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1. Introduction

As is well known, the 2-variable Hermite Kampé de Fériet polynomials (2VHKAdFP)
H,(z,y) [1, 3] are defined as

Ho(z,y)=nlS 25 (1.1)
It is clear that
1
H,(2z,-1) = Hy(x, Hy(x, —5) = He,(z), H,(x,0) = 2",
where H,(z) and He,(x) being ordinary Hermite polynomials.

The Hermite polynomial H,(x,y) (see ([9, 10]) is defined by means of the fol-
lowing generating function as follows:

P tn
"ttt = ZHn(xay)ﬁ (12)
n=0
Geometric polynomials (also known as Fubini polynomials) are defined as follows
(see [2]):
- n
P;@)ZEZ{ k}kmﬁ (1.3)
k=0
where { Z } is the Stirling number of the second kind (see [5]).

For x = 1 in (1.3), we get n'® Fubini number (ordered Bell number or geometric
number) F, [2, 4, 5, 6, 8, 12] is defined by

nm:mzi{ZﬁL (1.4)

k=0
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The exponential generating functions of geometric polynomials is given by (see [2]):

% = ZF"(I)%T:’ (1.5)

n=0

and related to the geometric series (see [2]):

d\" 1 - 1 x
il - Erak = ——F,(——), <1.
(xdx> 1-=z kz::o . 1—=z (1—x)|$|
Let us give a short list of these polynomials and numbers as follows:

Fy(z) =1, Fy(x) = z, Fy(z) = 24222, F3(z) = 246224623, Fy(z) = 24142243623 +242%,

and
Fo=1,F =1,F,=3,F3=13,F, =T75.
Geometric and exponential polynomials are connected by the relation (see [2]):

F,(z) = /000 bn()e N dA. (1.6)

Recently, Pathan and Khan [9] introduced two variable Hermite-Bernoulli poly-
nomials is defined by means of the following generating function:

t \“ - tn
(et_1> erttyt :ZHBﬁLO‘)(x,y)E. (1.7)
n=0 '

On setting @ = 1 in (1.7), the result reduces to known result of Dattoli et al.
3].

The manuscript of this paper as follows: In section 2, we consider generat-
ing functions for Hermite-Fubini numbers and polynomials and give some properties
of these numbers and polynomials. In section 3, we derive summation formulas of
Hermite-Fubini numbers and polynomials. In Section 4, we construct a symmetric
identities of Hermite-Fubini numbers and polynomials by using generating functions.

2. A new class of Hermite-Fubini numbers and polynomials

In this section, we define three-variable Hermite-Fubini polynomials and obtain
some basic properties which gives us new formula for gy F,(x,y,z). Moreover, we
shall consider the sum of products of two Hermite-Fubini polynomials. The sum of
products of various polynomials and numbers with or without binomial coefficients
have been studied by (see [2, 4, 5, 6, 8]):

We introduce 3-variable Hermite-Fubini polynomials by means of the following
generating function:

2 o]
ezt+yt

T—2(ef—1) TLX:%HFn(l’,y; z)%. (2.1)

Tt is easily seen from definition (2.1), we have
aF,(0,0;2) = F,(2), g Fr(0,0;1) = F,.

For y = 0 in (2.1), we obtain 2-variable Fubini polynomials which is defined by
Kargin [8].
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ﬁ ZF ;2) (22)

When investigating the connection between Hermite polynomials H,(z,y) and
Fubini polynomials F,(z) of importance is the following theorem.

Theorem 2.1. The following summation formula for Hermite-Fubini polynomials

holds true:
—yt2 1 nt2n
¢ O [coszt(z + 1) — z cos(t — xt)] Z aFon(x,y, 2 ( (2) I (2.3)
—yt? oo _1)n¢2n+l
e S [sinzt(z + 1) + zsin(t — ot)] = Z 1 Fonii(z, y,z)((%zw, (2.4)

n=0
where Q = [1 — z(cost — 1)]2 + [zsint]%.

Proof. On separating the power series on r.h.s. of (2.1) in to their even and odd
terms by using the elementary identity

S i)=Y f@n)+ Y f2n + 1)
n=0 n=0 n=0

and then replacing t by it where i = —1 and equating the real and imaginary parts
in the resulting equation, we get the summation formulae (2.2) and (2.3).

