A new class of Hermite-Fubini polynomials and its properties

Waseem A. Khan1 and Nisar K S2

1Department of Mathematics, Faculty of Science, Integral University, Lucknow-226026, (India)
2Department of Mathematics, College of Arts and Science-Wadi Al dawaser, Prince Sattam bin Abdulaziz University, Riyadh region 11991, Saudi Arabia

E-mail: waseem08_khan@rediffmail.com, n.sooppy@psau.edu.sa

Abstract. In this paper, we introduce a new class of Hermite-Fubini numbers and polynomials and investigate some properties of these polynomials. We establish summation formulas of these polynomials by summation techniques series. Furthermore, we derive symmetric identities of Hermite-Fubini numbers and polynomials by using generating functions.

Keywords: Hermite polynomials, Fubini numbers and polynomials, Hermite-Fubini polynomials, summation formulae, symmetric identities.

2010 Mathematics Subject Classification: 11B68, 11B75, 11B83, 33C45, 33C99.

1. Introduction

As is well known, the 2-variable Hermite Kampé de Fériet polynomials (2VHKdFP) $H_n(x, y)$ \cite{1, 3} are defined as

\begin{equation}
H_n(x, y) = n! \sum_{r=0}^{\lfloor \frac{n}{2} \rfloor} \frac{y^r x^{n-2r}}{r!(n-2r)!}.
\end{equation}

It is clear that

\[H_n(2x, -1) = H_n(x, H_n(x, -\frac{1}{2})) = He_n(x), H_n(x, 0) = x^n,\]

where $H_n(x)$ and $He_n(x)$ being ordinary Hermite polynomials.

The Hermite polynomial $H_n(x,y)$ (see \cite{9, 10}) is defined by means of the following generating function as follows:

\begin{equation}
e^{xt+yt^2} = \sum_{n=0}^{\infty} H_n(x,y) \frac{t^n}{n!}.
\end{equation}

Geometric polynomials (also known as Fubini polynomials) are defined as follows (see \cite{2}):

\begin{equation}
F_n(x) = \sum_{k=0}^{n} \binom{n}{k} k! x^k,
\end{equation}

where $\binom{n}{k}$ is the Stirling number of the second kind (see \cite{5}).

For $x = 1$ in (1.3), we get n^{th} Fubini number (ordered Bell number or geometric number) F_n \cite{2, 4, 5, 6, 8, 12} is defined by

\begin{equation}
F_n(1) = F_n = \sum_{k=0}^{n} \binom{n}{k} k!.
\end{equation}
The exponential generating functions of geometric polynomials is given by (see [2]):

\[
\frac{1}{1 - x(e^t - 1)} = \sum_{n=0}^{\infty} F_n(x) \frac{t^n}{n!},
\]

(1.5)

and related to the geometric series (see [2]):

\[
\left(x \frac{d}{dx} \right)^m \frac{1}{1 - x} = \sum_{k=0}^{\infty} k^m x^k = \frac{1}{1 - x} F_m(\frac{x}{1 - x}), \quad |x| < 1.
\]

Let us give a short list of these polynomials and numbers as follows:

\[
F_0(x) = 1, \quad F_1(x) = x, \quad F_2(x) = x + 2x^2, \quad F_3(x) = x + 6x^2 + 6x^3, \quad F_4(x) = x + 14x^2 + 36x^3 + 24x^4,
\]

and

\[
F_0 = 1, \quad F_1 = 1, \quad F_2 = 3, \quad F_3 = 13, \quad F_4 = 75.
\]

Geometric and exponential polynomials are connected by the relation (see [2]):

\[
F_n(x) = \int_0^\infty \phi_n(x)e^{-\lambda}d\lambda.
\]

(1.6)

Recently, Pathan and Khan [9] introduced two variable Hermite-Bernoulli polynomials is defined by means of the following generating function:

\[
\left(\frac{e^t + y t^2}{e^t - 1} \right)^\alpha e^{xt + yt^2} = \sum_{n=0}^{\infty} H_{\alpha}^F(n, x, y) \frac{t^n}{n!}.
\]

(1.7)

On setting \(\alpha = 1 \) in (1.7), the result reduces to known result of Dattoli et al. [3].

