
determinants not expressly included among the explanatory variables, and, then, included in the
random disturbance, will be very different if we consider low consumption levels rather than high
level consumers.

Third, the hypothesis of normality of resids is violated both empirically (when regressions of
cases such as the present are made using ordinary least squares) and theoretically. Again, it is difficult
to think of homogeneous behaviour in a highly scalable consumption variable when dealing with
low- and high-level consumers. Maintaining the mean as the most probable value is not data driven.

Quantile regression effectively deals with the previously defined limitations by relaxing the
assumption of normality, although, essentially, it provides a different estimate of the coefficients for
the different quantiles considered for the variable under study. In our context, this procedure makes
sense if we suspect that the importance of the explanatory variables for electricity consumption is not
homogeneous for the different levels of consumption. Thus, quantile regression emerges as the most
appropriate technique to provide an accurate and impartial estimate of the effect of explanatory
variables for the most vulnerable households.

As an alternative to the common OLS estimator based on the mean, the quantile regression
estimator is based on the same idea, but it takes into account the median (or another selected quantile)
and minimizes the sum of absolute resids (instead of the sum of square resids).

leil = )y~ median] @)
A

As Koenker and Basset [26] demonstrated, in the above equation, the equal weight of both the
left and right sides of the endogenous variable produces an accurate estimate of the median.
Therefore, by weighting each tail of the distribution by the desired quantile and minimizing the
previous function, we can find the specific coefficients for any other quantum (call it 7%):

Quantile (¥) = ) pely; - ql )
i
where the weighted factor (p;):
_(—x.(1-1) x<0
pelx) = { x.T x> 0} @

In the traditional regression for the mean, the estimated value of the endogenous variables
corresponds to the mean hope conditioned by the set of variables and the explanatory parameters-
variables Xp, resulting in:

y=u=EQXp) ©)
Similarly, we can write this expression for quantiles in the following way:
y = q = quant(y|Xp;) (6)

Therefore, we can estimate the coefficients for each quantum using the following expression:


https://doi.org/10.3390/en12112089

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 18 September 2020

minz p‘rlyi _XB‘rl (7)

This expression could be rewritten as follows:

min Z pzlyi _X:[?‘L'I + Z A= p)lyi _X:[?‘L'I 8)
YizX;B Yi<Xif

where it is easy to observe the process underlying the quantile estimation method. Specifically, it
would be a weighted estimation by using linear optimization algorithms, in which the observations
included in the quantile of interest are more weighted than those outside the quantile. Seen
differently, this procedure assigns a different weight for positive and negative errors, allowing the
estimation of different parameters for each selected quantile.

To a certain extent, the use of absolute values versus the square of traditional regression
minimizes the effect of outliers on the parameters estimated by treating them linearly and not
“exaggerating” them through the square power involved in the OLS estimation.

Another additional advantage of this estimation method is that it allows us to avoid the so-called
“Heckman selection bias” [27] present in many investigations that make multiple estimates using
ordinary least squares and plotting the sample by deciles. This sample trimming produces biased
parameters, and invalidates their later applicability. In the quantile regression, the total sample is
always used, although conveniently weighted.

Although Koenker and Bassett [26] formulated quantile regression in the late 1970s, this
technique has not been used often until recent times. In the past, two issues inhibited its feasibility:
the complex minimization algorithm to obtain the coefficients, and the weakness of the confidence
intervals of the estimated coefficients in the absence of the assumption of normality in random
disturbances. Currently, the exponential growth in computational capacity and the ease of avoiding
confidence interval problems through the use of bootstrapping techniques have produced an
excellent scenario for using this technique without any difficulties (Several authors have addressed
the problem of estimating the coefficients confidence intervals in the framework of this “semi-
parametric” regression. Hoenker and Hallock [28] proposed up to five different alternatives for what
are known as range inversion intervals. Powell’s estimator [29], known as the “Sandwich method”,
determines the covariance of the estimators based on independent and identically distributed errors
through sample randomization or bootstraping versions, obtaining results similar to those obtained
previously by Hoenker and Hallock. Through various Monte Carlo experiments, Buchinsky [30]
demonstrates that, in the face of heterocedasticity problems, the method of estimation using
randomized sub-samples for the calculation of confidence intervals is the most robust).

