

1 Article

2 EFFECTIVENESS OF 6-ISCHEMIC CUFF NEAR 3 INFRARED SPECTROSCOPY MITOCHONDRIAL 4 CAPACITY TEST

5 Maxwell Sumner *, Indrajit Das , Elizabeth K. Pryor , Kevin McCully

6 Department of Kinesiology, University of Georgia, 330 River Road, Athens Ga 30602, USA;
7 maxsumner@uga.edu ; mccully@uga.edu ; indrajitdas@gmail.com ; ekp86737@uga.edu

8 Received: date; Accepted: date; Published: date

9 **Abstract:** Near-Infrared Spectroscopy (NIRS) has been used to measure muscle mitochondrial
10 capacity. The current method requires as many as 22 short ischemic occlusions to generate a
11 recovery curve for mitochondrial capacity. PURPOSE: To determine the effectiveness of using a 6-
12 occlusion analysis protocol to study muscle mitochondrial capacity. METHOD: Two independent,
13 unidentified data sets were analyzed (bicep n=48, forearm n=41) from previous studies using a NIRS
14 device (Artinis, Ltd.). Both data sets had two recovery tests that included 22 ischemic occlusions.
15 A recovery rate used to indicate mitochondrial capacity was calculated two different ways
16 (simultaneously). Each sample was analyzed with a MATLAB program; with a curve-fit for the 22
17 ischemic occlusions and curve matching for the first six ischemic cuffs and an end resting value. The
18 two resulting rate constants were compared using correlations, both for the two data sets, good and
19 bad fitting data, using the best 5 of 6 points for the 6 cuff approach. RESULTS: The rate constants
20 were not significantly different between the 22 cmuff and 6 cuff for the total data sets: bicep
21 ($1.43 \pm 0.32 \text{ min}^{-1}$, $1.44 \pm 0.35 \text{ min}^{-1}$, $p=0.56$), forearm ($1.94 \pm 0.42 \text{ min}^{-1}$, $1.95 \pm 0.44 \text{ min}^{-1}$, $p=0.76$). The
22 average bicep rate constants, when compared to each other, had an equation of $y=1.07x-0.09$, $R^2=0.90$.
23 The average forearm rate constants, when compared to each other, had an equation of $0.98x+0.02$,
24 $R^2=0.93$. CONCLUSIONS: The 6-Cuff analysis provided the same results as the longer 22-cuff. The
25 6-cuff approach is both shorter in time and uses less ischemic occlusion periods, increasing the
26 practicality of the NIRS mitochondrial capacity test.

27 **Keywords:** Near Infrared spectroscopy; NIRS; Skeletal muscle; muscle metabolism; electrical
28 stimulation

29

30 1. Introduction

31 Near Infrared Spectroscopy (NIRS) has been used in previous studies as a non-invasive
32 approach to measuring muscle oxygen consumption as a gauge of mitochondrial capacity [1,2] as
33 well as skeletal muscle blood flow [3-5]. It has been used to study muscle mitochondrial capacity in
34 clinical populations [6], as well as endurance athletes [7]. Furthermore, muscle mitochondrial
35 capacity been characterized in multiple specific disease pathologies such as those with spinal cord
36 injuries [8], cystic fibrosis [9], multiple sclerosis [10], and amyotrophic lateral sclerosis [11]. Several
37 review papers have been written on this subject [6,12].

38 Two important limiting factors to measure muscle mitochondrial capacity using NIRS exist. One
39 issue is the need to use repeated arterial occlusions after exercise[2]. These occlusions are needed to
40 obtain a good fit to an exponential curve, the rate constant of which being the index of mitochondrial
41 capacity. In order to accurately fit to an exponential curve, 18 – 22 ischemic blood occlusions are
42 typically used to accurately produce a mono-exponential curve to a steady baseline. The issue with
43 this method is the large number of ischemic cuffs required to obtain an accurate measurement. If two
44 tests are performed, a participant must undergo a minimum of forty-four ischemic cuffs (twenty-two

