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Abstract: The main objective of this article is to explore the causes of household electricity poverty 
in Spain from an innovative perspective. Based on evidence of energy inequality across households 
with different income levels, a quantile regression approach was used to better capture the 
heterogeneity of determinants of energy poverty across different levels of electricity expenditure. 
The results illustrate some interesting and counter-intuitive findings about the relationship between 
household income and electricity poverty, and the technical efficiency of quantile regression 
compared to the imprecise results of a standard single coefficient/OLS approach. 
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1. Introduction 

Energy poverty and vulnerability are critical issues. According to current research, the problem 
is extensive and even severe in many countries. Recent data available from the EU survey on Income 
and Living Conditions estimates that around 11% of the EU population were unable to keep their 
home adequately warm. In the particular case of Spain, where a long and serious economic crisis 
have greatly deteriorated living conditions for millions of people, some recent reports have warned 
about the extent of this problem [1], urging politicians and energy companies to take an active role in 
the debate. 

The main objective of this article is to explore the causes of household electricity poverty in 
Spain, with a special focus on the impact of household income levels on electricity power 
expenditure. 

Standard analyses of electricity consumption for a given country, region or area, frequently use 
average household expenditure ratios that do not fairly represent the whole population they attempt 
to describe. The average value of energy household spending is not of real interest if different levels 
of energy consumption are caused, affected or reversed by different factors with different intensity. 
In this context, electricity poverty, understood as an extreme value of energy relative expenditure, 
deserves particular attention. Lessons learnt from empirical studies that aimed to explain electricity 
household consumption as a whole, might not be extrapolated to the poorest households and are not 
of particular interest when it comes to determining how to tackle electricity poverty at the household 
level. 

Although ordinary regression (OLS) has been the most used technique to estimate energy 
poverty drivers, nowadays, the availability of microdata allows more granular and accurate estimates 
of the effects of each of the explanatory variables within this phenomenon. The implicit simplification 
of the classical regression (focusing in the mean) can be useful for aggregate data but it can also 
obscure the very interesting nuances that we can discover using microdata. When exploring poverty 
drivers, it is crucial to focus on vulnerable populations, however, by using segmented samples and 
subsamples, the statistical results will be biased. 

Additionally, the presence of heteroscedasticity and frequent outliers in microdata dramatically 
affects the OLS estimates. Conversely, quantile regression (based on absolute errors instead of square 
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errors, and also using the total sample, but differently weighted by subsamples) produces consistent 
and efficient estimates even in data showing these potential problems. 

Finally, it is worth mentioning that quantile regression can produce different coefficients for the 
same driver (explanatory variable) depending on the referred electricity poverty quantile. As we 
want to focus on a vulnerable population, it is not necessary to have a mean coefficient for the entire 
population, but rather, a very specific coefficient for the poorest population. OLS does not allow such 
a distinction and produces a mean coefficient. As we will show below, quantile regression is a useful 
tool for discovering the real effect of each one of the drivers on electricity poverty. 

Consequently, quantile regression emerges as the most suitable technique to perform a fruitful 
analysis of the explanatory variables of electricity household relative expenditure. As will be shown 
later, estimated coefficients for the main drivers of electric energy household consumption present 
very different values across different energy relative expenditure quantiles. 

The present paper clearly complements the existing literature in this field. Firstly, although there 
exists a vast amount of literature on the causes of average energy consumption using standard 
econometrics, a quantile approach is not that common. Additionally, even though the drivers of 
electricity consumption or saving have received extensive attention in the economic literature at a 
cross-country level, there are very few studies specifically related to electricity poverty (or 
vulnerability) in a developed context, and at the household level [2]. 

Specific attention to household behaviour and causes of electricity poverty for families is crucial 
from a policy perspective at a time when debates about different dimensions of economic and social 
exclusion have gained momentum in the political arena, even in the context of well-developed EU 
countries. In the age of new technologies and globalization of mass communication, electricity 
scarcity not only affects basic needs such as heating, food or sanitation, but also hinders access to 
communication, e-learning activities, e-commerce, etc.; electricity poverty emerges as a 
contemporary driver of social inequality. 

Not all explanatory variables of energy poverty are available or accurately measured in the 
available statistics. In this article, we were able to find a wide set of variables referring to household 
equipment, the characteristics of the people who live there, socio-economic status, and even several 
behaviour-related variables (gender, studies, nationality, etc.). Unfortunately, many other variables 
such as physical characteristics of the building, available electrical appliances, and indoor-outdoor 
temperature difference were not available. 

Certainly, this restriction limits the scope of the analysis, but conversely, several fundamental 
variables such as income, the way of heating the home, ownership characteristics, etc., have been 
shown to be useful for suggesting various political measures that could be promoted (see the 
Discussion section). In addition, the selected technique makes it possible to eliminate the inherent 
biases in the use of mean values, instead using those that are most appropriate for the vulnerable 
population. 

This article is structured as follows. In the second section, a review of the theoretical and 
literature background is carried out, highlighting the main variables and estimation techniques 
previously used in other texts. In the third section, we summarise some of the advantages of the 
quantile regression approach in the context of electricity poverty analysis. In the fourth section, a 
descriptive analysis of the data is conducted. In the fifth section, the results of the quantile regression 
are discussed, and the main conclusions are outlined. 

2. Definitions, Theoretical Background and Literature Review 

2.1. Definition of Energy Poverty/Vulnerability 

Day et al. [3] (p. 260) define “energy poverty” as “an inability to realise essential capabilities as 
a direct or indirect result of insufficient access to affordable, reliable and safe energy services, and 
taking into account available reasonable alternative means of realising these capabilities”. A similar 
characterisation is used in [4] (p. 31): “the inability to attain a socially and materially necessitated 
level of domestic energy services […] tied to the ineffective operation of the socio-technical pathways 
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that allow for the fulfilment of household energy needs”. This broad definition can be applied to all 
socio-economic spectrum and is valid either for under-developed or well-developed countries; in the 
case of our study in Spain, “insufficient accessibility” should be understood not as a physical barrier, 
but as a budget constraint. 