Remark 2.1. On setting z =y =0, z = 1 in (2.3) and (2.4), we get the following
well-known classical results involving Fubini numebrs.

Corollary 2.1. The following summation formula for Hermite-Fubini polynomials

holds true:
2 — cost = (—1)m2n
= 7 Py 2.5
5—4cost go 7 (2n)! (25)
sint 1)"t2"+1
— = Fy, . 2.6
5 —4cost Z 2 H n+1)! (26)
Theorem 2.2. For n > 0, the followmg formula for Hermite-Fubini polynomials
holds true:

uFuoi) = 3 () P (0) (27)
m=0

Proof. Using definition (2.1), we have

tn emt+yt2
F A —
Z:H n(xay7z)n| 1—Z(€t—1)
t" > tm
Hy, (x’y)@

m=0

( ) >Hm<m,y>> e

Comparing the coefﬁments t—, yields (2.7).

M: I MS
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Theorem 2.2. For n > 0, the following formula for Hermite-Fubini polynomials
holds true:

Proof. We begin with the definition (2.1) and write
ezt+yt2 _ 1- Z(et B ]‘) ewt+yt2
1—2z(et—1)
_ ewt-‘rytz B z(et _ 1) oty
1—z(et—1) 1—2z(et—1)
Then using the definition of Kampé de Fériet generalization of the Hermite polyno-
mials H,(z,y) and (2.1), we have

s tn oo n
T;H”(I’y)ﬁ = T;) (o (2, y;2) — 25 Fo(2 4+ 1,95 2) + 25 Fo(2, 95 2)] e

Finally, comparing the coefficients of %, we get (2.8).
Theorem 2.3. For n > 0 and z; # 23, the following formula for Hermite-Fubini
polynomials holds true:

n

Z ( Z >HFn—k(iElayl;ZI)HFk(fEZay%ZQ)

k=0

_ 2o Fp(x1 + 2o, y1 + Y25 22) — 215 Fo (21 + 22, y1 + Y23 21) (2.9)

Z9 — 21
Proof. The products of (2.1) can be written as

00 ns tk ez1t+y1t2 em2t+y2t2
Fo(x1,y1;21) — 5 Fe(x2,y2; 20)— =
ZZH (21, 91 l)n!H K (22, Y2 Q)k! T 21(ef — 1)1 za(ef — 1)
n=0k=0
> ~ n t"
SN e ) EEk(@ Y 20) HER (2, o5 22) ]
n=0 \k=0 ’
oz e(@1tT)t+(y1+y2)t? 21 elmtm)tt(yity)t?
20—z 1—z(et—1) zo—2z1 1—z9(et —1)
_ (el (T + 22, y1 + Y5 22) — zipFa(z + 22,51 +y2521) |
29 — 21 nl’

By equating the coefficients of £; on both sides, we get (2.9).

n!

Theorem 2.4. For n > 0, the following formula for Hermite-Fubini polynomials

holds true:
zuFn(z+ 1 y;2) = (1+ 2)gFo(z,y; 2) — Hy(x,y). (2.10)
Proof. From (2.1), we have
oo s ewt+yt2 .
Z (mEn(z +1,y;2) — nFo(w,y; 2)] i m(e -1)

n=0

xt+yt?
1 € _ emt+yt2

Tz |1—z(et—1)
1 o tn
=2 > luFu(e,y;2) — Ho(a,y)] R

n=0
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Comparing the coefficients of % on both sides, we obtain (2.10).

Remark 2.3. On setting © =y = 0 and £ = —1 in Theorem 2.4, we find
z2pFn(1,0;2) = (14 2)g F,(0,0; 2), (2.11)
and
2 Fn(0,0;2) = (14 2)gF(—1,0;2) — (=)™ (2.12)
Theorem 2.5. For n > 0, p,q € R, the following formula for Hermite-Fubini poly-

nomials holds true:
n 5] 1
Co) — . _ k((g — -
1 Fn(p, qy;2) = n! kzzogo #Fi(@,y52) (0 = D) (0 = DY =5
(2.13)

Proof. Rewrite the generating function (2.1), we have

S F AP 1 at+yt? o (p—1)at o (a— 1)yt
;H n(p%qy,»z’)a = me € €

00 n oo k 0
= (;HFn(x,y;Z)iL!) (Z((p 1)%)%) > (a- DY 5

k=0

(ZHF T, y; 2 ) ZZ Q*l)y)jm

k=0 j=0
Replacing k by k — 2j in above equation, we have

e’} n 00 k
L.H.S. = (Z uF(@,y; @Z,) > ((p =) ((q - 1)y)jm

n=0 k=2j

tn+k

=3 wh@u e - Do) Y (- D) g

n=0 k=2j
Again replacing n by n — k in above equation, we have

LHS =Y > > uFuk(e,y2)((p— D) > ((g— 1)y (n—k i 2j)!5!k!

n=0 k=0 j=0

Finally, equating the coefficients of ¢ on both sides, we acquire the result (2.13).