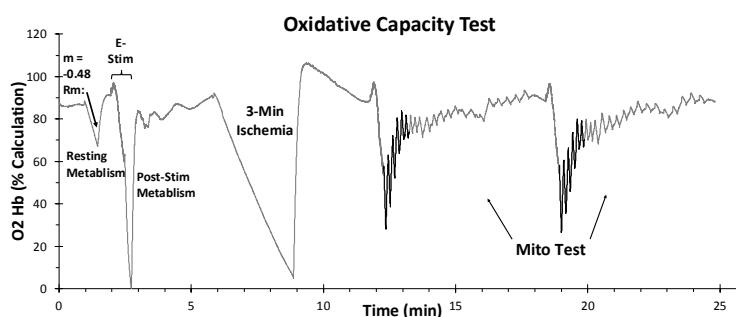
45 ischemic cuffs for each of two individual mitochondrial capacity test). This large number of cuffs can
46 be difficult to tolerate, especially in at-risk and elderly populations. A second limiting factor is the
47 requirement for a blood volume correction factor [2] in order to correct for changes in light absorption
48 when the ischemic cuff inflates. Recent studies have found the blood volume correction does not
49 completely correct for changes in light absorption when the ischemic cuff inflates. This incomplete
50 correction is seen especially when measuring lower mitochondrial rates near the end of recovery. A
51 test of muscle mitochondrial capacity could be improved if a method to address these limitations
52 were developed.

53 Prior studies of muscle mitochondria capacity have fit data to an exponential curve function.
54 Based on this prior knowledge, it can be assumed that muscle mitochondrial capacity follows an
55 exponential curve function and therefore data can be matched to an exponential curve function rather
56 than created new for each protocol. The aim of this study is to use the first few ischemic cuffs of a
57 mitochondrial test to obtain curve fits that match the curve fits from the entire set of cuffs. Data will
58 be obtained from previous studies. It is hypothesized that the abbreviated test protocol (Mito6) will
59 produce the same results as the currently employed mitochondrial test protocol (Mito22).

60 2. Materials and Methods

61 2.1. Participants.

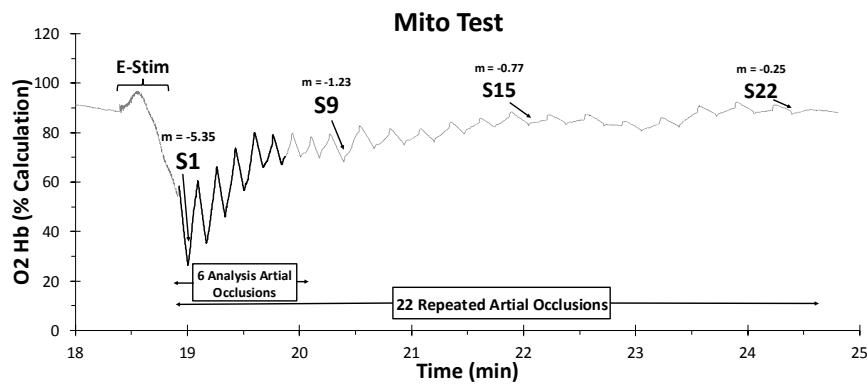
62 This study made use of two independent unidentified data sets (bicep n=48, forearm n=39).
63 Subject characteristics are shown in Table 1. Both studies were conducted with approval of the
64 Institutional Review Board at the University of Georgia (Athens, Ga), and all of the subjects were
65 gave written, informed consent before testing.


66 2.2. Experimental design.

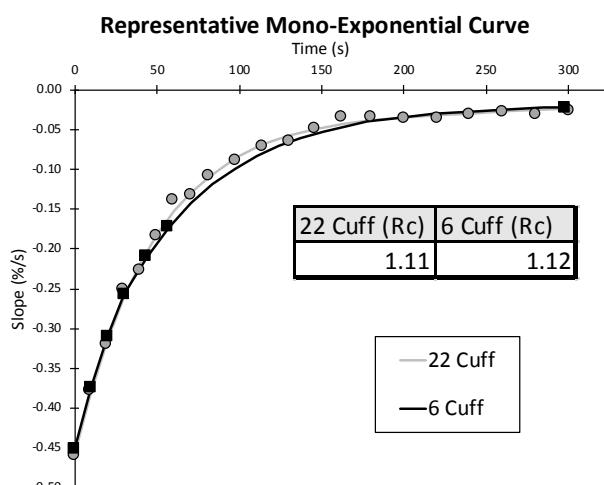
67 Two de-identified data sets were collected using a standard NIRS mitochondrial capacity test
68 and had a full set of 22 ischemic cuffs for each test in the method as described in T.E. Ryan, et al.,
69 2012[13]. This complete set of data underwent two separate analysis approaches and was analyzed
70 separately in order to reduce bias.