The term energy poverty is commonly associated with household energy deprivation and 
commonly used in this sense across EU countries where, in recent years, this problem has gained 
momentum as part of the political and social debate in the context of spreading inequality. The EU 
“Third Energy Package” [5] also uses the term in this sense. 

In our paper, we focus our econometrical analysis on the specific concept of “electricity poverty” 
or “electricity vulnerability”. Electrical power can be considered the main and default source of 
energy in a household, and therefore, it is the component that best captures the condition of energy 
deprivation in a household. Also, we wanted to align our conclusions with public policy issues, and 
in that sense, electricity poverty has become the public policy standard measure in Spain when it 
comes to implementing aid programs for vulnerable families. 

We should admit that the use of electricity poverty explicitly excludes household energy 
expenditure for the basic need of heating homes in winter. In order to avoid bias in our analysis, we 
will control for substitutive energy expenditures in the household given that, alternative sources of 
energy used extensively by families in Spain such as natural gas for heating or boilers, may have a 
clear impact on electricity expenditure. Including natural gas expenditure as a control variable is also 
essential in the case of Spain given that temperatures are quite heterogeneous, to the point that heater 
devices are almost never used during the whole year in parts of the country. The Household Budget 
Survey (HBS) for 2015 shows that more than 33% families do not have heating systems in their homes. 
The average percentage varies from 97% in Canary Islands, Ceuta or Melilla, to around 5% in central 
regions, or 50% in southern coastal areas. 

The UK was a pioneer in addressing this problem, and from early 1996 established some 
mechanisms to help people expending more on household energy than a fixed percentage of their 
total incomes (10%). As pointed out in [3] (p. 256): “Annual ‘excess winter deaths’ statistics for the 
UK show every year a peak in the number of deaths during winter months that run to the tens of 
thousands […] a fact which is generally attributed to the poor energy efficiency of the UK housing 
stock, making houses expensive to heat”. 

On the other hand, the use of electricity as the pivotal variable to identify energy vulnerability 
is especially suitable for Spain because of the widespread use of air conditioning during the hot 
Spanish summer. While some authors consider that issues related to cooling households are not 
essential and should not be included in the concept of “energy poverty”, other authors disagree (see 
[6], for example). The effects of extremely high temperature on labour conditions, health, and quality 
of life are obvious, and access to AC devices should be explicitly considered in terms of energy 
poverty. 

In the case of France, which is maybe more similar to the Spanish case (where heating is not 
always the main problem), the definition of “energy precariousness” is “a person encountering 
‘particular difficulties in their accommodation in accessing the necessary energy supply to satisfy 
basic needs, due to inadequacy of financial resources or of housing conditions” [7] (p. 8). 

As a final caveat, it is worth mentioning that measures of energy vulnerability or scarcity are 
commonly addressed by computing energy consumption, but we need to realize that people do not 
directly demand energy itself, but the services provided by electricity or other sources. Families 
demand energy for washing, cooking, lighting, HVAC, mobility, etc. Therefore, some authors have 
proposed a different focus called a services approach, where the level of satisfaction with these 
services determine the definition of electricity poverty. Essentially, this is similar to measuring 
income poverty by looking at material deprivation or affordability of some items thought to be 
indispensable for people to have a satisfactory standard of living. Unfortunately, it is almost 
impossible to get detailed household data about energy services available in households. 

2.2. Measuring Electricity Poverty: the Income Effect 
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There is no unique, consensual definition of how to identify households in energy poverty, but 
using the idea of high spending/low-income, many authors, European countries’ experts, and the EC 
itself [8], continue to use the ratio of household expenditure on energy as an unbiased description of 
energy poverty. For the particular case of electricity, a simple way of estimating the energy 
vulnerability of a family is to examine the ratio between average per capita energy expenditure over 
family income. 

 ݁ݎݑݐ݅݀݊݁݌ݔܧ ݕݐ݅ܿ݅ݎݐ݈ܿ݁ܧ
(݁݉݋ܿ݊ܫݕ݈݅݉ܽܨ)ݏ݁ݑ݊݁ݒܴ݁ ݈ܽݐ݋ܶ

 ∗ 100 (1) 

By computing the decile thresholds for this ratio at the national level, we can then identify an 
“at risk of energy poverty household” when the ratio for that household is above the 80% or 90% 
decile threshold (or another similar arbitrary limit such as two times the national median). 

Income dynamics and energy expenditure may follow different dynamics and be reactive to 
different policy measures [9], but the aim of this relative measure is to relate energy poverty with 
income poverty; the ratio may worsen if income conditions deteriorate, and/or energy expenditure 
increases (due to changes in prices, temperature or living conditions). 

This type of ratio has been criticized because families facing income restrictions may adjust their 
energy expenditure, especially for heating their homes in winter, to under the optimum level [10]. 
Even if this is true for some countries and for some types of energy expenditure, the Spanish data for 
electricity expenditure do not confirm this idea. Data shown in the table below illustrate that except 
for the poorest households (There is another exemption for the highest revenue group but this could 
be considered atypical or anecdotical because only 55 observations (out of a total of 21,735 
households) were included in this sample group.), total electricity expenditure is quite inelastic to 
household income levels, which supports the use of this standard ratio as our variable of analysis. In 
effect, per capita electricity demand is around 369 euros for almost all of the revenue levels (see Table 
1). 

Table 1. Per capita yearly electricity expenditure. By monthly revenue level. 

Monthly Revenue Mean Median Std. Dev. Obs. 
<500 euros 344.2473 294.5735 222.4565 966 

500–1000 euros 391.3066 340.3448 256.0153 3731 
1001–1500 euros 375.3440 322.9200 253.1211 4503 
1500–2000 euros 370.9687 317.6848 243.9479 3640 
2000–2500 euros 363.8701 311.5983 228.3826 3039 
2500–3000 euros 352.2644 306.3529 237.3860 2345 
3000–5000 euros 350.2464 300.0000 222.2108 2850 
5000–7000 euros 363.5584 313.6333 233.3433 470 
7000–9000 euros 378.5435 326.0500 209.2936 136 

>9000 euros 588.7737 375.0000 676.7883 55 
GLOBAL  368.8893 316.6667 243.7883 21,735 

Source: Own calculations with 2015 data from Household Budget Survey (National Institute of 
Statistics-INE). OECD house size equivalence was taken to estimate the per capita expenditure. 

