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1. Introduction

As is well known, the 2-variable Hermite Kampé de Fériet polynomials (2VHKdFP)
Hn(x, y) [1, 3] are defined as

Hn(x, y) = n!

[n2 ]∑
r=0

yrxn−2r

r!(n− 2r)!
. (1.1)

It is clear that

Hn(2x,−1) = Hn(x,Hn(x,−
1

2
) = Hen(x),Hn(x, 0) = xn,

where Hn(x) and Hen(x) being ordinary Hermite polynomials.

The Hermite polynomial Hn(x,y) (see ([9, 10]) is defined by means of the fol-
lowing generating function as follows:

ext+yt2 =
∞∑

n=0

Hn(x, y)
tn

n!
. (1.2)

Geometric polynomials (also known as Fubini polynomials) are defined as follows
(see [2]):

Fn(x) =
n∑

k=0

{
n
k

}
k!xk, (1.3)

where

{
n
k

}
is the Stirling number of the second kind (see [5]).

For x = 1 in (1.3), we get nth Fubini number (ordered Bell number or geometric
number) Fn [2, 4, 5, 6, 8, 12] is defined by

Fn(1) = Fn =

n∑
k=0

{
n
k

}
k!. (1.4)
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The exponential generating functions of geometric polynomials is given by (see [2]):

1

1− x(et − 1)
=

∞∑
n=0

Fn(x)
tn

n!
, (1.5)

and related to the geometric series (see [2]):(
x
d

dx

)m
1

1− x
=

∞∑
k=0

kmxk =
1

1− x
Fm(

x

1− x
), | x |< 1.

Let us give a short list of these polynomials and numbers as follows:

F0(x) = 1, F1(x) = x, F2(x) = x+2x2, F3(x) = x+6x2+6x3, F4(x) = x+14x2+36x3+24x4,

and

F0 = 1, F1 = 1, F2 = 3, F3 = 13, F4 = 75.

Geometric and exponential polynomials are connected by the relation (see [2]):

Fn(x) =

∫ ∞

0

ϕn(x)e
−λdλ. (1.6)

Recently, Pathan and Khan [9] introduced two variable Hermite-Bernoulli poly-
nomials is defined by means of the following generating function:(

t

et − 1

)α

ext+yt2 =
∞∑

n=0

HB(α)
n (x, y)

tn

n!
. (1.7)

On setting α = 1 in (1.7), the result reduces to known result of Dattoli et al.
[3].

The manuscript of this paper as follows: In section 2, we consider generat-
ing functions for Hermite-Fubini numbers and polynomials and give some properties
of these numbers and polynomials. In section 3, we derive summation formulas of
Hermite-Fubini numbers and polynomials. In Section 4, we construct a symmetric
identities of Hermite-Fubini numbers and polynomials by using generating functions.

2. A new class of Hermite-Fubini numbers and polynomials

In this section, we define three-variable Hermite-Fubini polynomials and obtain
some basic properties which gives us new formula for HFn(x, y, z). Moreover, we
shall consider the sum of products of two Hermite-Fubini polynomials. The sum of
products of various polynomials and numbers with or without binomial coefficients
have been studied by (see [2, 4, 5, 6, 8]):

We introduce 3-variable Hermite-Fubini polynomials by means of the following
generating function:

ext+yt2

1− z(et − 1)
=

∞∑
n=0

HFn(x, y; z)
tn

n!
. (2.1)

It is easily seen from definition (2.1), we have

HFn(0, 0; z) = Fn(z),HFn(0, 0; 1) = Fn.

For y = 0 in (2.1), we obtain 2-variable Fubini polynomials which is defined by
Kargin [8].
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ext

1− z(et − 1)
=

∞∑
n=0

Fn(x; z)
tn

n!
. (2.2)

When investigating the connection between Hermite polynomials Hn(x, y) and
Fubini polynomials Fn(z) of importance is the following theorem.

Theorem 2.1. The following summation formula for Hermite-Fubini polynomials
holds true:

e−yt2

Ω
[cosxt(z + 1)− z cos(t− xt)] =

∞∑
n=0

HF2n(x, y, z)
(−1)nt2n

(2n)!
(2.3)

e−yt2

Ω
[sinxt(z + 1) + z sin(t− xt)] =

∞∑
n=0

HF2n+1(x, y, z)
(−1)nt2n+1

(2n+ 1)!
, (2.4)

where Ω = [1− z(cos t− 1)]2 + [z sin t]2.

