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Abstract: We investigate the flow structure and dynamics of moderate-Rayleigh-number (Ra) thermal1

convection in a two-dimensional inclined porous layer. Direct numerical simulations (DNS) confirm2

the emergence of O(1) aspect-ratio large-scale convective rolls, with one ‘natural’ roll rotating in3

the counterclockwise direction and one ‘antinatural’ roll rotating in the clockwise direction. As4

the inclination angle φ is increased, the background mean shear flow intensifies the natural-roll5

motion, while suppressing the antinatural-roll motion. Moreover, our DNS reveal—for the first time6

in single-species porous medium convection—the existence of spatially-localized convective states7

at large φ, which we suggest are enabled by subcritical instability of the base state at sufficiently8

large inclination angles. To better understand the physics of inclined porous medium convection at9

different φ, we numerically compute steady convective solutions using Newton iteration and then10

perform secondary stability analysis of these nonlinear states using Floquet theory. Our analysis11

indicates that the inclination of the porous layer stabilizes the boundary layers of the natural roll,12

but intensifies the boundary-layer instability of the antinatural roll. These results facilitate physical13

understanding of the large-scale cellular flows observed in the DNS at different values of φ.14

Keywords: convection; porous media; secondary stability; Floquet theory; localized states15

1. Introduction16

Buoyancy-driven convection in fluid-saturated porous media exhibits rich instability17

characteristics and nonlinear dynamics as the Rayleigh number Ra, the ratio of driving to damping18

forces, increases [1–7]. This system has been extensively studied owing to applications in geothermal19

energy extraction, geological carbon sequestration, and the the design of compact heat exchangers20

[8–11]. In a homogenous and isotropic horizontal porous layer uniformly heated from below, the basic21

conduction state becomes linearly unstable above a critical Rayleigh number Rac = 4π2 [1,2], giving22

rise to steady O(1) aspect-ratio large-scale convective rolls through a stationary bifurcation. As Ra23

is increased further, a secondary instability occurs within the upper and lower thermal boundary24

layers via a supercritical Hopf bifurcation, generating small-scale plumes that are periodically or25

quasi-periodically advected around the cells for 400 . Ra . 1300 [3,12–16]. For Ra > 1300, the26

large-scale cellular flow is broken down and the system transitions to the ‘turbulent’, narrowly spaced27

columnar-flow, high-Ra regime [4–6].28

In deep geological formations the layer may not be strictly horizontal; for example, in carbon29

sequestration the saline aquifers are generally inclined at an angle to the horizontal [17–20]. The30

inclination of the layer introduces an additional control parameter, i.e., the tilt angle, which significantly31

affects the instability and bifurcation of the base flow. In a sloping three-dimensional (3D) porous32
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Figure 1. Dimensionless geometry and background/basic state for 2D convection in an inclined
Rayleigh–Darcy domain. x and z are the wall-parallel and wall-normal coordinates, respectively, and g
is the (dimensional) acceleration of gravity. For φ > 0◦, the basic-state temperature field (realized in
the absence of convection) varies only in z, as in the horizontal case (φ = 0◦). The basic-state velocity
field is nonzero, however, with the background x-directed shear flow strengthening as the inclination
angle φ is increased.

layer with an inclination angle φ above the horizontal, four types of flows exist near the onset of33

convection: the basic single-cell shear flow with an upward current near the lower heated wall and a34

downward current near the upper cooled wall; polyhedral cells with wall-normal axes; longitudinal35

helicoidal cells resulting from the longitudinal rolls (with wall-parallel axes) superposed on the basic36

flow; and two-dimensional (2D) transverse rolls [21–34]. Note that in an infinitely extended layer,37

the unicellular base state becomes independent of the wall-parallel (x) coordinate and reduces to a38

laminar unidirectional shear flow, as schematically depicted in figure 1. The early experiments by39