The reason for this inelasticity in the Spanish case could be that electricity is used for heating 
only in a small number of dwellings, as most are located in warm locations. Services provided by 
electricity expenditure are so essential (lighting and plug-in devices such as fridge, washing machine, 
and ceramic hobs) that electrical bills becomes quite difficult to adjust below a certain minimum level. 
If this hypothesis is true, we can then assume that an increase in family revenue will not automatically 
produce an increase in the electricity bill (except for poorest households) but a change in the 
electricity poverty ratio. It should be remembered, that the relationship between income and energy 
poverty is central in our article: we do not only want to determine the main causes of electricity 
poverty but to explore the differential effects of the factors across different income levels. 
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2.3. Drivers of Household Electricity Poverty 

Household energy poverty usually occurs because of a triad of high-energy prices, low income 
and poor energy efficiency in the residence (see Figure 1). 

 
Figure 1. Energy poverty triad. Source: Pye et al. [11]. 

Different variables for these three different areas and intersections are commonly used in the 
literature. Following this approach, we also use a four group classification of explanatory variables 
that could be related to electricity consumption (see table 2). 

Table 2. Classification of variables driving electricity poverty. 

Environment /Geographical Variables 

Neighbourhood Density 
Heating and Cooling Degree-Days 

Climate 
Urban Structure 

Usage/Behavioural variables 

Gender 
Nationality 

Professional occupation 
Educational skills 

Household size and family age structure 

Dwelling / Infrastructural variables 

Geometry, envelope fabric 
Equipment and appliances 

Indoor temperatures 
Heating system 
Equipment use 

Building age 

Family status 

Ownership status (tenure) 
Housing type 

Family income 
Occupancy schedules 

In a recent study, Middlemiss and Gillard [2] carried out an interview among “vulnerable 
families” in the UK. Based on their qualitative assessment, they found six categories of variables that 
were significantly related to vulnerability: quality of dwelling fabric, energy costs and supply issues, 
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stability of household income, tenancy relations, social relations within the household and outside, 
and ill health. The main contribution of this paper is their findings in regard to the private and public 
efficiency of the strategies to cope with vulnerability. 

Most of the variables included in the previous table have a clear connection with electricity 
consumption. 

Geographical context is normally a clear determinant of electricity consumption. In the case of 
Spain, there are regional disparities in climate conditions, but considering that electricity is not 
commonly used for heating (only around 14% of dwellings according to the Families Budget Survey, 
2018), the impact of regional climate may not be very relevant. Nevertheless, regional average 
electricity consumption shows large heterogeneity across Spain (see Table 3 below) suggesting the 
need to add a regional dummy indicator as a control variable. This variable would account for other 
climate conditions such as sunlight hours, and at the same time, would control for other sources of 
unobserved regional heterogeneity that may bias the rest of the coefficients. 

Table 3. Regional electricity consumption per dwelling (MW). 

 Mean 
Percentile 

25 
Median 

Percentile 
75 

Interquantile % of 
Difference (Difference 

between the 75% and 25% 
Percentiles Divided by the 

Median) 
Andalucía 715 420 623 894 76.0% 

Aragón 668 399 570 789 68.5% 
Asturias 584 344 491 709 74.4% 
Baleares 865 480 736 1100 84.1% 
Canarias 584 336 509 720 75.5% 
Cantabria 598 360 518 727 70.8% 
Castilla y 

León 
576 340 493 708 74.6% 

Castilla–La 
Mancha 

755 404 606 900 81.7% 

Cataluña 659 366 544 816 82.8% 
Valencia 701 406 600 882 79.4% 

Extremadura 681 371 577 840 81.4% 
Galicia 630 360 537 791 80.2% 
Madrid 653 384 557 804 75.4% 
Murcia 752 420 660 960 81.8% 

Navarra 581 365 512 720 69.3% 
País Vasco 583 355 500 720 72.9% 

La Rioja 552 354 490 692 69.0% 
Ceuta 452 282 408 581 73.2% 
Melilla 660 420 600 780 60.0% 
Source: Own Elaboration from Household Budget Survey 2012 and 2016 (INE) and own calculations. 

The variables related to dwelling characteristics and household equipment are of great 
importance but, unfortunately, for most of countries, it is very difficult or impossible to gather 
homogeneous micro data at a national level. In the Spanish case, we do not have this type of data, 
but at least for those households who spend on electricity we were able to examine the Household 
Budget Survey (HBS). Our proposal is, at least, to control for building age (disposable at the level of 
the household data) as a proxy of several variables related to dwelling infrastructure. We expect that 
an older dwelling will be associated with higher electricity consumption because of poorer energy 
efficiency [12,13]. For the size and type of electrical appliances, family income will probably work as 
a proxy variable. 
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In the category of family status, household size and family composition are often identified as 
very important variables to define energy demand [14,15]. Some authors have also highlighted the 
indeterminate effect of tenure in dwelling consumption. Sardianou [16] and Vaage [14] found that 
owners tend to consume more energy than tenants. Conversely, Rehdanz [17] and Meier and 
Rehdanz [18] found negative or no significant effect. 

In the group including usage/behavioural variables, some characteristics related to educational 
skills, gender, nationality and household age structure are encompassed. Using similar sets of 
variables, Ping Du et al. [19] and Belaid and Garcia [20] emphasized the crucial role of personal 
behaviour in final electricity consumption. Based on previous findings [21], the authors verified that 
household energy consumption can vary up to three times because of behavioural patterns, even 
when the buildings share similar characteristics. 

Regarding electricity price, 95% of consumers pay the so-called “last resource tariff” in Spain so, 
in our view, it is not crucial to have a measure of prices using a cross section analysis. 

3. Methodology 

There is a vast amount of literature on estimating electricity consumption or saving behaviour 
at the dwelling level, but it is not so common to find specific studies about electricity poverty or 
electricity vulnerability. 

The technical or statistical approaches used to analyse energy or electricity consumption drivers 
are very heterogeneous [22]. Swan and Urgusal [23] propose a simple classification of different 
techniques depending on the initial approach defined by researchers: top-bottom or bottom-up. In 
both cases, time series analysis of electricity demand is more frequently used than cross-sectional 
data analysis. 