Proof. On separating the power series on r.h.s. of (2.1) in to their even and odd
terms by using the elementary identity

∞∑
n=0

f(n) =
∞∑

n=0

f(2n) +
∞∑

n=0

f(2n+ 1)

and then replacing t by it where i2 = −1 and equating the real and imaginary parts
in the resulting equation, we get the summation formulae (2.2) and (2.3).

Remark 2.1. On setting x = y = 0, z = 1 in (2.3) and (2.4), we get the following
well-known classical results involving Fubini numebrs.

Corollary 2.1. The following summation formula for Hermite-Fubini polynomials
holds true:

2− cos t

5− 4 cos t
=

∞∑
n=0

F2n
(−1)nt2n

(2n)!
(2.5)

sin t

5− 4 cos t
=

∞∑
n=0

F2n+1
(−1)nt2n+1

(2n+ 1)!
. (2.6)

Theorem 2.2. For n ≥ 0, the following formula for Hermite-Fubini polynomials
holds true:

HFn(x, y, z) =

n∑
m=0

(
n
r

)
Fn−m(z)Hm(x, y). (2.7)

Proof. Using definition (2.1), we have

∞∑
n=0

HFn(x, y, z)
tn

n!
=

ext+yt2

1− z(et − 1)

=
∞∑

n=0

Fn(z)
tn

n!

∞∑
m=0

Hm(x, y)
tm

m!

=

∞∑
n=0

(
n∑

m=0

(
n
r

)
Fn−m(z)Hm(x, y)

)
tn

n!
.

Comparing the coefficients of tn

n! yields (2.7).
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Theorem 2.2. For n ≥ 0, the following formula for Hermite-Fubini polynomials
holds true:

Hn(x, y) = HFn(x, y; z)− zHFn(x+ 1, y; z) + zHFn(x, y; z). (2.8)

Proof. We begin with the definition (2.1) and write

ext+yt2 =
1− z(et − 1)

1− z(et − 1)
ext+yt2

=
ext+yt2

1− z(et − 1)
− z(et − 1)

1− z(et − 1)
ext+yt2

Then using the definition of Kampé de Fériet generalization of the Hermite polyno-
mials Hn(x, y) and (2.1), we have

∞∑
n=0

Hn(x, y)
tn

n!
=

∞∑
n=0

[HFn(x, y; z)− zHFn(x+ 1, y; z) + zHFn(x, y; z)]
tn

n!
.

Finally, comparing the coefficients of tn

n! , we get (2.8).

Theorem 2.3. For n ≥ 0 and z1 ̸= z2, the following formula for Hermite-Fubini
polynomials holds true:

n∑
k=0

(
n
k

)
HFn−k(x1, y1; z1)HFk(x2, y2; z2)

=
z2HFn(x1 + x2, y1 + y2; z2)− z1HFn(x1 + x2, y1 + y2; z1)

z2 − z1
. (2.9)

Proof. The products of (2.1) can be written as
∞∑

n=0

∞∑
k=0

HFn(x1, y1; z1)
tn

n!
HFk(x2, y2; z2)

tk

k!
=

ex1t+y1t
2

1− z1(et − 1)

ex2t+y2t
2

1− z2(et − 1)

∞∑
n=0

(
n∑

k=0

(
n
k

)
HFn−k(x1, y1; z1)HFk(x2, y2; z2)

)
tn

n!

=
z2

z2 − z1

e(x1+x2)t+(y1+y2)t
2

1− z1(et − 1)
− z1

z2 − z1

e(x1+x2)t+(y1+y2)t
2

1− z2(et − 1)

=

(
z2HFn(x1 + x2, y1 + y2; z2)− z1HFn(x1 + x2, y1 + y2; z1)

z2 − z1

)
tn

n!
.

By equating the coefficients of tn

n! on both sides, we get (2.9).

Theorem 2.4. For n ≥ 0, the following formula for Hermite-Fubini polynomials
holds true:

zHFn(x+ 1, y; z) = (1 + z)HFn(x, y; z)−Hn(x, y). (2.10)

Proof. From (2.1), we have
∞∑

n=0

[HFn(x+ 1, y; z)− HFn(x, y; z)]
tn

n!
=

ext+yt2

1− z(et − 1)
(et − 1)

=
1

z

[
ext+yt2

1− z(et − 1)
− ext+yt2

]

=
1

z

∞∑
n=0

[HFn(x, y; z)−Hn(x, y)]
tn

n!
.
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Comparing the coefficients of tn

n! on both sides, we obtain (2.10).