Bories and collaborators [21–23] indicated that the basic unicellular flow is stable for Ra cos φ ≤ 4π2;40

when Ra cos φ is slightly greater than 4π2, however, convection appears in the form of polyhedral cells41

for small inclination angles (φ . 15◦) and longitudinal helicoidal rolls for larger φ. Besides these three42

flow configurations, 2D transverse rolls are also observed at small Ra and φ, e.g., in the experiments43

by Caltagirone et al. [24], Kaneko [25], and Kaneko et al. [26], and in the numerical simulations by44

Caltagirone and Bories [27].45

In order to investigate the conditions for transitions between these different flow regimes, a46

series of subsequent studies were carried out. Using linear stability analysis, Caltagirone and Bories47

[27] demonstrated that in an infinitely extended porous layer, the basic-state shear flow is stable48

for Ra cos φ ≤ 4π2. These authors also obtained a transition criterion from the polyhedric cells or49

transverse rolls to the helicoidal cells, with their analysis yielding a transition angle φt ' 31.8◦ between50

these flow patterns. More recently, a full numerical investigation of the marginal stability of the51

background mean flow was performed by Rees and Bassom [28] in a 2D inclined porous layer. Since52

all fields are presumed to be independent of the transverse (y) direction, polyhedric cells and helicoidal53

rolls cannot be realized in the 2D layer. Consequently, the basic unicellular flow can be linearly stable54

at smaller φ. Moreover, as shown in Reference [28], at large Ra 2D linear instability can only arise when55

φ ≤ 31.3◦. Additional linear stability analyses have been performed with the aim of understanding the56

effects of material anisotropy and variations in boundary conditions [29–34]. Crucially, recent analysis57

by Wen and Chini [35] indicates that the basic state is not energy stable for φ ≤ 90◦ and Ra > 91.6, so58

this base state may become unstable to sufficiently large-amplitude disturbances for φ > 31.3◦.59

Instead of focusing on the onset of convection, in this work we study numerically how layer60

inclination affects the flow structure and dynamics of finite-amplitude convection at moderate values61

of the Rayleigh number (Ra < 1000). Although some numerical simulations have been performed62

in inclined cavities to investigate the steady convective flow at small Ra [36–38], the side walls may63
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significantly impact the flow structure and transport properties if the aspect ratio of the domain is not64

sufficiently large (e.g., in a sloping square cavity). Here, we conduct direct numerical simulations (DNS)65

in inclined 2D Rayleigh–Darcy domains with large aspect ratios and periodic boundary conditions in66

the wall-parallel (x) direction. Moreover, to investigate the physical mechanisms manifested in the67

DNS at different Ra and φ, we compute (generally unstable) steady convective solutions using Newton68

iteration and then perform secondary stability analysis of these nonlinear states numerically using69

Floquet theory. Our results confirm that investigation of the steady solutions does, indeed, shed light70

on the development of moderate-Ra large-scale cellular flows at different inclination angles.71

The remainder of this paper is organized as follows. In the following section, we formulate the72

standard mathematical model of inclined porous medium convection. In § 3, we perform DNS in the73

moderate-Ra regime at different inclination angles, and investigate the structure and stability of steady74

nonlinear convective states numerically. Finally, our conclusions are given in § 4.75

2. Governing Equations76

Consider a 2D, homogenous and isotropic, fluid-saturated porous layer inclined at an angle φ77

above the horizontal (figure 1). The domain is heated from below and has aspect ratio L. We assume78

the motion of the incompressible fluid satisfies the Boussinesq approximation and Darcy’s law. Then,79

the flow and heat transport processes of the system are governed by the following non-dimensional80

equations [10]:81

∇ · u = 0, (1)

u +∇p = RaT(sin φex + cos φez), (2)

∂tT + u · ∇T = ∇2T, (3)

where u(x, t) = (u, w), T(x, t) and p(x, t) are the dimensionless velocity, temperature, and pressure,82

respectively; ex and ez are unit vectors in the wall-parallel (x) and wall-normal (z) directions; and ∇2
83

is the 2D Laplacian operator. The system of equations is solved subject to the boundary conditions84