From a top-down point of view, a macroeconomic approach rules the individual’s typical 
consumption behaviour. For the bottom-up approach, available temporal and cross-sectional 
microdata allow more or less accurate predictions of short-term future consumption by family units. 
Focusing on the latter, because it is the approach selected in this paper, authors frequently distinguish 
between statistical and engineering techniques. In the first case, they highlight regression, conditional 
demand analysis, and neural networks as the preferred methods to estimate the relationship among 
selected explanatory variables and electricity demand. In the second case, population distribution, 
archetype and sampling methods are the most common techniques. 

In a recent article, Fumo and Biswas [24] suggest that the use of traditional regression analysis 
in this area of research has become quite common in recent years due to the availability of more micro 
residential data on energy habits and consumption. Technological advances, for accurate 
measurements of electricity consumption per hour, partially explain the re-adoption of regression to 
understand family patterns of spending. Even by using such a simple model, we get reasonable 
accuracy in short-term forecasting. 

Although traditional regression has been the preferred technique to estimate electricity demand, 
some authors have pointed out the difficulties of this analytical tool in capturing the marginal effects 
at the individual level. The huge and very informative heterogeneity observed in micro data is 
somewhat ignored when using traditional regression because it mainly focuses on the average 
behaviour [25]. 

Additionally, a rigid standard regression would normally fail in the presence of 
heterocesdasticity, frequent outliers, non-normality, non-linearity, and/or non-permanent 
coefficients for each explanatory variable, depending on the relative level of the final electricity 
consumption. 

As is well known, the basic linear regression model rests on the assumptions of Gauss-Markov 
compliance to ensure that the obtained estimators are linear, unbiased, optimal and consistent. These 
imposes several conditions on the model: the hypotheses of linearity in the mathematical relations; 
null mean, homoscedasticity and non-autocorrelation in the perturbations; and strict exogeneity 
(random perturbations will not be conditioned by the values of the explanatory variables). 
Additionally, the maximum likelihood estimator (GLS) will coincide with the Ordinary Least Square 
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(OLS) estimator only if the random perturbations are distributed as normal, with zero mean and 
constant variance. 

The proposed framework for making estimates using OLS in the regression to the usual mean is 
frequently violated. Maintaining equal response proportions of the explained variable to changes in 
the explanatory variable (linearity) does not always seem congruent. In this research, it seems 
reasonable to suppose, for example, that the response on electricity consumption for a very high-
income situation cannot be the same as for a very low income. The economic effort involved in the 
first deciles of consumption for a low-income earner is surely much greater than that in the case of a 
high-income earner. In other words, covering a minimum electricity cost for those with low incomes 
will require a great deal of effort, while it will be practically irrelevant for those with high incomes. 

Second, the hypothesis of homoscedasticity (variance of constant random disturbance 
throughout the sample) is also frequently violated in our case. It seems plausible that the 
determinants not expressly included among the explanatory variables, and, then, included in the 
random disturbance, will be very different if we consider low consumption levels rather than high 
level consumers. 

Third, the hypothesis of normality of resids is violated both empirically (when regressions of 
cases such as the present are made using ordinary least squares) and theoretically. Again, it is difficult 
to think of homogeneous behaviour in a highly scalable consumption variable when dealing with 
low- and high-level consumers. Maintaining the mean as the most probable value is not data driven. 

Quantile regression effectively deals with the previously defined limitations by relaxing the 
assumption of normality, although, essentially, it provides a different estimate of the coefficients for 
the different quantiles considered for the variable under study. In our context, this procedure makes 
sense if we suspect that the importance of the explanatory variables for electricity consumption is not 
homogeneous for the different levels of consumption. Thus, quantile regression emerges as the most 
appropriate technique to provide an accurate and impartial estimate of the effect of explanatory 
variables for the most vulnerable households. 

As an alternative to the common OLS estimator based on the mean, the quantile regression 
estimator is based on the same idea, but it takes into account the median (or another selected quantile) 
and minimizes the sum of absolute resids (instead of the sum of square resids). 

|݁௜| =  ෍ ௜ݕ| − ݉݁݀݅ܽ݊|
௜

 (2) 

As Koenker and Basset [26] demonstrated, in the above equation, the equal weight of both the 
left and right sides of the endogenous variable produces an accurate estimate of the median. 
Therefore, by weighting each tail of the distribution by the desired quantile and minimizing the 
previous function, we can find the specific coefficients for any other quantum (call it τ%): 

(߬) ݈݁݅ݐ݊ܽݑܳ = ෍ ௜ݕ|ఛߩ − |ݍ
௜

 (3) 

where the weighted factor (ߩఛ): 

(ݔ)ఛߩ = ቄ−ݔ. (1 − ߬) ݔ < 0
.ݔ ߬ ݔ ≥ 0ቅ (4) 

In the traditional regression for the mean, the estimated value of the endogenous variables 
corresponds to the mean hope conditioned by the set of variables and the explanatory parameters-
variables Xβ, resulting in: 

ොݕ = ߤ =  (5) (መߚܺ|ݕ)ܧ

Similarly, we can write this expression for quantiles in the following way: 

ොݕ = ݍ =  (6) (መఛߚܺ|ݕ)ݐ݊ܽݑݍ

Therefore, we can estimate the coefficients for each quantum using the following expression: 
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݉݅݊ ෍ ௜ݕ|ఛߩ − |መఛߚܺ
௜

 (7) 

This expression could be rewritten as follows: 

݉݅݊ ቐ ෍ ௜ݕ|ఛߩ − |መఛߚܺ
௒೔ஹ௑೔ఉ

+ ෍ (1 − ௜ݕ|(ఛߩ − |መఛߚܺ
௒೔ழ௑೔ఉ

ቑ (8) 

where it is easy to observe the process underlying the quantile estimation method. Specifically, it 
would be a weighted estimation by using linear optimization algorithms, in which the observations 
included in the quantile of interest are more weighted than those outside the quantile. Seen 
differently, this procedure assigns a different weight for positive and negative errors, allowing the 
estimation of different parameters for each selected quantile. 