Remark 2.3. On setting x = y = 0 and x = −1 in Theorem 2.4, we find

zHFn(1, 0; z) = (1 + z)HFn(0, 0; z), (2.11)

and
zHFn(0, 0; z) = (1 + z)HFn(−1, 0; z)− (−1)n. (2.12)

Theorem 2.5. For n ≥ 0, p, q ∈ R, the following formula for Hermite-Fubini poly-
nomials holds true:

HFn(px, qy; z) = n!
n∑

k=0

[ k2 ]∑
j=0

HFn−k(x, y; z)((p− 1)x)k((q − 1)y)j
1

(n− k − 2j)!j!
.

(2.13)
Proof. Rewrite the generating function (2.1), we have

∞∑
n=0

HFn(px, qy; z)
tn

n!
=

1

1− z(et − 1)
ext+yt2e(p−1)xte(q−1)yt2

=

( ∞∑
n=0

HFn(x, y; z)
tn

n!

)( ∞∑
k=0

((p− 1)x)k
tk

k!

) ∞∑
j=0

((q − 1)y)j
t2j

j!


=

( ∞∑
n=0

HFn(x, y; z)
tn

n!

) ∞∑
k=0

∞∑
j=0

((p− 1)x)k((q − 1)y)j
tk+2j

n!k!j!


Replacing k by k − 2j in above equation, we have

L.H.S. =

( ∞∑
n=0

HFn(x, y; z)
tn

n!

) ∞∑
k=2j

((p− 1)x)k−2j((q − 1)y)j
tk

(k − 2j)!j!


=

∞∑
n=0

∞∑
k=2j

HFn(x, y; z)((p− 1)x)k−2j((q − 1)y)j
tn+k

(k − 2j)!j!n!

Again replacing n by n− k in above equation, we have

L.H.S. =

∞∑
n=0

n∑
k=0

[ k2 ]∑
j=0

HFn−k(x, y; z)((p− 1)x)k−2j((q − 1)y)j
tn

(n− k − 2j)!j!k!
.

Finally, equating the coefficients of tn on both sides, we acquire the result (2.13).

Theorem 2.6. For n ≥ 0, the following formula for Hermite-Fubini polynomials
holds true:

HFn(x, y, z) =
n∑

l=0

(
n
l

)
Hn−l(x, y)

l∑
k=0

zkk!S2(l, k). (2.14)

Proof. From (2.1), we have
∞∑

n=0

HFn(x, y, z)
tn

n!
=

ext+yt2

1− z(et − 1)

= ext+yt2
∞∑
k=0

zk(et − 1)k = ext+yt2
∞∑
k=0

zk
∞∑
l=k

k!S2(l, k)
tl

l!

=

∞∑
n=0

Hn(x, y)
tn

n!

∞∑
l=0

zk
l∑

k=0

k!S2(l, k)
tl

l!
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Replacing n by n− l in above equation, we get

∞∑
n=0

HFn(x, y, z)
tn

n!
=

∞∑
n=0

(
n∑

l=0

(
n
l

)
Hn−l(x, y)

l∑
k=0

zkk!S2(l, k)

)
tn

n!
.

Comparing the coefficients of tn

n! in both sides, we get (2.14).

Theorem 2.7. For n ≥ 0, the following formula for Hermite-Fubini polynomials
holds true:

HFn(x+ r, y, z) =
n∑

l=0

(
n
l

)
Hn−l(x, y)

l∑
k=0

zkk!S2(l + r, k + r). (2.15)

Proof. Replacing x by x+ r in (2.1), we have

∞∑
n=0

HFn(x+ r, y, z)
tn

n!
=

e(x+r)t+yt2

1− z(et − 1)

= ext+yt2ert
∞∑
k=0

zk(et − 1)k = ext+yt2ert
∞∑
k=0

zk
∞∑
l=k

k!S2(l, k)
tl

l!

=

∞∑
n=0

Hn(x, y)
tn

n!

∞∑
l=0

zk
l∑

k=0

k!S2(l + r, k + r)
tl

l!