The manuscript of this paper as follows: In section 2, we consider generating functions for Hermite-Fubini numbers and polynomials and give some properties of these numbers and polynomials. In section 3, we derive summation formulas of Hermite-Fubini numbers and polynomials. In Section 4, we construct a symmetric identities of Hermite-Fubini numbers and polynomials by using generating functions.

2. A new class of Hermite-Fubini numbers and polynomials

In this section, we define three-variable Hermite-Fubini polynomials and obtain some basic properties which give us new formula for \(H_{\alpha}^F_n(x, y, z) \). Moreover, we shall consider the sum of products of two Hermite-Fubini polynomials. The sum of products of various polynomials and numbers with or without binomial coefficients have been studied by (see [2, 4, 5, 6, 8]):

We introduce 3-variable Hermite-Fubini polynomials by means of the following generating function:

\[
\frac{e^{xt + yt^2}}{1 - z(e^t - 1)} = \sum_{n=0}^{\infty} H_{\alpha}^F_n(x, y, z) \frac{t^n}{n!}.
\]

(2.1)

It is easily seen from definition (2.1), we have

\[
H_{\alpha}^F_n(0, 0; z) = F_n(z), \quad H_{\alpha}^F_n(0, 0; 1) = F_n.
\]

For \(y = 0 \) in (2.1), we obtain 2-variable Fubini polynomials which is defined by Kargin [8].
When investigating the connection between Hermite polynomials \(H_n(x, y)\) and Fubini polynomials \(F_n(z)\) of importance is the following theorem.

Theorem 2.1. The following summation formula for Hermite-Fubini polynomials holds true:

\[
e^{-yt^2} \left[\cos xt(z + 1) - z \cos(xt) \right] = \sum_{n=0}^{\infty} H_{2n}(x, y, z) \frac{(-1)^n t^{2n}}{(2n)!}, \tag{2.3}
\]

\[
e^{-yt^2} \left[\sin xt(z + 1) + z \sin(xt) \right] = \sum_{n=0}^{\infty} H_{2n+1}(x, y, z) \frac{(-1)^n t^{2n+1}}{(2n+1)!}, \tag{2.4}
\]

where \(\Omega = [1 - z(\cos t - 1)]^2 + [z \sin t]^2\).

Proof. On separating the power series on r.h.s. of (2.1) into even and odd terms by using the elementary identity

\[
\sum_{n=0}^{\infty} f(n) = \sum_{n=0}^{\infty} f(2n) + \sum_{n=0}^{\infty} f(2n+1)
\]

and then replacing \(t\) by \(it\), where \(i^2 = -1\) and equating the real and imaginary parts in the resulting equation, we get the summation formulae (2.2) and (2.3).

Remark 2.1. On setting \(x = y = 0, z = 1\) in (2.3) and (2.4), we get the following well-known classical results involving Fubini numbers.

Corollary 2.1. The following summation formula for Hermite-Fubini polynomials holds true:

\[
\frac{2 - \cos t}{5 - 4 \cos t} = \sum_{n=0}^{\infty} F_{2n}(z) \frac{(-1)^n t^{2n}}{(2n)!}, \tag{2.5}
\]

\[
\frac{\sin t}{5 - 4 \cos t} = \sum_{n=0}^{\infty} F_{2n+1}(z) \frac{(-1)^n t^{2n+1}}{(2n+1)!}, \tag{2.6}
\]

Theorem 2.2. For \(n \geq 0\), the following formula for Hermite-Fubini polynomials holds true:

\[
HF_n(x, y, z) = \sum_{m=0}^{n} \binom{n}{m} F_{n-m}(z) H_m(x, y). \tag{2.7}
\]