To a certain extent, the use of absolute values versus the square of traditional regression 
minimizes the effect of outliers on the parameters estimated by treating them linearly and not 
“exaggerating” them through the square power involved in the OLS estimation. 

Another additional advantage of this estimation method is that it allows us to avoid the so-called 
“Heckman selection bias” [27] present in many investigations that make multiple estimates using 
ordinary least squares and plotting the sample by deciles. This sample trimming produces biased 
parameters, and invalidates their later applicability. In the quantile regression, the total sample is 
always used, although conveniently weighted. 

Although Koenker and Bassett [26] formulated quantile regression in the late 1970s, this 
technique has not been used often until recent times. In the past, two issues inhibited its feasibility: 
the complex minimization algorithm to obtain the coefficients, and the weakness of the confidence 
intervals of the estimated coefficients in the absence of the assumption of normality in random 
disturbances. Currently, the exponential growth in computational capacity and the ease of avoiding 
confidence interval problems through the use of bootstrapping techniques have produced an 
excellent scenario for using this technique without any difficulties (Several authors have addressed 
the problem of estimating the coefficients confidence intervals in the framework of this “semi-
parametric” regression. Hoenker and Hallock [28] proposed up to five different alternatives for what 
are known as range inversion intervals. Powell’s estimator [29], known as the “Sandwich method”, 
determines the covariance of the estimators based on independent and identically distributed errors 
through sample randomization or bootstraping versions, obtaining results similar to those obtained 
previously by Hoenker and Hallock. Through various Monte Carlo experiments, Buchinsky [30] 
demonstrates that, in the face of heterocedasticity problems, the method of estimation using 
randomized sub-samples for the calculation of confidence intervals is the most robust). 

4. Data 

We used the annual Household Budget Survey published by the National Institute of Statistics 
(INE) for 2015 (the latest available). The HBS is identical across EU countries so that they can all be 
integrated later in a common Eurostat operation. 

We decided to focus our analysis on the family level so we merged individual micro data sets 
with family’ data sets. The total number of observations in each wave is composed of nearly 21,500 
dwellings. 

The endogenous variable (percentage of electricity expenditure over total revenues) clearly 
exhibits a non-normal distribution, and the mean and median are fairly distant as a result of a large 
number of outliers and extreme values. The standard regression on the average appears to be an 
inappropriate instrument when the mean is clearly a poor representation of the sample (see Figure 
2). Additionally, bivariate graphs illustrate that, at the bivariate level, the relationship between 
electricity expenditure and potential explanatory variables is not constant across quantiles for our 
endogenous variables. 
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In the survey, the family most frequently includes has 2, 3 or 4 members (32%, 23% and 21% 
respectively). Families with just one member represent around 18% of the sample. Families of six 
members represent only 6% of the sample. Literature (and logic) indicate that a larger size of 
household is related to greater expenditure, but the increase in such expenditure is not proportional 
to the increase in the number of members. This heterogeneity in the effect of family membership on 
electricity consumption supports the thesis about the behavioural concerns cited above [32]. 
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Figure 2. Electricity expenditure by household size (up-left), by family income (up-right) and by 
tenure regime (down). (The total electricity expenditure has been trunked to lower than 7000 to 
enhance the visualisation of the graph). Source: Own elaboration Kernel density using Family Budget 
Survey, 2016 (INE). 

5. Results and Discussion 

Not surprisingly, family income emerged as the most relevant variable in this study. The higher 
the income, the lower the probability of falling into electrical poverty (the coefficients indicate a 
reduction of this indicator as income increases). All income cuts are significant in both OLS and 
quantile regressions. Comparing OLS coefficients with the median coefficients (q = 0.5) easily shows 
the importance of outliers in defining a biased estimate if OLS parameters are used. As expected, the 
estimated quantile coefficients for these variables show an increase in the importance of reducing 
electrical poverty when considering higher values of this indicator: people in the highest part of the 
distribution of electrical poverty suffer a greater reduction of this situation when considering higher 
incomes. Non-linearity is fully confirmed by the evolution of these coefficients, and the use of OLS 
estimators produces a systematic bias and is affected by a problem of heteroscedasticity, so 
employing the quantile regression methodology proposed here is crucial. 

The use of these estimates opens the door to more accurate policies that are focused directly on 
direct income support rather than on price reduction. Revenue policies could be graduated to the 
desired level taking into account the differences in parameters. The same level of reduction need not 
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necessarily be applied for any given income, but can be done in tranches using the same coefficients 
shown here. Such policies could be applied through personal income tax deductions. If price 
reduction is the policy measure adopted (as in the recent Spanish Law), it should be assumed that 
the effect so far estimated would be significantly lower than the real effect because the OLS 
coefficients have been used. For lower incomes, the reduction by 7.8 percentage points in the electrical 
poverty indicator marked by the OLS coefficients underestimates the effect of the measure on the 
population most relevant to it, where said effect is greater than 10 points (80% quantile) or 12 points 
in the case of the poorest (90% quantile). Therefore, the measure is fully justified and its impact is 
almost double that estimated when OLS is used (see Table 4). 
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Table 4. Regression results for Indicator 1 of electricity poverty. (Endogenous variable: Electricity Expenditure/Total Expenditures) * 100. 