Replacing n by n− l in above equation, we get

∞∑
n=0

HFn(x+ r, y, z)
tn

n!
=

∞∑
n=0

(
n∑

l=0

(
n
l

)
Hn−l(x, y)

l∑
k=0

zkk!S2(l + r, k + r)

)
tn

n!
.

Comparing the coefficients of tn

n! in both sides, we get (2.15).

3. Summation Formulae for Hermite-Fubini polynomials

First, we prove the following result involving the Hermite-Fubini polynomials

HFn(x, y; z) by using series rearrangement techniques and considered its special case:

Theorem 3.1. The following summation formula for Hermite-Fubini polynomials

HFn(x, y; z) holds true:

HFq+l(w, y; z) =

q,l∑
n,p=0

(
q
n

)(
l
p

)
(w − y)n+p

HFq+l−n−p(x, y; z). (3.1)

Proof. Replacing t by t + u in (2.1) and then using the formula [11,p.52(2)]:

∞∑
N=0

f(N)
(x+ y)N

N !
=

∞∑
n,m=0

f(n+m)
xn

n!

ym

m!
, (3.2)

in the resultant equation, we find the following generating function for the Hermite-
Fubini polynomials HFn(x, y; z):

1

1− z(et+u − 1)
ey(t+u)2 = e−x(t+u)

∞∑
q,l=0

HFq+l(x, y; z)
tq

q!

ul

l!
. (3.3)
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Replacing x by w in the above equation and equating the resultant equation to
the above equation, we find

exp((w − x)(t+ u))
∞∑

q,l=0

HFq+l(x, y; z)
tq

q!

ul

l!
=

∞∑
q,l=0

HFq+l(w, y; z)
tq

q!

ul

l!
. (3.4)

On expanding exponential function (3.4) gives

∞∑
N=0

[(w − x)(t+ u)]N

N !

∞∑
q,l=0

HFq+l(x, y; z)
tq

q!

ul

l!
=

∞∑
q,l=0

HFq+l(w, y; z)
tq

q!

ul

l!
, (3.5)

which on using formula (3.2) in the first summation on the left hand side becomes

∞∑
n,p=0

(w − x)n+ptnup

n!p!

∞∑
q,l=0

HFq+l(x, y; z)
tq

q!

ul

l!
=

∞∑
q,l=0

HFq+l(w, y; z)
tq

q!

ul

l!
. (3.6)

Now replacing q by q − n, l by l − p and using the lemma ([11, p.100(1)]):

∞∑
k=0

∞∑
n=0

A(n, k) =
∞∑
k=0

k∑
n=0

A(n, k − n), (3.7)

in the l.h.s. of (3.6), we find

∞∑
q,l=0

q,l∑
n,p=0

(w − x)n+p

n!p!
HFq+l−n−p(x, y; z)

tq

(q − n)!

ul

(l − p)!

=

∞∑
q,l=0

HFq+l(w, y; z)
tq

q!

ul

l!
. (3.8)

Finally, on equating the coefficients of the like powers of t and u in the above
equation, we get the assertion (3.1) of Theorem 3.1.

Remark 3.1. Taking l = 0 in assertion (3.1) of Theorem 3.1, we deduce the following
consequence of Theorem 3.1.

Corollary 3.1. The following summation formula for Hermite-Fubini polynomials

HFn(x, y; z) holds true:

HFq(w, y; z) =

q∑
n=0

(
q
n

)
(w − x)nHFq−n(x, y; z). (3.9)

Remark 3.2. Replacing w by w + x in (3.9), we obtain

HFq(x+ w, y; z) =

q∑
n=0

(
q
n

)
wn

HFq−n(x, y; z). (3.10)

Theorem 3.2. The following summation formula for Hermite-Fubini polynomials

HFn(x, y; z) holds true:

HFn(w, u; z)HFm(W,U ;Z) =

n,m∑
r,k=0

(
n
r

)(
m
k

)
Hr(w − x, u− y)HFn−r(x, y; z)

×Hk(W −X,U − Y )HFm−k(X,Y ;Z). (3.11)
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Proof. Consider the product of the Hermite-Fubini polynomials, we can be written
as generating function (2.1) in the following form:

1

1− z(et − 1)
ext+yt2 1

1− Z(eT − 1)
eXT+Y T 2

=

∞∑
n=0

HFn(x, y; z)
tn

n!

∞∑
m=0

HFm(X,Y ;Z)
Tm

m!
.