Proof. Using definition (2.1), we have

\[
\sum_{n=0}^{\infty} HF_n(x, y, z) \frac{t^n}{n!} = \frac{e^{xt+y^2}}{1 - z(e^t - 1)}
\]

\[
= \sum_{n=0}^{\infty} F_n(z) \frac{t^n}{n!} \sum_{m=0}^{n} H_m(x, y) \frac{t^m}{m!}
\]

\[
= \sum_{n=0}^{\infty} \left(\sum_{m=0}^{n} \binom{n}{m} F_{n-m}(z) H_m(x, y) \right) \frac{t^n}{n!}.
\]

Comparing the coefficients of \(\frac{t^n}{n!}\) yields (2.7).
Theorem 2.2. For $n \geq 0$, the following formula for Hermite-Fubini polynomials holds true:

$$H_n(x, y) = H F_n(x, y; z) - z H F_n(x + 1, y; z) + z H F_n(x, y; z). \tag{2.8}$$

Proof. We begin with the definition (2.1) and write

$$e^{xt+yt^2} = \frac{1 - z(e^t - 1)}{1 - z(e^t - 1)} e^{xt+yt^2}$$

Then using the definition of Kampé de Fériet generalization of the Hermite polynomials $H_n(x, y)$ and (2.1), we have

$$\sum_{n=0}^{\infty} H_n(x, y) \frac{t^n}{n!} = \sum_{n=0}^{\infty} \left[H F_n(x, y; z) - z H F_n(x + 1, y; z) + z H F_n(x, y; z) \right] \frac{t^n}{n!}.$$

Finally, comparing the coefficients of $\frac{t^n}{n!}$, we get (2.8).

Theorem 2.3. For $n \geq 0$ and $z_1 \neq z_2$, the following formula for Hermite-Fubini polynomials holds true:

$$\sum_{k=0}^{n} \binom{n}{k} H F_{n-k}(x_1, y_1; z_1) H F_k(x_2, y_2; z_2) = \frac{z_2 H F_n(x_1 + x_2, y_1 + y_2; z_2) - z_1 H F_n(x_1 + x_2, y_1 + y_2; z_1)}{z_2 - z_1}. \tag{2.9}$$

Proof. The products of (2.1) can be written as

$$\sum_{n=0}^{\infty} \sum_{k=0}^{\infty} H F_n(x_1, y_1; z_1) \frac{t^n}{n!} H F_k(x_2, y_2; z_2) \frac{t^k}{k!} = \frac{e^{x_1+t+y_1t^2}}{1 - z_1(e^t - 1)} \frac{e^{x_2+t+y_2t^2}}{1 - z_2(e^t - 1)}$$

By equating the coefficients of $\frac{t^n}{n!}$ on both sides, we get (2.9).

Theorem 2.4. For $n \geq 0$, the following formula for Hermite-Fubini polynomials holds true:

$$z H F_n(x + 1, y; z) = (1 + z) H F_n(x, y; z) - H_n(x, y). \tag{2.10}$$

Proof. From (2.1), we have

$$\sum_{n=0}^{\infty} \left[H F_n(x + 1, y; z) - H F_n(x, y; z) \right] \frac{t^n}{n!} = \frac{e^{xt+yt^2}}{1 - z(e^t - 1)}(e^t - 1)$$

$$= \frac{1}{z} \left[\frac{e^{xt+yt^2}}{1 - z(e^t - 1)} - e^{xt+yt^2} \right]$$

$$= \frac{1}{z} \sum_{n=0}^{\infty} \left[H F_n(x, y; z) - H_n(x, y) \right] \frac{t^n}{n!}.$$
Comparing the coefficients of \(\frac{t^n}{n!} \) on both sides, we obtain (2.10).