(significance level * 90%, ** 95% and *** 99%) 

Reference Variable OLS  0.2  0.3  0.5  0.8  0.9  
 Intercept 2.133 *** 1.288 *** 1.497 *** 1.932 *** 3.408 *** 4.670 *** 
 Surface 0.005 *** 0.003 *** 0.003 *** 0.004 *** 0.005 *** 0.007 *** 
 Family Size 0.753 *** 0.419 *** 0.472 *** 0.584 *** 0.750 *** 0.839 *** 
 Resp. Age 0.004 *** 0.001 * 0.002 ** 0.003 *** 0.006 *** 0.009 *** 
 Gas Pov. 0.098 *** 0.082 *** 0.086 *** 0.095 *** 0.111 *** 0.142 *** 

Andalucía Aragón −0.190 ** −0.133 ** −0.140 ** −0.221 *** −0.297 *** −0.418 *** 
 Asturias −0.480 *** −0.346 *** −0.348 *** −0.462 *** −0.460 *** −0.520 *** 
 Balears 0.580 *** 0.230 *** 0.270 *** 0.357 *** 0.757 *** 0.935 *** 
 Canarias −0.801 *** −0.382 *** −0.481 *** −0.681 *** −1.061 *** −1.488 *** 
 Cantabria −0.304 *** −0.166 *** −0.191 *** −0.345 *** −0.447 *** −0.509 *** 
 Castilla y León −0.528 *** −0.387 *** −0.404 *** −0.484 *** −0.616 *** −0.695 *** 
 Castilla la Mancha 0.038  −0.163 *** −0.144 *** −0.141 ** 0.041  0.296 ** 
 Cataluña −0.308 *** −0.250 *** −0.255 *** −0.285 *** −0.333 *** −0.382 *** 
 Valencia −0.202 *** −0.213 *** −0.183 *** −0.173 *** −0.202 *** −0.096  
 Extremadura 0.026  −0.078  −0.068  −0.022  0.041  −0.111  
 Galicia −0.530 *** −0.391 *** −0.399 *** −0.436 *** −0.511 *** −0.551 *** 
 Madrid −0.172 ** −0.212 *** −0.218 *** −0.257 *** −0.291 *** −0.299 ** 
 Murcia 0.253 *** 0.049  0.066  0.183 *** 0.182 ** 0.300 ** 
 Navarra −0.347 *** −0.231 *** −0.258 *** −0.365 *** −0.481 *** −0.561 *** 
 País Vasco −0.368 *** −0.279 *** −0.308 *** −0.368 *** −0.449 *** −0.555 *** 
 Rioja −0.421 *** −0.331 *** −0.332 *** −0.320 *** −0.440 *** −0.599 *** 
 Ceuta −0.610 *** −0.235 * −0.258 ** −0.361 *** −0.837 *** −0.996 *** 
 Melilla 0.118  0.133  0.100  −0.089  −0.566 *** −0.898 *** 

<500 euros 500–1000 euros 7.799 *** 5.017 *** 5.932 *** 7.478 *** 10.227 *** 12.050 *** 
 1001–1500 euros 3.731 *** 2.112 *** 2.470 *** 3.221 *** 4.862 *** 5.808 *** 
 1500–2000 euros 1.865 *** 1.092 *** 1.256 *** 1.602 *** 2.316 *** 2.718 *** 
 2000–2500 euros 0.727 *** 0.424 *** 0.494 *** 0.607 *** 0.898 *** 0.993 *** 
 2500–3000 euros −0.486 *** −0.330 *** −0.366 *** −0.394 *** −0.540 *** −0.608 *** 
 3000–5000 euros −1.054 *** −0.738 *** −0.822 *** −0.890 *** −1.081 *** −1.269 *** 
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5000–7000 euros −1.809 *** −1.228 *** −1.371 *** −1.479 *** −1.788 *** −2.109 *** 

 7000–9000 euros −2.120 *** −1.442 *** −1.509 *** −1.808 *** −2.199 *** −2.400 *** 
 >9000 euros −2.244 *** −1.665 *** −1.782 *** −1.945 *** −2.391 *** −2.565 *** 

Condo < 10 Apt. Isolated house 0.168 *** 0.040  0.028  0.091 ** 0.229 *** 0.552 *** 
 Paired house 0.064  −0.015  0.034  0.076 ** 0.181 *** 0.266 *** 
 Condo > 10 Apt. −0.024  0.036  0.000  −0.028  −0.089 ** −0.103  

Pop < 10 k Pop > 100 K −0.102 ** −0.074 ** −0.072 ** −0.081 ** −0.117 ** −0.037  
 Pop 50 k–990 k −0.084  −0.076 ** −0.048  −0.042  −0.033  −0.030  
 Pop 20 k–49 k 0.015  0.036  0.045  0.012  −0.010  −0.010  
 Pop 10 k–20 k 0.146 *** 0.015  0.027  0.044  0.060  0.212 ** 

Normal house Luxury house 0.074  0.031  0.061 * 0.055  0.058  0.030  
 Economic house −0.422 *** −0.264 *** −0.227 *** −0.196 *** −0.305 *** −0.198 ** 

Building Age >25 years old −0.123 *** −0.114 *** −0.124 *** −0.107 *** −0.040  −0.043  
Hot Water Source Hot Water Not available −1.664 *** −1.177 *** −1.316 *** −1.165 *** −2.157 *** −1.896 *** 

 Gas −1.086 *** −0.602 *** −0.637 *** −0.857 *** −1.347 *** −1.750 *** 
 Liquid gas −0.951 *** −0.447 *** −0.556 *** −0.772 *** −1.184 *** −1.490 *** 
 Other liquid sources −0.713 *** −0.373 *** −0.467 *** −0.583 *** −0.973 *** −1.137 *** 
 Solid sources −0.645 *** −0.226  −0.293 ** −0.584 *** −0.571 *** −0.760 ** 
 Solar energy −0.607 *** −0.369 *** −0.370 *** −0.488 *** −0.696 *** −0.888 *** 

Heater Source Heater Not available −0.820 *** −0.346 *** −0.385 *** −0.497 *** −0.974 *** −1.591 *** 
 Gas −0.932 *** −0.303 *** −0.424 *** −0.522 *** −1.042 *** −1.785 *** 
 Liquid gas −0.676 *** −0.256 *** −0.288 *** −0.360 *** −0.862 *** −1.619 *** 
 Other liquid sources −0.878 *** −0.197 *** −0.265 *** −0.466 *** −1.122 *** −2.069 *** 
 Solid sources −0.981 *** −0.295 *** −0.373 *** −0.461 *** −1.273 *** −2.229 *** 
 Solar energy −0.972 *** −0.631 *** −0.622 *** −0.705 *** −1.139 *** −1.392 ** 