(3.12)
Replacing x by w, y by u, X by W and Y by U in (3.12) and equating the resultant
to itself,

∞∑
n=0

∞∑
m=0

HFn(w, u; z)HFm(W,U ;Z)
tn

n!

Tm

m!

= exp
(
(w − x)t+ (u− y)t2

)
exp

(
(W −X)T + (U − Y )T 2

)
×

∞∑
n=0

∞∑
m=0

HFn(x, y; z)HFm(X,Y ;Z)
tn

n!

Tm

m!
,

which on using the generating function (3.7) in the exponential on the r.h.s.,
becomes

∞∑
n=0

∞∑
m=0

HFn(w, u; z)HFm(W,U ;Z)
tn

n!

Tm

m!

=

∞∑
n,r=0

Hr(w−x, u−y)HFn(x, y; z)
tn+r

n!r!

∞∑
m,k=0

Hk(W−X,U−Y )HFm(X,Y ;Z)
Tm+k

m!k!
.

(3.13)
Finally, replacing n by n − r and m by m − k and using equation (3.7) in the

r.h.s. of the above equation and then equating the coefficients of like powers of t and
T , we get assertion (3.11) of Theorem 3.2.

Remark 3.3. Replacing u by y and U by Y in assertion (3.11) of Theorem 3.2, we
deduce the the following consequence of Theorem 3.2.

Corollary 3.2. The following summation formula for Hermite-Fubini polynomials

HFn(x, y; z) holds true:

HFn(w, u; z)HFm(W,U ;Z) =

n,m∑
r,k=0

(
n
r

)(
m
k

)
(w − x)rHFn−r(x, y; z)

×(W −X)kHFm−k(X,Y ;Z). (3.14)

Theorem 3.3. The following summation formula for Hermite-Fubini polynomials

HFn(x, y; z) holds true:

HFn(x+ w, y + u; z) =
n∑

s=0

(
n
s

)
HFn−s(x, y; z)Hs(w, u). (3.15)

Proof. We replace x by x + w and y by y + u in (2.1), use (1.2) and rewrite the
generating function as:

1

1− z(et − 1)
exp((x+ w)t+ (y + u)t2) =

∞∑
n=0

HFn(x, y; z)
tn

n!

∞∑
s=0

Hs(w, u)
ts

s!

=

∞∑
n=0

HFn(x+ w, y + u; z)
tn

n!
(3.16)
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Now replacing n by n− s in l.h.s. and comparing the coefficients of tn on both sides,
we get the result (3.15).

Theorem 3.4. The following summation formula for Hermite-Fubini polynomials

HFn(x, y; z) holds true:

HFn(y, x; z) =

[n2 ]∑
s=0

Fn−2s(y; z)
xs

(n− 2s)!s!
. (3.17)

Proof. We replace x by y and y by x in equation (2.1) to get

∞∑
n=0

HFn(y, x; z)
tn

n!
=

∞∑
n=0

Fn(y; z)
tn

n!

∞∑
s=0

xst2s

k!
. (3.18)

Now replacing n by n− 2s in r.h.s. and comparing the coefficients of t on both
sides, we arrive at the desired result (3.16).

Theorem 3.5. The following summation formula for Hermite-Fubini polynomials

HFn(x, y; z) holds true:

HFn(x, y; z) =
n∑

r=0

(
n
r

)
Fn−r(x− w; z)Hr(w, y). (3.19)

Proof. By exploiting the generating function (1.2), we can write equation (2.1) as

1

1− z(et − 1)
e(x−w)tewt+yt2 =

∞∑
n=0

Fn(x− w; z)
tn

n!

∞∑
r=0

Hr(w, y)
tr

r!
. (3.20)

On replacing n by n− r in above equation, we get
∞∑

n=0

HFn(x, y; z)
tn

n!
=

∞∑
n=0

n∑
r=0

Fn−r(x− w; z)Hr(w, y)
tn

(n− r)!r!
.

Equating the coefficients of the like powers of t on both sides, we get (3.19).

Theorem 3.6. The following summation formula for Hermite-Fubini polynomials

HFn(x, y; z) holds true:

HFn(x+ 1, y; z) =
n∑

r=0

(
n
r

)
HFn−r(x, y; z). (3.21)

Proof. Using the generating function (2.1), we have

∞∑
n=0

HFn(x+ 1, y; z)
tn

n!
−

∞∑
n=0

HFn(x, y; z)
tn

n!