Remark 2.3. On setting \(x = y = 0 \) and \(x = -1 \) in Theorem 2.4, we find
\[
z_H F_n(1,0; z) = (1 + z) H F_n(0,0; z),
\]
and
\[
z_H F_n(0,0; z) = (1 + z) H F_n(-1,0; z) - (-1)^n.
\]

Theorem 2.5. For \(n \geq 0, p, q \in \mathbb{R} \), the following formula for Hermite-Fubini polynomials holds true:
\[
H F_n(px, qy; z) = n! \sum_{k=0}^{\lfloor \frac{n}{2} \rfloor} \frac{1}{k!} \frac{1}{(n-k-2j)!} (p-1)x^k ((q-1)y)^j.
\]

Proof. Rewrite the generating function (2.1), we have
\[
\sum_{n=0}^{\infty} H F_n(px, qy; z) \frac{t^n}{n!} = \frac{1}{1-z(e^t-1)} e^{xt+y^2} e^{(p-1)xt} e^{(q-1)y^2}.
\]
Replacing \(k \) by \(k-2j \) in above equation, we have
\[
L.H.S. = \sum_{n=0}^{\infty} H F_n(x, y; z) \frac{t^n}{n!} \sum_{k=2j}^{\infty} ((p-1)x)^k ((q-1)y)^j \frac{t^k}{(k-2j)!j!}.
\]
Again replacing \(n \) by \(n-k \) in above equation, we have
\[
L.H.S. = \sum_{n=0}^{\infty} \sum_{k=2j}^{\infty} H F_n-k(x, y; z) ((p-1)x)^k ((q-1)y)^j \frac{t^n}{(n-k-2j)!j!k!}.
\]
Finally, equating the coefficients of \(t^n \) on both sides, we acquire the result (2.13).

Theorem 2.6. For \(n \geq 0 \), the following formula for Hermite-Fubini polynomials holds true:
\[
H F_n(x, y; z) = \sum_{l=0}^{n} \binom{n}{l} H_{n-l}(x, y) \sum_{k=0}^{l} z^k k! S_2(l, k).
\]

Proof. From (2.1), we have
\[
\sum_{n=0}^{\infty} H F_n(x, y; z) \frac{t^n}{n!} = \frac{e^{xt+y^2}}{1-z(e^t-1)} e^{(p-1)xt} e^{(q-1)y^2} \sum_{k=0}^{\infty} k! S_2(l, k) \frac{t^l}{l!}.
\]
Replacing n by $n - l$ in above equation, we get
\[
\sum_{n=0}^{\infty} H_n(x, y, z) \frac{t^n}{n!} = \sum_{n=0}^{\infty} \left(\sum_{l=0}^{n} \binom{n}{l} H_{n-l}(x, y) \sum_{k=0}^{l} z^k l! S_2(l, k) \right) \frac{t^n}{n!}.
\]

Comparing the coefficients of $\frac{t^n}{n!}$ in both sides, we get (2.14).

Theorem 2.7. For $n \geq 0$, the following formula for Hermite-Fubini polynomials holds true:
\[
h_F_n(x + r, y, z) = \sum_{l=0}^{n} \binom{n}{l} H_n(l, y) \sum_{k=0}^{l} z^k l! S_2(l, k).
\tag{2.15}
\]

Proof. Replacing x by $x + r$ in (2.1), we have
\[
\sum_{n=0}^{\infty} H_n(x + r, y, z) \frac{t^n}{n!} = \frac{e^{(x+r)t + yt^2}}{1 - z(e^t - 1)}
\]
\[
= e^{xt + yt} e^{rt} \sum_{k=0}^{\infty} z^k (e^t - 1)^k = e^{xt + yt} e^{rt} \sum_{k=0}^{\infty} z^k \sum_{l=k}^{\infty} l! S_2(l, k) \frac{t^l}{l!}
\]
\[
= \sum_{n=0}^{\infty} H_n(x, y) \frac{t^n}{n!} \sum_{l=0}^{\infty} z^l \sum_{k=0}^{l} k! S_2(l, k) \frac{t^l}{l!}
\]

Replacing n by $n - l$ in above equation, we get
\[
\sum_{n=0}^{\infty} H_n(x + r, y, z) \frac{t^n}{n!} = \sum_{n=0}^{\infty} \left(\sum_{l=0}^{n} \binom{n}{l} H_{n-l}(x, y) \sum_{k=0}^{l} z^k l! S_2(l, k) \right) \frac{t^n}{n!}.
\]

Comparing the coefficients of $\frac{t^n}{n!}$ in both sides, we get (2.15).