4. Data

We used the annual Household Budget Survey published by the National Institute of Statistics
(INE) for 2015 (the latest available). The HBS is identical across EU countries so that they can all be
integrated later in a common Eurostat operation.

We decided to focus our analysis on the family level so we merged individual micro data sets
with family” data sets. The total number of observations in each wave is composed of nearly 21,500
dwellings.

The endogenous variable (percentage of electricity expenditure over total revenues) clearly
exhibits a non-normal distribution, and the mean and median are fairly distant as a result of a large
number of outliers and extreme values. The standard regression on the average appears to be an
inappropriate instrument when the mean is clearly a poor representation of the sample (see Figure
2). Additionally, bivariate graphs illustrate that, at the bivariate level, the relationship between
electricity expenditure and potential explanatory variables is not constant across quantiles for our
endogenous variables.
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In the survey, the family most frequently includes has 2, 3 or 4 members (32%, 23% and 21%
respectively). Families with just one member represent around 18% of the sample. Families of six
members represent only 6% of the sample. Literature (and logic) indicate that a larger size of
household is related to greater expenditure, but the increase in such expenditure is not proportional
to the increase in the number of members. This heterogeneity in the effect of family membership on
electricity consumption supports the thesis about the behavioural concerns cited above [32].
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Figure 2. Electricity expenditure by household size (up-left), by family income (up-right) and by
tenure regime (down). (The total electricity expenditure has been trunked to lower than 7000 to
enhance the visualisation of the graph). Source: Own elaboration Kernel density using Family Budget
Survey, 2016 (INE).

5. Results and Discussion

Not surprisingly, family income emerged as the most relevant variable in this study. The higher
the income, the lower the probability of falling into electrical poverty (the coefficients indicate a
reduction of this indicator as income increases). All income cuts are significant in both OLS and
quantile regressions. Comparing OLS coefficients with the median coefficients (q = 0.5) easily shows
the importance of outliers in defining a biased estimate if OLS parameters are used. As expected, the
estimated quantile coefficients for these variables show an increase in the importance of reducing
electrical poverty when considering higher values of this indicator: people in the highest part of the
distribution of electrical poverty suffer a greater reduction of this situation when considering higher
incomes. Non-linearity is fully confirmed by the evolution of these coefficients, and the use of OLS
estimators produces a systematic bias and is affected by a problem of heteroscedasticity, so
employing the quantile regression methodology proposed here is crucial.

The use of these estimates opens the door to more accurate policies that are focused directly on
direct income support rather than on price reduction. Revenue policies could be graduated to the
desired level taking into account the differences in parameters. The same level of reduction need not
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necessarily be applied for any given income, but can be done in tranches using the same coefficients
shown here. Such policies could be applied through personal income tax deductions. If price
reduction is the policy measure adopted (as in the recent Spanish Law), it should be assumed that
the effect so far estimated would be significantly lower than the real effect because the OLS
coefficients have been used. For lower incomes, the reduction by 7.8 percentage points in the electrical
poverty indicator marked by the OLS coefficients underestimates the effect of the measure on the
population most relevant to it, where said effect is greater than 10 points (80% quantile) or 12 points
in the case of the poorest (90% quantile). Therefore, the measure is fully justified and its impact is
almost double that estimated when OLS is used (see Table 4).
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Table 4. Regression results for Indicator 1 of electricity poverty. (Endogenous variable: Electricity Expenditure/Total Expenditures) * 100.

(significance level * 90%, ** 95% and *** 99%)

Reference Variable OLS 0.2 0.3 0.5 0.8 0.9

Intercept 2133 1288 ¥ 1497 ¥ 1932 ¥ 3408 *** 4670
Surface 0.005 ** 0.003 *** 0.003 ** 0.004 ** 0.006 *** 0.007 @ ***
Family Size 0.753  ** 0419 *** 0472 *** (0584 *** (0750 **  (0.839  ***
Resp. Age 0.004 ***  0.001 * 0.002 ** 0.003 ***  0.006 *** 0.009 F**
Gas Pov. 0.098 ***  0.082 *** 0.086 ** 0.095 ** 0.111 **  0.142 ***
Andalucia Aragon -0.190 ** -0.133 ** -0.140 ** -0.221 *** 0297 *** 0418 ***
Asturias -0.480 ***  -0.346 *** 0348 *** 0462 *** 0460 *** -0.520 ***
Balears 0580 *** 0230 *** 0270 ** 0357 ** (0.757 < ** (0935 « ***
Canarias -0.801 *** 0382 *** 0481 ** -0.681 *** -1.061 *** -1.488 ***
Cantabria -0.304 ***  -0.166 *** -0.191 ** -0.345 *** 0447 ** 0509 ***
Castilla y Le6n -0.528 ** 0387 *** 0404 ** 0484 *** -0.616 ** -0.695 ***
Castilla la Mancha 0.038 -0.163 *** -0.144 *** -0.141 ** 0.041 0.296 *
Cataluna -0.308 *** 0250 ** 0255 ** 0285 *** (.333 *** (.382 ***