71 2.3. Experimental Procedures.

72 While the data was the same, the number of actual data points used in each of these analysis
73 protocols differed between approaches. The separate approaches are described below.


74 *Approach 1 – Mito22:* A standard mitochondrial capacity analysis [14] was completed on the de-
75 identified data sets in order to measure the rate of recovery of muscle oxygen consumption,
76 representing mitochondrial oxidative capacity. A representative example of this data used can be
77 seen in Figure 1. The rate of recovery of muscle oxygen metabolism was quantified by fitting the
78 oxygen consumption rates to the exponential equation $y(t)=End-\Delta\times e^{(-kt)}$. The rate constant k, was
79 used as an index of muscle oxidative capacity.

80
81 **Figure 1.** Representative example of the full protocol for the mitochondrial capacity test, which
82 includes resting metabolism, post stimulation metabolism, 3-minute ischemia, followed by two
83 mitochondrial capacity tests.


84 *Approach 2 – Mito6:* The proposed mitochondrial capacity test analysis was also used on the de-
 85 identified data sets. This analysis only used the first six ischemic cuff slopes and a resting value in
 86 order match to a mono-exponential curve to a baseline. The first six points were systematically
 87 compared to exponential curves that used the first point and the end resting point, but with varying
 88 rate constants. The rate constant from the curve with the lowest combined residual for the six points
 89 was selected as the mitochondrial capacity rate constant. Systematically throwing out the point with
 90 the highest residual value and refitting was also attempted. This method changed the output values
 91 but did not make the fit any better. The fits of the good data and bad data were not significantly
 92 different from the original combined data set and therefore implies that the Mito6 protocol is less
 93 prone to error due to bad data.

94 A representative example of the slope of oxygen consumption for the six and 22 cuff approaches
 95 are shown in Figure 3.

96

97 **Figure 2.** Example of the zoomed in O_2 Hb signal during exercise and arterial occlusions for a full 22-
 98 Cuff Test. Slopes become less steep over time, illustrating the recovery of O_2 consumption after
 99 exercise.

100

101 **Figure 3.** Representative input example into the custom MatLab program. Representative mono-
 102 exponential curve fitted to the measurements of oxidative consumption. The resulting rate constant
 103 is directly proportional to mitochondrial capacity. The black mono-exponential curve was used in the
 104 calculation of the 6-Cuff measurement and only used the first 6 ischemic cuffs and a final resting cuff.
 105 The grey mono-exponential curve was used in the calculation of the 22-Cuff measurement and all
 106 available points were used to fit the mono-exponential curve.

107 2.4. Data analysis.

108 The NIRS tests were analyzed using custom-written routines in MatLab v. 9.2.0.556344
 109 (Mathworks, Natick, MA). Simultaneously, in both these protocols, slopes were identified, blood

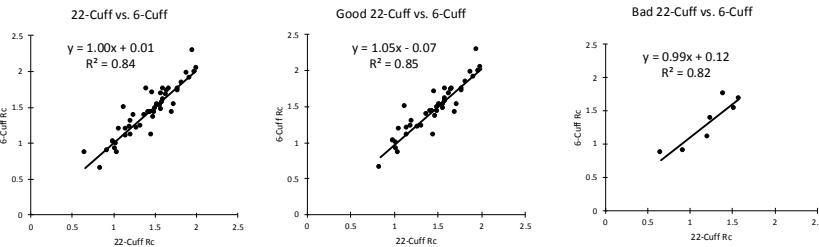
110 volume correction was applied, and the measured resulting slopes were fit to a single mono-
 111 exponential curve to a steady baseline. The Mito22 approach used all 22 measured slopes while the
 112 Mito6 approach used only the first six slopes as well as an endpoint value to fit/match these curves
 113 and produce appropriate rate constants.