Theorem 2.6. For n > 0, the following formula for Hermite-Fubini polynomials
holds true:

n l
wFa(z,y,2) = ( ? ) Hooi(,y) Y 2*K1S5(1, k). (2.14)
1=0 k=0
Proof. From (2.1), we have

Tk eoct—i—ytz
F’I’L RS} Y
ZH (xyz)n! 1—z(et —1)

_ ewt+yt2 izk(et . 1)k _ mtert Z ZkISQ Ik il
k=0 k=0 I=k
0 n
=Y Hy(x,
n=0

~+

[e%e) l
|sz2kls2lk

=0 k=0

3
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Replacing n by n — [ in above equation, we get

! n
ZHF T,y % Z (Z < ) Hn_z(x,y)szk!SQ(l,k)) %

=0 \I= k=0

Comparing the coefficients of £; in both sides, we get (2.14).

Theorem 2.7. For n > 0, the following formula for Hermite-Fubini polynomials
holds true:

n l

aFn(z+ry,2) = Z < 7 ) Hy_i(z,y) Z RISy (L + 7k + 7). (2.15)
=0 k=0

Proof. Replacing = by z + r in (2.1), we have

tn e(z+r)t+yt2

o0
Z n(x r7y’z)

| — (et —
! nl  1—z(et—1)

o0 o0 o0 1

2 2 t

_ e:rtert ert E Zk(et o l)k _ ethryt ert § :Zk E k'SQ(l, k)ﬁ
k=0 k=0 =k

l

fZH o) S S KIS+ k)

'lo k=0

Replacing n by n — [ in above equation, we get

! n
ZHF T+71Y, 2 Z (Z < )Hnl(%y)szk!Sg(l—i—r,k—i—r)) %

n=0 = k=0

Comparing the coefficients of tn—n, in both sides, we get (2.15).
3. Summation Formulae for Hermite-Fubini polynomials

First, we prove the following result involving the Hermite-Fubini polynomials
uFn(x,y; z) by using series rearrangement techniques and considered its special case:

Theorem 3.1. The following summation formula for Hermite-Fubini polynomials
uFn(x,y; 2) holds true:

TR (2) ()@= afn o GO

n
n,p=0 p

Proof. Replacing ¢t by t + w in (2.1) and then using the formula [11,p.52(2)]:

>0 = S s

in the resultant equation, we find the following generating function for the Hermite-
Fubini polynomials g F,(z,y; 2):

: (3.2)

1 ot
g

1

1—z(ettv —1) (3.3)

o0
2
ey(ttu)? _ —x(ttu) Z aFgri(x,y; 2)
q,1=0
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Replacing x by w in the above equation and equating the resultant equation to
the above equation, we find

oo o0 l

9 ! t?u
exp((w —z)(t +u)) Z waFyri(z,y; z)aﬂ = Z HFqH(w,y;z)aﬂ. (3.4)
q,1=0 q,l1=0
On expanding exponential function (3.4) gives
o~ [(w—2)(t+uw)V
Z NI Z HFq+l(x7yv ' “ Z HFq-H w,y;z ) | l" (35)
N=0 0,1=0 q,1=0

which on using formula (3.2) in the first summation on the left hand side becomes

[ee] (oo}
(w — )" TPEyP 14 t9 !
E S E— E aFgi(@,y;2)— l E aFi(w, y:2)— B (3.6)
n,p=0 np: 1=0 gt ! 1=0 ¢l
, a, a

Now replacing g by ¢ — n, I by | — p and using the lemma ([11, p.100(1)]):

oo k
ZZA (k) =Y "> A(n,k—n), (3.7)
k=0n=0 k=0n=0

in the Lh.s. of (3.6), we find

_ m n+p td ul

2; 2; o HFqulfnfp(xay;z)(q_in)! i—p)

oo

19 !
Z Fypi(w,y; )q!lT' (3.8)

Finally, on equating the coefﬁments of the like powers of ¢ and u in the above
equation, we get the assertion (3.1) of Theorem 3.1.