Valencia -0.202 *** 0213 *** —0.183 *** -0.173 *** -0.202 *** -0.096

Extremadura 0.026 -0.078 -0.068 -0.022 0.041 -0.111
Galicia -0.530 *** -0.391 ** 0399 *** 0436 *** -0.511 ** -0.551 ***
Madrid -0.172 ** -0212 ** 0218 *** -0.257 ** —0.291 *** —0.299 *
Murcia 0.253  ***  0.049 0.066 0.183 **  (.182 * 0.300 *
Navarra -0.347 *** 0231 ** 0258 *** -0.365 *** 0481 ** 0561 ***
Pais Vasco -0.368 *** 0279 *** 0308 ** -0.368 *** -0.449 ** (0555 ***
Rioja -0.421 ** 0331 *** 0332 *** -0320 *** -0.440 *** -0.599 ***
Ceuta -0.610 *** 0235 * 0258 ** 0361 *** -0.837 *** -0.996¢ **
Melilla 0.118 0.133 0.100 -0.089 -0.566 *** —(0.898 ***
<500 euros 500-1000 euros 7799 ¥ 5017 ¥ 5932 ¥ 7478 10227 ***  12.050 ***
1001-1500 euros 3.731 2112 ¥ 2470 * 3221 ¥ 4862  *** 5808
1500-2000 euros 1.865 **  1.092 ** 1256 ** 1602 *** 2316 *** 2718 ***
2000-2500 euros 0.727 ** 0424 *** 0494 ***  0.607 ***  (0.898 *** (0993  ***
2500-3000 euros -0.486 *** 0330 *** 0366 *** -0.394 *** 0540 ** -0.608 ***

3000-5000 euros -1.054 ** -0.738 ** -0.822 ** -0.890 ** -1.081 *** -1.269 ***
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As noted above, the regional effect is extremely relevant in the characterization of electric
poverty in Spain. All regions show a parameter significantly different from zero when quantile
regression is carried out for the poorest deciles, which does not occur using the OLS model. All the
autonomous communities have lower levels of electrical poverty with respect to the community
taken as a reference: Andalusia. It is true that this difference is not very important considering the
value of the coefficients, but if using the values estimated by OLS we observe differences of between
0.11 to 0.8 percentage points (of lower electrical poverty), while using the coefficients of the quantile
regression we observe values closer to 1 point of difference in most regions.

Unfortunately, as already mentioned in previous sections, the results for the region variable are,
by nature, imprecise, because the variable probably contains several other factors. In any case, the
inclusion of the rest of the available control variables (such as income, population density, surface
area and ownership of the dwelling, etc.) will probably isolate the climate factor in this variable,
which we understood to be fundamental in our previous explanations (in both extreme cold and heat
conditions). Note that the reference region, Andalusia, is the one that suffers the worst extreme heat
conditions for a large number of months per year. Considering these differences, we may have a new
mechanism to refine the implementation of the policy for reducing energy poverty which also takes
into account the geographical nature of the recipients.

i il QT
Surface Family Size Age of respondent

Figure 3. Electricity poverty. Some quantile coefficients.

These graphs (see Figure 3) are useful to highlight once again the important bias that occurs
when observing the parameters usually used (OLS) when the interest is focused on a very specific
section of the sample (in our case, the higher quantiles, as the poorest households in terms of
electricity, see Figure 3). The rest of the graphs can be seen in the Appendix.

As expected, the type of fuel used to heat the home and/or water in the home is relevant. One
point of reduction in poverty is shown when fuels other than electricity are used. It should be borne
in mind that, as a basic control variable, the variable “gas-related energy poverty” has been included
separately, in such a way that these coefficients would reflect how using fuels other than electricity
sharply reduces poverty (almost two points in the poorest households observing the quantile
coefficients). This observation leads to the need to leverage investment in more efficient and cheaper
heating systems, such as gas versus electricity to reduce the electricity poverty gap.