3. Summation Formulas for Hermite-Fubini polynomials

First, we prove the following result involving the Hermite-Fubini polynomials $h_F_n(x, y; z)$ by using series rearrangement techniques and considered its special case:

Theorem 3.1. The following summation formula for Hermite-Fubini polynomials $h_F_n(x, y; z)$ holds true:
\[
h_F_{q+l}(w, y; z) = \sum_{n=0}^{q \cdot l} \binom{n}{l} \binom{l}{p} (w - y)^{n+p} h_F_{q+l-n-p}(x, y; z).
\tag{3.1}
\]

Proof. Replacing t by $t + u$ in (2.1) and then using the formula [11,p.52(2)]:
\[
\sum_{N=0}^{\infty} f(N) \frac{(x + y)^N}{N!} = \sum_{n,m=0}^{\infty} f(n + m) \frac{x^n y^m}{n! m!},
\tag{3.2}
\]
in the resultant equation, we find the following generating function for the Hermite-Fubini polynomials $h_F_n(x, y; z)$:
\[
\frac{1}{1 - z(e^t + u - 1)} e^{y(t + u)^2} = e^{-z(t + u)^2} \sum_{q,l=0}^{\infty} H_{q+l}(x, y; z) \frac{t^q u^l}{q! l!}.
\tag{3.3}
\]
Replacing x by w in the above equation and equating the resultant equation to the above equation, we find
\[
\exp((w - x)(t + u)) \sum_{q,l=0}^{\infty} H_{q+l}(x, y; z) \frac{t^q u^l}{q! l!} = \sum_{q,l=0}^{\infty} H_{q+l}(w, y; z) \frac{t^q u^l}{q! l!}.
\]

(3.4)

On expanding exponential function (3.4) gives
\[
\sum_{N=0}^{\infty} \frac{[(w - x)(t + u)]^N}{N!} \sum_{q,l=0}^{\infty} H_{q+l}(x, y; z) \frac{t^q u^l}{q! l!} = \sum_{q,l=0}^{\infty} H_{q+l}(w, y; z) \frac{t^q u^l}{q! l!},
\]

(3.5)

which on using formula (3.2) in the first summation on the left hand side becomes
\[
\sum_{N=0}^{\infty} \sum_{n,p=0}^{\infty} \frac{(w - x)^{n+p} u^p}{n! p!} \sum_{q,l=0}^{\infty} H_{q+l}(x, y; z) \frac{t^q u^l}{q! l!} = \sum_{q,l=0}^{\infty} H_{q+l}(w, y; z) \frac{t^q u^l}{q! l!}.
\]

(3.6)

Now replacing q by $q - n$, l by $l - p$ and using the lemma ([11, p.100(1)]):
\[
\sum_{k=0}^{\infty} \sum_{n=0}^{k} A(n, k) = \sum_{k=0}^{\infty} \sum_{n=0}^{k} A(n, k - n),
\]

(3.7)

in the l.h.s. of (3.6), we find
\[
\sum_{q,l=0}^{\infty} \sum_{n,p=0}^{q,l} \frac{(w - x)^{n+p}}{n! p!} H_{q+l-n-p}(x, y; z) \frac{t^q u^l}{(q - n)! (l - p)!} = \sum_{q,l=0}^{\infty} H_{q+l}(w, y; z) \frac{t^q u^l}{q! l!}.
\]

(3.8)

Finally, on equating the coefficients of the like powers of t and u in the above equation, we get the assertion (3.1) of Theorem 3.1.

Remark 3.1. Taking $l = 0$ in assertion (3.1) of Theorem 3.1, we deduce the following consequence of Theorem 3.1.