114 *2.5. Analysis of Approaches.*

115 The measured rate constants of both approaches were compared through regression analysis, of
 116 all iterations completed. Once multiple variables were defined and controlled for, the final Mito22
 117 and Mito6 analysis protocols of averaged multiple trials were compared to determine accuracy and
 118 usability. Furthermore, percent difference values were calculated and graphed for each iteration.
 119 These were used in order to determine if any systematic bias was present.

120 **3. Results**

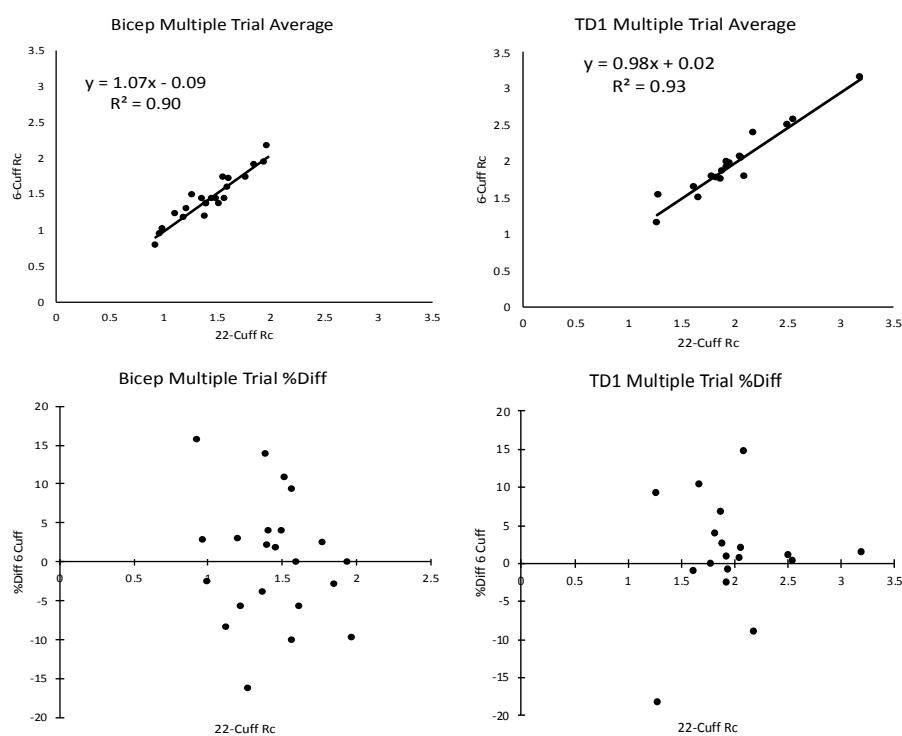
121 Characteristics of the participants in this study are shown in Table 1.


122 **Table 1.** Subject characteristics from the two data sets.

	Bicep			Forearm		
	Male	Female	Overall	Male	Female	Overall
Number (n)	2	5	7	10	13	23
Age (yrs)	20.00±0.00	20.00±0.00	20.00±0.00	27.95±6.18	22.62±3.48	24.94±5.43
Height (cm)	171.45±8.98	168.15±11.56	169.09±10.25	180.23±5.69	164.98±6.61	171.61±9.84
Mass (kg)	65.09±9.30	61.14±8.83	66.13±18.10	86±10.82	64.48±7.02	73.83±13.92
Total Samples(n)	13	35	48	17	22	39

123 124 Values are means (standard deviations).

125 *3.1. Rate Constant Comparison*


126 The overall process and specific iterations of developing the 6-Cuff Mitochondrial capacity test
 127 can be seen in Figure 4 for the bicep data. Figure 4a shows an analysis of the two protocols when the
 128 endpoint value was controlled for (i.e. made the same for both analysis protocols) ($R^2 = 0.84$, $m =$
 129 1.00). The data was then separated into two different categories – “good fit” and “bad fit,” – based on
 130 the arbitrary value discussed above. These characterizations allow for specific conclusions to be
 131 made in the different data categories. Figure 4b represents the linear regression of the “Good Fit”
 132 data ($R^2 = 0.85$, $m = 1.05$). Figure 4c represents the linear regression of the “Bad Fit” data ($R^2 = 0.82$,
 133 $m = 0.99$). Overall, there was no true effect on the fitting of the exponential curve between the “Good
 134 Fit” and “Bad Fit” data.