As is well known, the fight against climate change promotes reduction in the use of gas by
favouring greater electricity consumption. In view of our results, a difficult balance is established
between not disadvantaging the most vulnerable dwellings in terms of electrical poverty and not
harming the environment by favouring the consumption of gas for heating the home. Taking into
account the accelerated learning curve in the use of clean energies, electricity generation could be
carried out with lower production costs in the near future and, therefore, with lower prices,
eliminating the current advantage of gas over electricity.

We briefly consider some of the other coefficients. For example, while the housing ownership
regime is not significant in the OLS estimation, it is significant in the quantile regressions, where
families with rented housing see their poverty gap slightly reduced when compared to the other
tenure situations. Perhaps this is related to the excessive stock of owned dwellings in Spain, where
typically families have large mortgages with little capacity to change their payment instalments
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during periods of crisis, a differential in families with rented housing, who can probably partially
readapt their housing expenditure during these periods.

With regard to the characteristics of the parameters estimated for different educational levels, it
should be noted that these levels are significant for the richest or middle class deciles (from 20% to
50%), but not for the poorest deciles (80% and 90%). This fact would not have been observed if only
the results of OLS (where none of the levels are significant) were considered. It is also interesting to
note that the parameters (around 0.35 points of greatest poverty before any educational level
compared to the reference, those without formal education) are always positive and not different
among the educational levels.

In short, all of these variables are useful points of information that can help to structure energy
poverty policies in a more granular and successful way. The effect of policies, such as subsidies to
change the heating system or income tax reductions for households with property debts should only
be targeted at lower-income households if the aim is to reduce electricity poverty. Measures aimed
at reducing consumption (as part of reducing the climate change impact of the use of this source of
electricity) should clearly focus on changing the heat source.

6. Conclusions

In this article, the crucial issue of electricity poverty in developed countries has been
characterised using the Spanish situation in 2016 as a case study. Although the study of energy
poverty has been a common topic in the economic literature, it has usually focused on less developed
countries. Because of emergence of inequalities and interest in climate issues in developed countries,
research on this topic is now gaining momentum.

Traditionally, electricity demand, and to some extent, poverty research has been conducted
using regression models based on the method of estimating least squares coefficients. Both because
the focus of poverty is concentrated on very specific distribution quantiles and because the impact of
some explanatory variables can change drastically if the distribution of the variable is considered, the
findings of this article are especially important when considering alternative policy measures to
avoid electrical poverty.

For example, as we have noted above, the findings of this investigation opens the door to more
accurate policies that focus directly on direct income support rather than on price reduction. Revenue
policies could be graduated to the desired level by taking into account differences in parameters. The
same level of reduction need not necessarily be applied for any given income, but could be done in
tranches using the same coefficients shown here. Such policies could be applied through personal
income tax deductions. If price reduction is the policy measure adopted (as in the recent Spanish
Law), it should be assumed that the effect so far estimated could be significantly lower than the real
effect because OLS coefficients have been used. For lower income earners, the reduction by 7.8
percentage points in the electrical poverty indicator marked by the OLS coefficients underestimates
the effect of the measure on the population that is most relevant, where said effect is greater than 10
points (80% quantile) or 12 points in the case of the poorest (90% quantile). Therefore, the measure
used in this study is fully justified and its impact is almost double that estimated when OLSs are
used.

In this article, we have shown the crucial differences in estimating the drivers of electricity
poverty using OLS and using quantile regressors. Clearly, the use of the former produces a distorted
picture of the reality, and results in a poor interpretation of the potential effects of public or private
initiatives to reduce poverty.