Property without debts Property with debt 0.105 *** 0.085 *** 0.060 ** 0.056 ** 0.060  0.042  
 Rented −0.205 *** −0.159 *** −0.172 *** −0.129 *** −0.163 *** −0.239 *** 
 Rented (low) −0.128  −0.138  −0.313 *** −0.079  0.228  0.129  
 Semi-free cession −0.108  −0.118 ** −0.203 *** −0.117 * −0.107  −0.067  
 Free cession −0.066  −0.143 ** −0.008  −0.179 ** 0.037  0.179  

Born in Spain Rest EU 0.087  0.109  0.126 * 0.084  0.006  0.004  
 Rest Europe −0.018  0.066  −0.064  0.110  0.238  0.237  
 Rest of the world −0.144 ** −0.180 *** −0.217 *** −0.176 *** −0.068  −0.084  

< Primary Educ. Primary Educ. 0.199 ** 0.228 *** 0.324 *** 0.228 *** −0.128  −0.325 ** 
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Secondary Educ. 0.299 *** 0.364 *** 0.452 *** 0.371 *** −0.038  −0.184  

 Highschool 0.361 *** 0.354 *** 0.428 *** 0.362 *** 0.028  −0.059  
 Prof. Formation 0.291 *** 0.341 *** 0.412 *** 0.308 *** 0.018  −0.076  
 Bachelor 0.296 *** 0.334 *** 0.406 *** 0.296 *** −0.052  −0.181  
 Master 0.312 *** 0.304 *** 0.388 *** 0.267 *** −0.034  −0.080  
 Doctorate 0.233  0.236 ** 0.351 *** 0.354 *** 0.079  −0.117  
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As noted above, the regional effect is extremely relevant in the characterization of electric 
poverty in Spain. All regions show a parameter significantly different from zero when quantile 
regression is carried out for the poorest deciles, which does not occur using the OLS model. All the 
autonomous communities have lower levels of electrical poverty with respect to the community 
taken as a reference: Andalusia. It is true that this difference is not very important considering the 
value of the coefficients, but if using the values estimated by OLS we observe differences of between 
0.11 to 0.8 percentage points (of lower electrical poverty), while using the coefficients of the quantile 
regression we observe values closer to 1 point of difference in most regions. 

Unfortunately, as already mentioned in previous sections, the results for the region variable are, 
by nature, imprecise, because the variable probably contains several other factors. In any case, the 
inclusion of the rest of the available control variables (such as income, population density, surface 
area and ownership of the dwelling, etc.) will probably isolate the climate factor in this variable, 
which we understood to be fundamental in our previous explanations (in both extreme cold and heat 
conditions). Note that the reference region, Andalusia, is the one that suffers the worst extreme heat 
conditions for a large number of months per year. Considering these differences, we may have a new 
mechanism to refine the implementation of the policy for reducing energy poverty which also takes 
into account the geographical nature of the recipients. 

 

Surface 

 

Family Size 

 

Age of respondent 

Figure 3. Electricity poverty. Some quantile coefficients. 

These graphs (see Figure 3) are useful to highlight once again the important bias that occurs 
when observing the parameters usually used (OLS) when the interest is focused on a very specific 
section of the sample (in our case, the higher quantiles, as the poorest households in terms of 
electricity, see Figure 3). The rest of the graphs can be seen in the Appendix. 

As expected, the type of fuel used to heat the home and/or water in the home is relevant. One 
point of reduction in poverty is shown when fuels other than electricity are used. It should be borne 
in mind that, as a basic control variable, the variable “gas-related energy poverty” has been included 
separately, in such a way that these coefficients would reflect how using fuels other than electricity 
sharply reduces poverty (almost two points in the poorest households observing the quantile 
coefficients). This observation leads to the need to leverage investment in more efficient and cheaper 
heating systems, such as gas versus electricity to reduce the electricity poverty gap. 

As is well known, the fight against climate change promotes reduction in the use of gas by 
favouring greater electricity consumption. In view of our results, a difficult balance is established 
between not disadvantaging the most vulnerable dwellings in terms of electrical poverty and not 
harming the environment by favouring the consumption of gas for heating the home. Taking into 
account the accelerated learning curve in the use of clean energies, electricity generation could be 
carried out with lower production costs in the near future and, therefore, with lower prices, 
eliminating the current advantage of gas over electricity. 

We briefly consider some of the other coefficients. For example, while the housing ownership 
regime is not significant in the OLS estimation, it is significant in the quantile regressions, where 
families with rented housing see their poverty gap slightly reduced when compared to the other 
tenure situations. Perhaps this is related to the excessive stock of owned dwellings in Spain, where 
typically families have large mortgages with little capacity to change their payment instalments 
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during periods of crisis, a differential in families with rented housing, who can probably partially 
readapt their housing expenditure during these periods. 

With regard to the characteristics of the parameters estimated for different educational levels, it 
should be noted that these levels are significant for the richest or middle class deciles (from 20% to 
50%), but not for the poorest deciles (80% and 90%). This fact would not have been observed if only 
the results of OLS (where none of the levels are significant) were considered. It is also interesting to 
note that the parameters (around 0.35 points of greatest poverty before any educational level 
compared to the reference, those without formal education) are always positive and not different 
among the educational levels. 

In short, all of these variables are useful points of information that can help to structure energy 
poverty policies in a more granular and successful way. The effect of policies, such as subsidies to 
change the heating system or income tax reductions for households with property debts should only 
be targeted at lower-income households if the aim is to reduce electricity poverty. Measures aimed 
at reducing consumption (as part of reducing the climate change impact of the use of this source of 
electricity) should clearly focus on changing the heat source. 

6. Conclusions 

In this article, the crucial issue of electricity poverty in developed countries has been 
characterised using the Spanish situation in 2016 as a case study. Although the study of energy 
poverty has been a common topic in the economic literature, it has usually focused on less developed 
countries. Because of emergence of inequalities and interest in climate issues in developed countries, 
research on this topic is now gaining momentum. 

Traditionally, electricity demand, and to some extent, poverty research has been conducted 
using regression models based on the method of estimating least squares coefficients. Both because 
the focus of poverty is concentrated on very specific distribution quantiles and because the impact of 
some explanatory variables can change drastically if the distribution of the variable is considered, the 
findings of this article are especially important when considering alternative policy measures to 
avoid electrical poverty. 