135
 136 **Figure 4. A)** Comparison of two analysis protocols. 22-Cuff measurement rate constants versus 6-
 137 Cuff measurements. All points included in measurements and comparisons. Shows comparison of
 138 two analysis protocols when the same endpoints for measurements were used. **B)** Comparison of
 139 two analysis protocols. 22-Cuff measurement rate constants versus 6-Cuff measurements. Good fit
 140 data points included in measurements and comparisons. Shows comparison of two analysis protocols
 141 when the same endpoints for measurements were used and bad fit data was excluded. **C)**
 142 Comparison of two analysis protocols. 22-Cuff measurement rate constants versus 6-Cuff
 143 measurements. Bad fit data points included in measurements and comparisons. Shows comparison
 144 of two analysis protocols when the same endpoints for measurements were used and good fit data
 145 was excluded.

146 Determination of the rate constant of these separated data sets when the point of highest residual
 147 was removed was also attempted. By attempting to systematically throw out the point with the
 148 highest residual value and refitting, it was hypothesized to decrease the error present in the analysis
 149 protocols. While this method changed the output values, it did not make the fit any better and caused
 150 the output to have a higher variance. The net result being no advantage to the fitting of the data to
 151 the mono-exponential curve, so this method was discontinued.

152 The individual data sets were then paired with their specific trials and averaged in order to
 153 create a multiple trial average of the data for the 22-Cuff Rate Constants compared to 6-Cuff Rate
 154 Constants. In normal use of NIRS analysis, it is normal to take multiple trials under each specific
 155 condition and average them together. This characterization can be seen in Figure 5a ($R^2 = 0.90$, $m =$
 156 0.107) for the bicep multiple trials averages and Figure 5b ($R^2 = 0.93$, $m = 0.98$) for the forearm
 157 multiple trials averages. None of the correlations showed evidence of systematic bias as analyzed
 158 with the percent difference plots, as seen in Figure 5c and 5d.

159

160 **Figure 5. A)** Comparison of two analysis protocols with multiple trials averaged together using bicep
 161 muscle data. 22-Cuff measurement rate constants versus 6-Cuff measurements. **B)** Comparison of two
 162 analysis protocols with multiple trials averaged together using forearm muscle data. 22-Cuff
 163 measurement rate constants versus 6-Cuff measurements. **C)** Percent difference of the average of
 164 analysis protocols with multiple trials averaged together using bicep muscle data. 22-Cuff
 165 measurement rate constants versus 6-Cuff measurements. **D)** Percent difference of the average of
 166 analysis protocols with multiple trials averaged together using forearm muscle data. 22-Cuff
 167 measurement rate constants versus 6-Cuff measurements.

168 4. Discussion

169 The primary finding of this study was that rate constant of recovery of metabolic rate after
 170 exercise was not different when calculated from a reduced number of data points (Mito6) compared
 171 to a full set of data points (Mito22). Previous studies have measured muscle mitochondrial capacity
 172 using exercise to rest transitions and curve fitting similar to the Mito22 used in this study[6,12].
 173 Collecting data points throughout the entire recovery process can result in accurate curve fits, as
 174 indicated by coefficients of variation between 8-12% [13] [14]. However, a limitation of this approach
 175 is that 18-24 short ischemic periods are needed to perform curve fitting. The Mito6 protocol only

176 requires 7 ischemic periods (one additional point for the full recovery time point). Thus the Mito6
177 protocol significantly reduces the number of ischemic periods needed, especially if 2 or 3 experiments
178 are performed to increase the accuracy of the measurement [8,15].

179 A second benefit of the Mito6 protocol is a reduced reliance on data points with low metabolic
180 rates (later in the recovery process). With continuous wavelength NIRS devices as used in this
181 study, inflating a blood pressure cuff can change the scattering of light which is not directly detected
182 by the continuous wavelength NIRS device [16]. The changes in scattering appear to be similar in
183 magnitude on the absorption signal to the changes in absorption of resting metabolism [13] [17].
184 Because of this, corrections for scattering changes ("blood volume correction") must be very accurate
185 or there will be errors in correcting these data points, which will influence fitting the exponential
186 curve. During the early points in recovery, the metabolic rate is much higher, and thus the influence
187 of the correction factor is less. The Mito6 protocol thus has the advantage of not being as dependent
188 on accurate corrections for changes in scattering.