Predictably, our research shows that income is the most important variable in relation to
electrical poverty, but other variables such as the characteristics of housing tenure, or regional
differences are also crucial when interpreting the effect of different anti-poverty policies.
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Appendix A
Table Al. Descriptive statistics of the explanatory variables.
2016 2012

Group Variable Mean Std.Dev. Mean Std. Dev.
Aragén 0.044674 0.206593 0.044344 0.205863

Asturias 0.040442 0.196997 0.038621 0.192694

Balears 0.034645 0.182882 0.036992 0.188747

Canarias 0.04472  0.206694 0.045135 0.207605

Cantabria 0.034553 0.182648  0.03555  0.185169

Castilla y Ledn 0.067219 0.250406 0.066307 0.248823

Castilla la Mancha 0.055533 0.229022  0.055512  0.228981

Cataluna 0.091511 0.288342 0.089247 0.285106

Valencia 0.077755 0.267791  0.079289 0.270196

Extremadura 0.045503 0.208409 0.045461 0.208318

Galicia 0.06087 0.239096 0.060816  0.238998

Madrid 0.07458 0.262719 0.072216  0.258852

Murcia 0.040856 0.197961 0.041413 0.199247

Region Navarra 0.033724 0.180523 0.035224  0.18435
Pais Vasco 0.101035 0.301382 0.097855 0.297125

Rioja 0.033126  0.17897  0.033595  0.18019

Ceuta 0.005245 0.072234 0.005351 0.072957

Melilla 0.005567 0.074406 0.005863 0.076347

Pop 50 k990 k 0.123948 0.329529 0.117584 0.322123

Pop 20 k—49 k 0.152749 0.359754 0.150342 0.357415

Pop 10 k-20 k 0.104072 0.305361  0.10865  0.311207

Pop <10k 0.243892 0.429438 0.244242 0.429647

Intermediate density 0.236531 0.424962  0.23461  0.423765

Low density 0.288567 0.453106 0.293146 0.455215

Paired chalet 0.24472  0.429931 0.251733 0.434019

Condo < 10 apartments 0.177088 0.381752  0.180587  0.384685

Condo > 10 apartments 0.470899 0.499164 0.460472 0.498447

Other 0.001288 0.03587  0.001163  0.034088

Dwelling age More than 25 years 0.652404 0.476218  0.63045  0.482694
Surface 101.1462 49.61235 101.6724  49.6414

Electricity 0.229998 0.420841 0.217114 0.412291

Gas 0.394801 0.488819 0.374064 0.483891

Liquid gas 0.238417 0.426125 0.27351  0.445771

Water Other liquid sources 0.117598 0.322139 0.120748  0.325842
Solid sources 0.005659 0.075015 0.005444 0.073585

Solar energy 0.010674 0.102765 0.007073  0.083804

Not available 0.000046 0.006783 0.0000465 0.006821

Electricity 0.140189 0.347191 0.138849 0.345797

Gas 0.332505 0.471122 0.309851 0.462443

Liquid gas 0.025673 0.158161 0.028384 0.166071

Heater Other liquid sources 0.142397 0.349465 0.149598 0.356685
Solid sources 0.02259  0.148597 0.017403 0.130769

Solar energy 0.00161 0.040097 0.000791 0.028115

Not available 0 0 0.0000931 0.009647
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Income 500-1000 euros 0.171659 0.377092  0.172305 0.377654
1001-1500 euros 0.207177 0.405293  0.203806  0.402836
1500-2000 euros 0.167472 0.373405 0.171839  0.37725
2000-2500 euros 0.139821 0.346809 0.137267 0.344137
2500-3000 euros 0.10789 0.310249 0.114234 0.318102
3000-5000 euros 0.131125 0.337545 0.131171  0.337595
5000-7000 euros 0.021624 0.145456 0.021125 0.143805
7000-9000 euros 0.006257 0.078856 0.003583 0.059751
>9000 euros 0.00253  0.050241 0.001582  0.039745
Property with debt 0.302001 0.459136  0.320087 0.466521
Rented 0.117184 0.321647 0.10772  0.310033
House tenure Rented (low payment) 0.01095 0.104071  0.012936 0.113
Semi-free cession 0.027421 0.163311 0.027919 0.164744
Free cession 0.019462 0.138144 0.018426  0.13449
Rest EU 0.021256  0.14424  0.023638 0.151921
Nationality Rest Europe 0.003221 0.05666  0.002978 0.054491
Rest of the world 0.054566 0.227137 0.053325 0.224685
Employment Unemployed 0.434967 0.495764 0.439719 0.496364
Size Household size (OECD) 1.770412 0.547907 1.806831 0.557249
Age Age main income contributor 55.6213 14.93647 54.29091 15.30132

Source: Family Budget Survey 2012 and 2016 (INE) and own calculations.
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Graph Al. Electricity poverty. Quantile coefficients.
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