Corollary 3.1. The following summation formula for Hermite-Fubini polynomials $H_{F_n}(x, y; z)$ holds true:
\[
H_{F_q}(w, y; z) = \sum_{n=0}^{q} \binom{q}{n} (w - x)^n H_{F_{q-n}}(x, y; z).
\]

(3.9)

Remark 3.2. Replacing w by $w + x$ in (3.9), we obtain
\[
H_{F_q}(x + w, y; z) = \sum_{n=0}^{q} \binom{q}{n} w^n H_{F_{q-n}}(x, y; z).
\]

(3.10)

Theorem 3.2. The following summation formula for Hermite-Fubini polynomials $H_{F_n}(x, y; z)$ holds true:
\[
H_{F_n}(w, u; z) H_{F_m}(W, U; Z) = \sum_{r,k=0}^{n,m} \binom{n}{r} \binom{m}{k} H_{r}(w - x, u - y; z) H_{F_{n-r}}(x, y; z)
\times H_{k}(W - X, U - Y) H_{F_{m-k}}(X, Y; Z).
\]

(3.11)
\[\frac{1}{1 - z(e^t - 1)} e^{xt + yt^2} = \frac{1}{1 - Z(e^t - 1)} e^{XT + YT^2} = \sum_{n=0}^{\infty} H_F_n(x, y; z) \frac{t^n}{n!} \sum_{m=0}^{\infty} H_F_m(X, Y; Z) \frac{T^m}{m!}. \]

(3.12)

Replacing \(x \) by \(w, y \) by \(u \), \(X \) by \(W \) and \(Y \) by \(U \) in (3.12) and equating the resultant to itself,

\[\sum_{n=0}^{\infty} \sum_{m=0}^{\infty} H_F_n(w, u; z) H_F_m(W, U; Z) \frac{t^n T^m}{n! m!} = \exp ((w - x)t + (u - y)t^2) \exp ((W - X)T + (U - Y)T^2) \times \sum_{n=0}^{\infty} \sum_{m=0}^{\infty} H_F_n(x, y; z) H_F_m(X, Y; Z) \frac{t^n T^m}{n! m!}, \]

which on using the generating function (3.7) in the exponential on the r.h.s., becomes

\[\sum_{n=0}^{\infty} \sum_{m=0}^{\infty} H_F_n(w, u; z) H_F_m(W, U; Z) \frac{t^n T^m}{n! m!} = \sum_{n, r=0}^{\infty} H_r(w-x, u-y) H_F_n(x, y; z) \frac{t^{n+r}}{n! r!} \sum_{m, k=0}^{\infty} H_k(W - X, U - Y) H_F_m(X, Y; Z) \frac{T^{m+k}}{m! k!}. \]

(3.13)

Finally, replacing \(n \) by \(n - r \) and \(m \) by \(m - k \) and using equation (3.7) in the r.h.s. of the above equation and then equating the coefficients of like powers of \(t \) and \(T \), we get assertion (3.11) of Theorem 3.2.

\[\text{Remark 3.3.} \ \text{Replacing } u \text{ by } y \text{ and } U \text{ by } Y \text{ in assertion (3.11) of Theorem 3.2, we deduce the the following consequence of Theorem 3.2.} \]

\[\text{Corollary 3.2.} \ \text{The following summation formula for } H_F_n(x, y; z) \text{ holds true:} \]

\[H_F_n(w, u; z) H_F_m(W, U; Z) = \sum_{r, k=0}^{n, m} \binom{n}{r} \binom{m}{k} (w - x)^r H_F_{n-r}(x, y; z) \]

\[\times (W - X)^k H_F_{m-k}(X, Y; Z). \]

(3.14)

\[\text{Theorem 3.3.} \ \text{The following summation formula for } H_F_n(x, y; z) \text{ holds true:} \]

\[H_F_n(x + w, y + u; z) = \sum_{s=0}^{n} \binom{n}{s} H_F_{n-s}(x, y; z) H_s(w, u). \]

(3.15)

\[\text{Proof.} \ \text{We replace } x \text{ by } x + w \text{ and } y \text{ by } y + u \text{ in (2.1), use (1.2) and rewrite the generating function as:} \]

\[\frac{1}{1 - z(e^t - 1)} \exp((x + w)t + (y + u)t^2) = \sum_{n=0}^{\infty} H_F_n(x, y; z) \frac{t^n}{n!} \sum_{s=0}^{\infty} H_s(w, u) \frac{t^s}{s!} \]

\[= \sum_{n=0}^{\infty} H_F_n(x + w, y + u; z) \frac{t^n}{n!}. \]

(3.16)
Now replacing \(n \) by \(n - s \) in l.h.s. and comparing the coefficients of \(t^n \) on both sides, we get the result (3.15).