Remark 3.1. Taking ! = 0 in assertion (3.1) of Theorem 3.1, we deduce the following
consequence of Theorem 3.1.

Corollary 3.1. The following summation formula for Hermite-Fubini polynomials
uFn(x,y; z) holds true:

nFfwi) = 30 () -0 uFyaeyie) (39)

Remark 3.2. Replacing w by w + z in (3.9), we obtain
q

nFy(z+w,y;2) = Z( i )UJ"HFq—n(I,y;Z)- (3.10)

Theorem 3.2. The following summation formula for Hermite-Fubini polynomials
uFn(x,y; z) holds true:

HFn(wau;Z)HFm(I/VaU;Z) = Z ( : ) ( ZL >Hr(w_xau_y)HFnr(m7y;z)

r,k=0

xHy(W = X,U = Y) g Fr_i(X,Y: 2). (3.11)
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Proof. Consider the product of the Hermite-Fubini polynomials, we can be written
as generating function (2.1) in the following form:

1 2 1 2 ° tn i Tm
zt+yt XT+YT* _ F N F (X.Y:7Z)—
1—2(e—1)° 1—-Z(T—1)° > n n(xay’z)n;%ff m(X Y3 2) "
(3.12)
Replacing by w, y by v, X by W and Y by U in (3.12) and equating the resultant
to itself,
SN wFu(w, w2 Fo(W,U; Z)— T
n=0m=0 me

=exp ((w—2)t+ (u—y)t*) exp (W — X)T + (U — Y)T?)

thrm
XZZHF T, Y5z HFm(Xayvz)ﬁWa

n=0m=0

which on using the generating function (3.7) in the exponential on the r.h.s.,

becomes
oo 00 n Tm
ZZHFn(wvu;Z)HF W.U; Z2)— L ml
n=0m=0 m
oo t"""r 00 m+k
= Z H(w—x,u=y)gFn(x,y; 2 Z Hi W_X’U_Y)HF’”(X’Y;Z)W'
n,r—=0 m,k:O
(3.13)

Finally, replacing n by n — r and m by m — k and using equation (3.7) in the
r.h.s. of the above equation and then equating the coefficients of like powers of ¢ and
T, we get assertion (3.11) of Theorem 3.2.

Remark 3.3. Replacing u by y and U by Y in assertion (3.11) of Theorem 3.2, we
deduce the the following consequence of Theorem 3.2.

Corollary 3.2. The following summation formula for Hermite-Fubini polynomials
wF,(z,y; z) holds true:

Fo(w,u; 2)g Frn (W, U; Z) = = (n m (w—2) gFh_r(2,y; 2)
H H TJCZ_O( r ) ( k ) H Y
x(W = XV g Fp_n(X,Y; Z). (3.14)

Theorem 3.3. The following summation formula for Hermite-Fubini polynomials
uFn(z,y; 2) holds true:

aFo(x+wy+u;z) = Z ( Z ) aFn_s(x,y; 2)Hs(w,u). (3.15)
s=0

Proof. We replace x by x + w and y by y + w in (2.1), use (1.2) and rewrite the
generating function as:

1

o0 ts
2

oo tn
= ZHFn(erw,eru; Z)E (3.16)
n=0 ’
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Now replacing n by n — s in L.h.s. and comparing the coeflicients of ¢” on both sides,
we get the result (3.15).

Theorem 3.4. The following summation formula for Hermite-Fubini polynomials
uFn(x,y; z) holds true:

[

03

|

S

x
Fo(y,z;2) = Foos(y;2) 7—F5 - 1
W09 = 3 P ) g (317)
Proof. We replace z by y and y by x in equation (2.1) to get
e 15128
ZHF Y. 32) ZF i 2 — (3.18)

s=0

Now replacing n by n — 2s in r.h.s. and comparing the coefficients of ¢ on both
sides, we arrive at the desired result (3.16).