T(x, 0, t) = 1, T(x, 1, t) = 0, w(x, 0, t) = 0, w(x, 1, t) = 0. (4)

All fields are required to be L-periodic in x. For the 2D system, the fluid velocity can be described by85

using a stream function ψ, so that (u, w) = (∂zψ,−∂xψ). Then equations (2) and (3) can be re-expressed86

as87

∇2ψ = Ra(∂zθ sin φ− sin φ− ∂xθ cos φ), (5)

∂tθ + ∂zψ∂xθ − ∂xψ∂zθ = −∂xψ +∇2θ, (6)

where θ(x, t) = T(x, t) − (1 − z), and θ and ψ satisfy L-periodic boundary conditions in x and88

homogeneous Dirichlet boundary conditions in z.89

Three dimensionless parameters control the dynamics of this system: the inclination angle90

φ; the domain aspect ratio L; and the normalized temperature drop across the layer, namely, the91

Rayleigh-Darcy number92

Ra =
HKgα∆T

κν
, (7)

where H is the layer thickness, K is the medium permeability, g is the gravitational acceleration, α is93

the thermal expansion coefficient, ∆T is the temperature difference across the layer, κ is the thermal94

diffusivity, and ν is the kinematic viscosity. In an infinitely extended layer, the inclination of the95

domain will induce a background (mean) shear-flow solution which strengthens as φ is increased:96

T = 1− z, u = Ra sin φ( 1
2 − z)ex and p = 1

2 Ra sin φx + Ra cos φ(z− 1
2 z2), as shown schematically in97
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figure 1. In the next section, we demonstrate that this background shear flow dramatically impacts the98

flow structure as φ is increased.99

3. Dynamics at moderate Ra100

3.1. DNS results101

In this section, DNS are performed to investigate the dynamics of convection at moderate102

Ra in an inclined porous layer. We solve equations (5) and (6) numerically using a103

Fourier–Chebyshev-tau pseudospectral solver developed in References [35,39–41]. The system is104

discretized spatially using Fourier series in x and Chebyshev series in z [42], and temporally using105

a third-order-accurate semi-implicit Runge–Kutta scheme for the first three time steps [43] and a106

four-step fourth-order-accurate semi-implicit Adams–Bashforth/Backward-Differentiation scheme for107

all subsequent time steps [44].108

At small Ra (just above the onset of convection), the flow exhibits steady stable O(1) aspect-ratio109

large-scale convective rolls when the layer is inclined. As shown in figure 2, for Ra = 100 and L = 2110

there exist two steady cells corresponding to counter-rotating convective rolls: the counterclockwise111

circulation with positive ψ and the clockwise circulation with negative ψ, hereafter referred to112

as ‘natural’ and ‘antinatural’ convective rolls, respectively. Either of these two types of steady113

circulation may exist in isolation in the small-aspect-ratio sloping porous cavity due to the effect114

of thermally-insulating lateral walls [37,38]; however, in a periodic domain, these two rolls always115

coexist. Moreover, for the horizontal case (φ = 0◦), the steady flow exhibits centro-reflection symmetry116

(figure 2a). Reflection symmetry in x is broken by the layer inclination (0◦ < φ < 90◦), although117

centrosymmetry is retained (figure 2b, c). Our DNS results indicate that the inclination of the layer118

modifies the boundary layer thickness of the velocity field for the natural and antinatural rolls: the119

former becomes thinner while the latter becomes thicker. Furthermore, the extremum ψ value of120

the natural roll becomes larger as φ is increased (see the colorbar limits in figure 2), in contrast to121

that of the antinatural roll, implying that compared with antinatural convective motion, the natural122

convective motion becomes more vigorous when the layer is inclined. This result accords with the123

physical intuition that, for 0◦ < φ < 90◦, the base shear flow enhances (suppresses) fluid motions with124