=

(
1

1− z(et − 1)

)
(et − 1)ext+yt2

=

∞∑
n=0

HFn(x, y; z)
tn

n!

( ∞∑
r=0

tr

r!
− 1

)

=

∞∑
n=0

HFn(x, y; z)
tn

n!

∞∑
r=0

tr

r!
−

∞∑
n=0

HFn(x, y; z)
tn

n!

=

∞∑
n=0

n∑
r=0

(
n
r

)
HFn−r(x, y; z)

tn

n!
−

∞∑
n=0

HFn(x, y; z)
tn

n!
.
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Finally, equating the coefficients of the like powers of t on both sides, we get
(3.21).

4. Symmetric identities

Recently, Khan [7], Pathan and Khan [9, 10] have been introduced symmetric iden-
tities. In this section, we establish general symmetry identities for the generalized
Hermite-Fubini polynomials HFn(x, y; z) by applying the generating function (2.1)
and (2.2).

Theorem 4.1. Let x, y, z ∈ R and n ≥ 0, then the following identity holds true:
n∑

r=0

(
n
r

)
bran−r

HFn−r(bx, b
2y; z)HFr(ax, a

2y; z)

=
n∑

r=0

(
n
r

)
arbn−r

HFn−r(ax, a
2y; z)HFr(bx, b

2y; z). (4.1)

Proof. Start with

A(t) =
1

(1− z(eat − 1))(1− z(ebt − 1))
eabxt+a2b2yt2 .

Then the expression for A(t) is symmetric in a and b and we can expand A(t) into
series in two ways to obtain:

A(t) =

∞∑
n=0

HFn(bx, b
2y; z)

(at)n

n!

∞∑
r=0

HFr(ax, a
2y; z)

(bt)r

r!

A(t) =

∞∑
n=0

(
n∑

r=0

(
n
r

)
bran−r

HFn−r(bx, b
2y; z)HFr(ax, a

2y; z)

)
tn

n!
. (4.2)

Similarly, we can show that

A(t) =
∞∑

n=0

HFn(ax, a
2y; z)

(bt)n

n!

∞∑
r=0

HFr(bx, b
2y; z)

(at)r

r!

A(t) =
∞∑

n=0

(
n∑

r=0

(
n
r

)
arbn−r

HFn−r(ax, a
2y; z)HFr(bx, b

2y; z)

)
tn

n!
. (4.3)

By comparing the coefficients of tn

n! on the right hand sides of the last two equa-
tions, we arrive at the desired result (4.1).

Theorem 4.2. For each pair of integers a and b and all integers and n ≥ 0, the
following identity holds true:

n∑
k=0

(
n
k

) a−1∑
i=0

b−1∑
j=0

an−kbkHFn−k

(
bx+

b

a
i+ j, b2y, z

)
Fk(au, z)

n∑
k=0

(
n
k

) a−1∑
j=0

b−1∑
i=0

bn−kakHFn−k

(
ax+

a

b
i+ j, a2y, z

)
Fk(bu, z). (4.4)

Proof. Let

B(t) =
eab(x+u)t+a2b2yt2(eabt − 1)2

(1− z(eat − 1))(1− z(ebt − 1))(eat − 1)(ebt − 1)
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=
eabxt+a2b2yt2

1− z(eat − 1)

eabt − 1

ebt − 1

eabut

1− z(ebt − 1)

eabt − 1

eat − 1

B(t) =
eabxt+a2b2yt2

1− z(eat − 1)

a−1∑
i=0

ebti
eabut

1− z(ebt − 1)

b−1∑
j=0

eatj

=
ea

2b2yt2

1− z(eat − 1)

a−1∑
i=0

b−1∑
j=0

e(bx+
b
a i+j)at

∞∑
k=0

Fk(au, z)
(bt)k

k!

=
∞∑

n=0

 n∑
k=0

(
n
k

) a−1∑
i=0

b−1∑
j=0

an−kbkHFn−k

(
bx+

b

a
i+ j, b2y, z

)
Fk(au, z)

 tn

n!
(4.5)

On the other hand

B(t) =

∞∑
n=0

 n∑
k=0

(
n
k

) a−1∑
j=0

b−1∑
i=0

bn−kakHFn−k

(
ax+

a

b
i+ j, a2y, z

)
Fk(bu, z)

 tn

n!
.

(4.6)
By comparing the coefficients of tn on the right hand sides of the last two equations,
we arrive at the desired result.
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