For example, as we have noted above, the findings of this investigation opens the door to more 
accurate policies that focus directly on direct income support rather than on price reduction. Revenue 
policies could be graduated to the desired level by taking into account differences in parameters. The 
same level of reduction need not necessarily be applied for any given income, but could be done in 
tranches using the same coefficients shown here. Such policies could be applied through personal 
income tax deductions. If price reduction is the policy measure adopted (as in the recent Spanish 
Law), it should be assumed that the effect so far estimated could be significantly lower than the real 
effect because OLS coefficients have been used. For lower income earners, the reduction by 7.8 
percentage points in the electrical poverty indicator marked by the OLS coefficients underestimates 
the effect of the measure on the population that is most relevant, where said effect is greater than 10 
points (80% quantile) or 12 points in the case of the poorest (90% quantile). Therefore, the measure 
used in this study is fully justified and its impact is almost double that estimated when OLSs are 
used. 

In this article, we have shown the crucial differences in estimating the drivers of electricity 
poverty using OLS and using quantile regressors. Clearly, the use of the former produces a distorted 
picture of the reality, and results in a poor interpretation of the potential effects of public or private 
initiatives to reduce poverty. 

Predictably, our research shows that income is the most important variable in relation to 
electrical poverty, but other variables such as the characteristics of housing tenure, or regional 
differences are also crucial when interpreting the effect of different anti-poverty policies. 
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Appendix A 

Table A1. Descriptive statistics of the explanatory variables. 

  2016 2012 
Group Variable Mean Std. Dev. Mean Std. Dev. 

Region 

Aragón 0.044674 0.206593 0.044344 0.205863 
Asturias 0.040442 0.196997 0.038621 0.192694 
Balears 0.034645 0.182882 0.036992 0.188747 

Canarias 0.04472 0.206694 0.045135 0.207605 
Cantabria 0.034553 0.182648 0.03555 0.185169 

Castilla y León 0.067219 0.250406 0.066307 0.248823 
Castilla la Mancha 0.055533 0.229022 0.055512 0.228981 

Cataluña 0.091511 0.288342 0.089247 0.285106 
Valencia 0.077755 0.267791 0.079289 0.270196 

Extremadura 0.045503 0.208409 0.045461 0.208318 
Galicia 0.06087 0.239096 0.060816 0.238998 
Madrid 0.07458 0.262719 0.072216 0.258852 
Murcia 0.040856 0.197961 0.041413 0.199247 

Navarra 0.033724 0.180523 0.035224 0.18435 
País Vasco 0.101035 0.301382 0.097855 0.297125 

Rioja 0.033126 0.17897 0.033595 0.18019 
Ceuta 0.005245 0.072234 0.005351 0.072957 
Melilla 0.005567 0.074406 0.005863 0.076347 

Pop 50 k–990 k 0.123948 0.329529 0.117584 0.322123 
Pop 20 k–49 k 0.152749 0.359754 0.150342 0.357415 
Pop 10 k–20 k 0.104072 0.305361 0.10865 0.311207 

Pop < 10 k 0.243892 0.429438 0.244242 0.429647 
Intermediate density 0.236531 0.424962 0.23461 0.423765 

Low density 0.288567 0.453106 0.293146 0.455215 
Paired chalet 0.24472 0.429931 0.251733 0.434019 

Condo < 10 apartments 0.177088 0.381752 0.180587 0.384685 
Condo > 10 apartments 0.470899 0.499164 0.460472 0.498447 

Other 0.001288 0.03587 0.001163 0.034088 
Dwelling age More than 25 years 0.652404 0.476218 0.63045 0.482694 

 Surface 101.1462 49.61235 101.6724 49.6414 

Water 

Electricity 0.229998 0.420841 0.217114 0.412291 
Gas 0.394801 0.488819 0.374064 0.483891 

Liquid gas 0.238417 0.426125 0.27351 0.445771 
Other liquid sources 0.117598 0.322139 0.120748 0.325842 

Solid sources 0.005659 0.075015 0.005444 0.073585 
Solar energy 0.010674 0.102765 0.007073 0.083804 
Not available 0.000046 0.006783 0.0000465 0.006821 

Heater 

Electricity 0.140189 0.347191 0.138849 0.345797 
Gas 0.332505 0.471122 0.309851 0.462443 

Liquid gas 0.025673 0.158161 0.028384 0.166071 
Other liquid sources 0.142397 0.349465 0.149598 0.356685 

Solid sources 0.02259 0.148597 0.017403 0.130769 
Solar energy 0.00161 0.040097 0.000791 0.028115 
Not available 0 0 0.0000931 0.009647 
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Income 500–1000 euros 0.171659 0.377092 0.172305 0.377654 

 

1001–1500 euros 0.207177 0.405293 0.203806 0.402836 
1500–2000 euros 0.167472 0.373405 0.171839 0.37725 
2000–2500 euros 0.139821 0.346809 0.137267 0.344137 
2500–3000 euros 0.10789 0.310249 0.114234 0.318102 
3000–5000 euros 0.131125 0.337545 0.131171 0.337595 
5000–7000 euros 0.021624 0.145456 0.021125 0.143805 
7000–9000 euros 0.006257 0.078856 0.003583 0.059751 

>9000 euros 0.00253 0.050241 0.001582 0.039745 

House tenure 

Property with debt 0.302001 0.459136 0.320087 0.466521 
Rented 0.117184 0.321647 0.10772 0.310033 

Rented (low payment) 0.01095 0.104071 0.012936 0.113 
Semi-free cession 0.027421 0.163311 0.027919 0.164744 

Free cession 0.019462 0.138144 0.018426 0.13449 

Nationality 
Rest EU 0.021256 0.14424 0.023638 0.151921 

Rest Europe 0.003221 0.05666 0.002978 0.054491 
Rest of the world 0.054566 0.227137 0.053325 0.224685 

Employment Unemployed 0.434967 0.495764 0.439719 0.496364 
Size Household size (OECD) 1.770412 0.547907 1.806831 0.557249 
Age Age main income contributor 55.6213 14.93647 54.29091 15.30132 

Source: Family Budget Survey 2012 and 2016 (INE) and own calculations. 

 
Graph A1. Electricity poverty. Quantile coefficients. 
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