the same (opposite) sense of rotation.125

As for horizontal convection, the steady rolls computed at different φ strengthen but remain126

stable as Ra is increased up to 200. As shown in figure 3, however, at Ra = 300 the antinatural roll127

becomes unstable first for φ & 10◦ (while the natural roll remains stable) and small-scale proto-plumes128

are generated from the upper and lower thermal boundary layers and advected around the cell by the129

background roll (figure 3c). Moreover, this boundary layer instability becomes much stronger as the130

inclination angle is increased so that the two-cell (one natural and one antinatural) unsteady convective131

rolls are split into the four-cell stable steady convective rolls at φ ≈ 25◦, as shown in figure 3(d).132

For Ra & 400, the steady convective rolls become unstable even at small φ, and the resulting133

flow exhibits a series of transitions between periodic and quasi-periodic roll motions (figure 4), as134

observed in the horizontal case. A primary difference between inclined and horizontal porous medium135

convection is that the inclination of the layer alters the symmetry of the flow by intensifying the136

near-wall instability of the antinatural (associated with a thickening of the velocity boundary layer)137

while stabilizing the natural roll (associated with a thinning of the velocity boundary layer). As φ138

is increased, the boundary-layer instability of the antinatural roll becomes more vigorous so that139

the plumes generated from the thermal boundary layers split the original two-cell convection into140

multiple-cell convection, as shown in figure 4. It is worth noting that as Ra is increased, the value of φ141

at which the flow transitions from two-cell convection to four-cell convection decreases (table 1), e.g.,142

for Ra = 300, 500 and 998, the approximate transition angle is decreased from 25◦ to 15◦ and finally to143

5◦.144
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Figure 2. Snapshots of isotherms (left) and corresponding streamlines (right) from DNS at Ra = 100
and L = 2. The streamlines of the natural (positive ψ) and antinatural (negative ψ) rolls are shown in
red and blue, respectively. The flow takes the form of stable and steady convective rolls at different φ.
As φ is increased, the natural roll becomes more vigorous (see the colorbar limits) and more tightly
attached to the walls, while the antinatural roll is suppressed and becomes detached from the walls.

Table 1. Approximate angle φ at which the flow transitions from two-cell convection to four-cell
convection in DNS at moderate Ra.

Ra 300 500 792 998

φ 25◦ 15◦ 10◦ 5◦

The 2D numerical simulations performed by Caltagirone and Bories [27] and Moya et al. [37] did145

not exhibit convective flows at large φ in wide domains (e.g., L = 10), in apparent agreement with146

the prediction that the basic state is linearly stable for φ > φt with φt ≈ 31.3◦ [28]. Nevertheless, the147

basic state may become unstable when disturbance amplitudes are sufficiently large since, as shown148

by Wen and Chini [35], the base state is not energy stable for φ ≤ 90◦ at Ra > 91.6. Figure 5 shows149

snapshots of isotherms from DNS at φ = 35◦ and L = 10 for different Rayleigh numbers ranging150

from 100 to 500. Interestingly, not only do convective flows arise but, given different initial conditions,151

these convective flows can adopt distinct forms. For instance, at Ra = 100, the flow can exhibit152

stable localized convective structures with various numbers of roll pairs (figure 5a, b) or large-scale153

cellular flows (figure 5c); however, it can also exist as five replicas of a stable two-cell convective154

state obtained from L = 2 (figure 5d). We note that spatially-localized states previously have been155
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(d) φ = 25◦

Figure 3. Snapshots of isotherms (left) and corresponding streamlines (right) from DNS at Ra = 300
and L = 2. In this case, the flows in (a) and (d) are steady; in (b) and (c), the upper and lower boundary
layers of the antinatural rolls (negative ψ) become unstable. At φ ≈ 25◦, the small proto-plumes
generated from the boundary-layer instabilities of the antinatural rolls split the unsteady two-cell
convection (one natural roll and one antinatural roll) into a steady four-cell convective state, thereby
reducing the aspect ratio of each roll.