Theorem 3.5. The following summation formula for Hermite-Fubini polynomials
uFn(x,y; z) holds true:

gFa(x,y;2) = Z < " > Fo_r(x—w;2)Hy(w,y). (3.19)

r=0 "
Proof. By exploiting the generating function (1.2), we can write equation (2.1) as
e e = Z Fa—w)t Y mwnl. e
1—z(et—1)e N n.rzo YR '
On replacing n by n —r in above equatlon we get

n=0r=0

Equatmg the coefficients of the like powers of ¢ on both sides, we get (3.19).

Theorem 3.6. The following summation formula for Hermite-Fubini polynomials
wFn(z,y; z) holds true:

abBn(z+1,y;2 i < ) B (7, y;2). (3.21)

Proof. Using the generating function (2 1), we have

oo tn oo
Z aFn(z+ 17%2)5 - Z%HFn(I’y;Z)

n=0
1 . s
— - - —1)e® +yt
(1—z(et—1))(e Je

_ZHF T,Y; 2 t(ZOZT' 1)

tn Ootr e

=D mFa(myie) 2> ZHFn ,y; 2

n=0 r_O

ZZ(?)HFnrxya ZHF:Eya
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Finally, equating the coefficients of the like powers of ¢ on both sides, we get
(3.21).

4. Symmetric identities

Recently, Khan [7], Pathan and Khan [9, 10] have been introduced symmetric iden-
tities. In this section, we establish general symmetry identities for the generalized
Hermite-Fubini polynomials gy F,(z,y;2) by applying the generating function (2.1)
and (2.2).

Theorem 4.1. Let z,y,z € R and n > 0, then the following identity holds true:

Z ( : > b a™ " g B (b, b2y; 2) g Fr(az, a’y; 2)
r=0

= Z ( : ) a"b" "y Fy_ o (ax, a®y; 2) g Fr (b, bPy; 2). (4.1)
r=0

Proof. Start with

1 abxt+a?b?yt?
Al = (1 —z(e® —1))(1 — z(eb — 1))6 e

Then the expression for A(t) is symmetric in a and b and we can expand A(t) into
series in two ways to obtain:

bt)"

AW =3 (b b2 S B (a,aty ) O
r=0

n=0

A= (Z ( . ) b’"a"-THFnT<bx7b2y;z>HFT<ax7a2y;z>> e

n!
n=0 \r=0

Similarly, we can show that

(bt)" i HF bz, b%y; 2) (at)”

r=0

r!

A(t) = Z wFy(az, a®y; 2) -
n=0 :

n

At) = Z (Z ( : ) a"b" " g F,_.(ax, a’y; 2) g Fy. (b, b?y; z)) % (4.3)

n=0 \r=0

By comparing the coefficients of % on the right hand sides of the last two equa-
tions, we arrive at the desired result (4.1).

Theorem 4.2. For each pair of integers a and b and all integers and n > 0, the
following identity holds true:

n a—1b—1
n n—kpk b, ..o
E E E Fr_ — F)
( k ) a b HIn—k <b$+ a2+.]7b y,Z) k(auvz)

k=0 i=0 j=0
n a—1b-—1 a
Z ( Z ) Z v Fak g Fy (ax + gi + j,a%y, z) Fi(bu, 2). (4.4)
k=0 §=0 i=0
Proof. Let
252 2
B(t) _ eab(m+u)t+a byt (eabt _ 1)2

(1= 2% — 1))(1 — 2(eb — 1)) (e — 1)(eb — 1)


https://doi.org/10.20944/preprints201904.0333.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 30 April 2019 d0i:10.20944/preprints201904.0333.v1

11

2,2 .2
eabxt+a byt eabi& ~1 6abui& eabt -1

:1—2(6‘”—1) et —1 1—z(ebt —1) ert —1

abmt+a2b2yt2 a—1 abut

bti € atj
BO = e & T Ze
a2b2yt a—1b-1 k
e bt)
- - (bm+ i+j)at (
_1_z(eat_1)zz ZFk at, z) k!
i=0 j=0 k=0

0 n a—1b—1
b tn
S (1) ST et (s i i) Bt | 5

n=0 \ k=0 i=0 j=0 a n!
On the other hand

0o n a—10b—1 n
By=> Y ( . ) SN vt Fy, (ax + %z +j,a2y,z> Fi(bu, 2) %
n=0 \ k=0 j=0i=0
(4.6)
By comparing the coeflicients of ¢™ on the right hand sides of the last two equations,
we arrive at the desired result.
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