Theorem 3.4. The following summation formula for Hermite-Fubini polynomials \(H_F_n(x, y; z) \) holds true:

\[
H_F_n(y, x; z) = \sum_{s=0}^{[\frac{n}{2}]} F_{n-2s}(y; z) \frac{x^s}{(n-2s)!s!}.
\]

(3.17)

Proof. We replace \(x \) by \(y \) and \(y \) by \(x \) in equation (2.1) to get

\[
\sum_{n=0}^{\infty} H_F_n(y, x; z) \frac{t^n}{n!} = \sum_{n=0}^{\infty} F_n(y; z) \frac{t^n}{n!} \sum_{s=0}^{\infty} x^s t^{2s}.
\]

(3.18)

Now replacing \(n \) by \(n - 2s \) in r.h.s. and comparing the coefficients of \(t \) on both sides, we arrive at the desired result (3.16).

Theorem 3.5. The following summation formula for Hermite-Fubini polynomials \(H_F_n(x, y; z) \) holds true:

\[
H_F_n(x, y; z) = \sum_{r=0}^{n} \binom{n}{r} F_{n-r}(x - w; z) H_r(w, y).
\]

(3.19)

Proof. By exploiting the generating function (1.2), we can write equation (2.1) as

\[
\frac{1}{1-z(e^t-1)} e^{(x-w)t} e^{yt+yz^2} = \sum_{n=0}^{\infty} F_n(x-w; z) \frac{t^n}{n!} \sum_{r=0}^{\infty} H_r(w, y) \frac{t^r}{r!}.
\]

(3.20)

On replacing \(n \) by \(n - r \) in above equation, we get

\[
\sum_{n=0}^{\infty} H_F_n(x, y; z) \frac{t^n}{n!} = \sum_{n=0}^{\infty} \sum_{r=0}^{n} F_{n-r}(x - w; z) H_r(w, y) \frac{t^n}{(n-r)!r!}.
\]

Equating the coefficients of the like powers of \(t \) on both sides, we get (3.19).

Theorem 3.6. The following summation formula for Hermite-Fubini polynomials \(H_F_n(x, y; z) \) holds true:

\[
H_F_n(x + 1, y; z) = \sum_{r=0}^{n} \binom{n}{r} H_F_{n-r}(x, y; z).
\]

(3.21)

Proof. Using the generating function (2.1), we have

\[
\sum_{n=0}^{\infty} H_F_n(x + 1, y; z) \frac{t^n}{n!} = \sum_{n=0}^{\infty} H_F_n(x, y; z) \frac{t^n}{n!} + \frac{1}{1-z(e^t-1)} e^{xt+yt^2}
\]

\[
= \sum_{n=0}^{\infty} H_F_n(x, y; z) \frac{t^n}{n!} \left(\sum_{r=0}^{\infty} \frac{t^r}{r!} - 1 \right)
\]

\[
= \sum_{n=0}^{\infty} \sum_{r=0}^{n} \binom{n}{r} H_F_{n-r}(x, y; z) \frac{t^n}{n!} \frac{t^r}{r!} - \sum_{n=0}^{\infty} H_F_n(x, y; z) \frac{t^n}{n!}
\]

\[
= \sum_{n=0}^{\infty} \sum_{r=0}^{n} \binom{n}{r} H_F_{n-r}(x, y; z) \frac{t^n}{n!} - \sum_{n=0}^{\infty} H_F_n(x, y; z) \frac{t^n}{n!}.
\]
Finally, equating the coefficients of the like powers of t on both sides, we get (3.21).