observed in double-diffusive convection in porous media [45,46], but here our DNS reveal—for the156

first time in single-species porous medium convection—the existence of these localized convective157

states at large φ. Moreover, our DNS results also indicate that the (large-scale) localized roll pattern158

still appears instantaneously at higher Ra when the flow becomes unsteady (figure 5e, f). Although159

the flow structure for φ > φt at small and moderate Ra will not be discussed in further detail in this160

study, we comment that this spatially-localized convective state appears to arise through a subcritical161
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(c) φ = 15◦

Figure 4. Snapshots of isotherms (left) and corresponding streamlines (right) from DNS at Ra = 500
and L = 2. For φ < 15◦, the convection appears in the form of unsteady rolls (a, b). However, as φ

is increased, the boundary-layer instability of the antinatural roll (negative ψ) becomes stronger and
splits the unsteady two-cell convective state into the steady four-cell convection pattern.

bifurcation of the basic unicellular state enabled by the gap in parameter values for linear and nonlinear162

stability [35].163

In summary, our DNS show that the instantaneous flow at moderate Ra self-organizes into O(1)164

aspect-ratio large-scale cellular flows, suggesting that the basic physics of inclined porous medium165

convection can be understood by studying the underlying exact coherent states, e.g., steady convective166

solutions, that support observed convective patterns. Accordingly, in the following sections, we167

compute steady convective solutions and then assess the stability of these nonlinear states.168

3.2. Steady convective states169

We numerically compute the steady solutions of equations (5)–(6) using the Newton–GMRES170

(generalized minimal residuals) algorithm. Following Wen et al. [6] and Wen and Chini [35], we write171

the linear differential equations for the corrections as172 [
∇2 Ra(cos φ∂x − sin φ∂z)

−∂x + θi
z∂x − θi

x∂z ∇2 − ψi
z∂x + ψi

x∂z

] [
4ψ

4θ

]
=

[
−Fψ

res
−Fθ

res

]i

, (8)
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Figure 5. Snapshots of isotherms from DNS at φ = 35◦ and L = 10. Sub-plots (a-d) show steady
convective states obtained using different initial conditions, while (e) and (f) show snapshots of
time-dependent states. Although the basic-state shear flow is linearly stable for φ > φt ≈ 31.3◦ in 2D,
convection nevertheless may be realized by initializing with sufficiently large-amplitude disturbances;
i.e., sub-critical instabilities are possible in this parameter regime. The spatially-localized convective states
evident in (a, b), observed here for the first time in single-species porous medium convection, are one
manifestation of this sub-critical instability.

with the correction terms173

4ψ = ψi+1 − ψi, 4θ = θi+1 − θi, (9)
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and the residuals of the steady governing equations174

Fψ
res = ∇2ψ− Ra(∂zθ sin φ− sin φ− ∂xθ cos φ), (10)

Fθ
res = ∇2θ − (∂zψ∂xθ − ∂xψ∂zθ + ∂xψ), (11)

where the superscript ‘i’ denotes the ith Newton iterate. Then, (8) is solved using a Krylov-subspace175

(GMRES) iterative method under the centrosymmetry constraint for θ. For each i, we stop the GMRES176

iteration once the L2-norm of the residual of (8) is less than 10−4, and finally stop the Newton iteration177

when the L2-norm of (Fψ
res, Fθ

res) is less than 10−8. For each Ra, the results from smaller φ are utilized as178

the initial conditions for simulations at larger φ.179

As noted above, steady convective states in an inclined porous layer are stable at small Ra (e.g.,180

Ra ≤ 200). However, as the Rayleigh number is increased, the boundary layers near the upper and181

lower walls become unstable and small-scale features are generated and advected around the cell by182

the large-scale roll (figure 3c). In this section, the structure of the unstable steady convective states183

is investigated at Ra = 500 and L = 2 for different inclination angles. As shown in figure 6, the184

increasing inclination of the layer enhances the motion of the background flow, thereby intensifying185

the natural-roll motion and suppressing the antinatural-roll motion. Consequently, as φ is increased,186

the natural rolls become more vigorous and more tightly attached to the upper and lower walls; in187

contrast, the antinatural rolls become much weaker and detach from the walls (figures 6 and 7).188

3.3. Secondary stability analysis189

In this section, a spatial Floquet analysis is performed to investigate the linear stability of the190

fully nonlinear steady convective states in an inclined porous layer. We decompose each field into the191

steady nonlinear (fully 2D) base flow (denoted with a subscript ‘s’) plus a time-varying small-amplitude192

perturbation (denoted with a tilde),193

ψ(x, t) = ψs(x) + ψ̃(x, t), (12)

θ(x, t) = θs(x) + θ̃(x, t). (13)

Then, the evolution of the disturbances ψ̃ and θ̃ are governed by following linearized equations194

∇2ψ̃ = Ra(sin φ∂z − cos φ∂x)θ̃, (14)

∂t θ̃ = ∇2θ̃ − ∂xθs∂zψ̃ + ∂zθs∂xψ̃ + ∂xψs∂z θ̃ − ∂zψs∂x θ̃ − ∂xψ̃. (15)

According to Floquet theory, the solutions for the perturbations in (14) and (15) can be expressed as195 [
θ̃

ψ̃

]
= eiβksx

{
∞

∑
n=−∞

[
ˆ̃θn(z)
ˆ̃ψn(z)

]
einksx

}
eλt + c.c., (16)

where λ is the temporal growth rate, ks is the fundamental wavenumber of the spatially-periodic steady196

solution, n is the wall-parallel Fourier mode number, β is the real Floquet parameter (0 ≤ β ≤ 0.5),197

which provides the freedom to modify the fundamental horizontal wavenumber of the perturbation,198

and c.c. denotes complex conjugate. Substituting the ansatz (16) into equations (14)–(15) yields199

−Ra [sin φ∂z − i(n + β)ks cos φ] ˆ̃θn +
[
∂2

z − (n + β)2k2
s

]
ˆ̃ψn = 0, (17)[

∂2
z − (n + β)2k2

s + h̃n

]
ˆ̃θn + [−i(n + β)ks + g̃n] ˆ̃ψn = λ ˆ̃θn (18)

for each n, where h̃n and g̃n can be determined by calculating the convolution of the200

non-constant-coefficient terms in (15). Finally, the eigenvalue problem (17)–(18) is discretized using a201
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(d) φ = 30◦

Figure 6. Isotherms (left) and streamlines (right) of steady convective states at Ra = 500 and L = 2. As
the inclination angle is increased, the natural roll (positive ψ) becomes more vigorous (see the colorbar
limits) and more tightly attached to the walls, while the antinatural roll (negative ψ) is suppressed and
becomes detached from the walls. At φ = 30◦, the antinatural roll makes contact with the upper and
lower walls only at certain localized points.

Chebyshev collocation method and the resulting algebraic eigenvalue problem is solved using Arnoldi202

iteration to obtain the leading eigenvalues and eigenfunctions.203

Our results reveal that, at moderate Ra, the maximum convective growth rate σm ≡ Re{λm}/Ra204

for both the horizontal and inclined cases is independent of β, and the corresponding fastest-growing205

eigenfunction shares a similar spatial structure for different β. Hence, below we only present the206

results of our stability analysis at β = 0. Figure 8 shows the variation of σm as a function of φ at the207

aspect ratio Ls = 2π/ks = 2. The inclination of the layer enhances the instability of the steady state,208
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8

12

16

20

Natural Roll

Antinatural Roll

Figure 7. Magnitude of ψm for steady convective states as a function of φ at Ra = 500 and L = 2.
ψm denotes the extremum ψ value corresponding to the natural roll with max(ψ) (positive) and
antinatural roll with min(ψ) (negative). As φ is increased, the natural-roll motion is intensified, while
the antinatural-roll motion is suppressed.