4. Symmetric identities

Recently, Khan [7], Pathan and Khan [9, 10] have been introduced symmetric identities. In this section, we establish general symmetry identities for the generalized Hermite-Fubini polynomials $HF_n(x, y; z)$ by applying the generating function (2.1) and (2.2).

Theorem 4.1

Let $x, y, z \in \mathbb{R}$ and $n \geq 0$, then the following identity holds true:

$$
\sum_{r=0}^{n} \binom{n}{r} b^r a^{n-r} HF_{n-r}(bx, b^2y; z) HF_r(ax, a^2y; z) = \sum_{r=0}^{n} \binom{n}{r} a^r b^{n-r} HF_{n-r}(ax, a^2y; z) HF_r(bx, b^2y; z).
$$

\[(4.1) \]

Proof. Start with

$$
A(t) = \frac{1}{(1 - z(e^{at} - 1))(1 - z(e^{bt} - 1))} e^{abxt + a^2bt^2y^2}.
$$

Then the expression for $A(t)$ is symmetric in a and b and we can expand $A(t)$ into series in two ways to obtain:

$$
A(t) = \sum_{n=0}^{\infty} HF_n(ax, a^2y; z) \frac{(at)^n}{n!} \sum_{r=0}^{\infty} HF_r(bx, b^2y; z) \frac{(bt)^r}{r!}
$$

\[(4.2) \]

Similarly, we can show that

$$
A(t) = \sum_{n=0}^{\infty} HF_n(ax, a^2y; z) \frac{(bt)^n}{n!} \sum_{r=0}^{\infty} HF_r(bx, b^2y; z) \frac{(at)^r}{r!}
$$

\[(4.3) \]

By comparing the coefficients of $\frac{t^n}{n!}$ on the right hand sides of the last two equations, we arrive at the desired result (4.1).

Theorem 4.2

For each pair of integers a and b and all integers and $n \geq 0$, the following identity holds true:

$$
\sum_{k=0}^{n} \binom{n}{k} \sum_{i=0}^{a-1} \sum_{j=0}^{b-1} a^{n-k-i} b^k HF_{n-k} \left(bx + \frac{b}{a} i + j, b^2y, z \right) F_k(au, z)
$$

$$
\sum_{k=0}^{n} \binom{n}{k} \sum_{j=0}^{a-1} \sum_{i=0}^{b-1} b^{n-k-j} a^k HF_{n-k} \left(ax + \frac{a}{b} i + j, a^2y, z \right) F_k(bu, z).
$$

\[(4.4) \]

Proof. Let

$$
B(t) = \frac{e^{ab(x+u)+a^2y^2t^2}(e^{abt} - 1)^2}{(1 - z(e^{at} - 1))(1 - z(e^{bt} - 1))(e^{at} - 1)(e^{bt} - 1)}
$$

...
\[B(t) = \frac{e^{abxt} + a^2 b^2 y t^2}{1 - z(e^{at} - 1)} e^{abt} - 1 \]

\[\frac{e^{abt}}{1 - z(e^{bt} - 1)} \sum_{i=0}^{b-1} e^{abt i} \frac{b^i}{i!} \sum_{j=0}^{a} \sum_{k=0}^{b} F_k(au, z) \left(\frac{b t^j}{j!} \right) \]

\[= \sum_{n=0}^{\infty} \left(\sum_{k=0}^{n} \binom{n}{k} \sum_{i=0}^{a-1} \sum_{j=0}^{b-1} a^{n-k} b^k H_{n-k} \left(bx + \frac{b}{a} i + j, b^2 y, z \right) F_k(au, z) \right) \frac{t^n}{n!} \quad (4.5) \]

On the other hand

\[B(t) = \sum_{n=0}^{\infty} \left(\sum_{k=0}^{n} \binom{n}{k} \sum_{i=0}^{a-1} \sum_{j=0}^{b-1} b^{n-k} a^k H_{n-k} \left(ax + \frac{a}{b} i + j, a^2 y, z \right) F_k(bu, z) \right) \frac{t^n}{n!} \quad (4.6) \]

By comparing the coefficients of \(t^n \) on the right hand sides of the last two equations, we arrive at the desired result.

References