0 10 20 30

0

0.4

0.8

1.2

Figure 8. Variation of the maximum growth rate, σm, with φ at moderate Ra, Ls = 2 and β = 0. At
Ra = 300, the steady state is marginally stable for φ < 10◦ and becomes weakly unstable at φ = 10◦.
The same branch of steady states is not obtained at large φ for Ra = 500 and 792 using the present
numerical scheme.

and for each Ra, there exists a peak in σm at particular angle φm. [Note that in our time-dependent209

DNS the increasing instability with φ generally causes the two-cell convection pattern to split into210

a four-cell pattern before φm is reached (table 1 and figure 8).] Moreover, the structure of the most211

unstable eigenfunction in figure 9 and the results in figure 10 confirm that the antinatural rolls are more212

unstable than are the natural rolls at moderate Rayleigh number, as also indicated by the DNS in § 3.1.213

Actually, as φ is increased, the natural roll of the steady state strengthens and becomes more tightly214

attached to the walls, and thereby is stabilized; on the contrary, the antinatural roll is suppressed and215
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Figure 9. The fastest-growing 2D temperature eigenfunctions at Ra = 500, Ls = 2 and β = 0. For the
horizontal case, reflection symmetry is satisfied and both of the natural and antinatural rolls are equally
unstable. However, as φ is increased, the natural roll is stabilized and the instability of the antinatural
roll is intensified.
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Figure 10. The leading eigenvalues, σ = λ/Ra, at Ra = 500, Ls = 2 and β = 0. All of the unstable
modes for both the horizontal and inclined cases exhibit a similar structure as that of the corresponding
fastest-growing mode in figure 9.

becomes detached from the walls, and thereby is destabilized. Thus, the increase of the maximum216

growth rate σm with φ in figure 8 is attributable to the destabilization of the antinatural roll.217

4. Conclusion218

In this study, we investigate the flow structure and dynamics of moderate-Ra convection in219

an inclined 2D porous layer uniformly heated from below. Using pseudospectral DNS, we show220

the evolution of the O(1) aspect-ratio large-scale cellular flows as functions of Ra and φ. Our221

numerical simulation results indicate that the inclination of the layer breaks the reflection symmetry222

of the convective rolls in the wall-parallel direction. As the inclination angle φ is increased, the223

background shear flow strengthens, thereby intensifying the natural-roll motions and suppressing the224

antinatural-roll motions. Therefore, for increasing Rayleigh number Ra and at sufficiently large φ, the225

boundary layers of the antinatural roll become unstable prior to those of the natural roll. Interestingly,226

our DNS reveal for the first time the existence of spatially-localized convective states in single-species227

porous medium convection at large φ, which may be anticipated based on the gap in parameter values228

for linear and nonlinear stability of the basic shear flow [35].229

To better understand the physics of inclined porous medium convection at different φ, the230

structure and stability of steady nonlinear convective states have also been investigated here at231

moderate Ra. We compute the steady solutions using a Newton–GMRES algorithm and then perform232

secondary stability analysis using Floquet theory. Consistent with the unsteady flow observed in our233
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DNS, the steady states appear in the form of large-scale convective rolls: one natural roll rotating in a234

counterclockwise direction; and one antinatural roll rotating in a clockwise direction. As the inclination235

angle is increased, the strengthening background mean flow enhances the motion of the natural236

roll causing it to more tightly attach to the upper and lower walls, but weakens the motion of the237

antinatural roll driving detachment from the walls, at least for sufficiently large φ. Moreover, Floquet238

analysis of these steady states reveals that before the antinatural roll is completely detached from the239

walls, the inclination of the layer stabilizes the boundary layers of the natural roll, but intensifies the240

boundary-layer instability of the antinatural roll. These analyses shed light on the development of241

moderate-Ra large-scale cellular flows at different inclination angles.242
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