189 A critical factor in the Mito6 approach is the use of a final recovery point to find the best
190 exponential curve. This study found that the best outcomes were obtained when a post test recovery
191 value was used, rather than using an initial resting metabolism point. This was based on getting
192 closer agreements with the Mito22 and Mito6 analysis procedures. Because the post test recovery
193 value was higher than the initial resting value, this suggest that during the recovery tests muscle
194 metabolism does not completely recover to resting values. Even though using a post recovery
195 metabolic rate value requires an additional 5 minutes added to the protocol, the results suggest that
196 post-exercise oxygen consumption by the muscle is still present at five minutes, and needs to be
197 accounted for with the analysis program.

198 This study chose to measure 6 initial recovery points to find the rate constant of the exponential
199 curve. This seems appropriate for the rate constants found in the two studies that were evaluated
200 (approximately 1.5 minute-1). Studies of endurance trained athletes or people with reduced
201 mitochondrial capacity may benefit from a different number of initial data points. In our study we
202 did evaluate the potential value of using the best 5 initial data points based on reducing the residuals
203 of the curve fit, rather than all 6 of the initial points. Because we found that across our two data
204 samples we essentially got the same result, we don't feel this approach is necessary to optimize data
205 analysis.

206 The determination of what was considered "good fit" and "bad fit" data, was decided arbitrarily.
207 However, no matter what cut off point is determined, there will always be data that is considered
208 "good fits" and "bad fits." This value allowed the researchers to systematically separate the data to
209 determine how it acted within the analysis protocols.

210 A possible limitation to the use of the Mito6 approach is how well the method would fit data
211 that had lower 'quality'. It is expected that all methods of curve fitting would work on higher quality
212 data. In our study we found the Mito6 approach appeared to work equally well on lower quality
213 data, as judged by having lower R^2 values for the fit with the Mito22 analysis. This suggests that the
214 Mito6 approach can be used on data that has a range of quality. In general NIRS based recovery
215 measurements of mitochondrial capacity have better curve fits than ^{31}P MRS fits of phosphocreatine
216 recovery after exercise [18]. However, some study populations have greater adipose tissue thickness
217 over the muscle of interest [8], and great adipose tissue can reduce the quality of the data for NIRS
218 studies [19]. This study evaluated two data sets on relatively young and healthy subjects, one on
219 the biceps muscle and the other on forearm muscles. Additional studies evaluating the Mito6
220 approach should be done on data sets where there is reduced signal and the quality of the data is less.

221 In conclusion, the Mito6 analysis protocol which uses the first few data points along with a
222 recovery time point, can be used as an accurate alternative to the currently used Mito22 analysis
223 protocol that includes data points throughout the full recovery period. An advantage of the Mito6
224 approach is that it takes less time and requires fewer ischemic measurement periods. Future studies
225 of mitochondrial capacity using NIRS should consider using this approach.

226 4.1. *Limitations.*

227 Possible limitations to this study include the accuracy of the endpoint value which is measured,
228 as this has a large effect on the curve matching equation. This limitation, however, can be controlled
229 for by ensuring the participants are fully at a resting state when this value is taken. If the participant
230 is fully at rest, muscle mitochondrial capacity is considered to be at equilibrium and this value can
231 be confidently used in the determination of the endpoint in the curve matching equation.

232 Another possible limitation to this method includes its limited accuracy for data which is
233 considered to be a bad data set. However, this data would not produce fully accurate rate constants
234 with either analysis protocol as both programs would be susceptible to the issues with the data itself.
235 Therefore, it can be considered that the 6-Cuff analysis protocol is better for this “bad fit” data as it
236 decreases the protocol time and controls for outliers in a more efficient manner in comparison to the
237 22-Cuff analysis protocol.

238 5. Conclusions

239 The Mito6 analysis protocol can be used as an accurate alternative to the currently used Mito22
240 analysis protocol. Furthermore, this analysis protocol requires less time and less stress on participants
241 and researchers alike. Lastly, the new Mito6 analysis protocol handles “bad data” better than the
242 Mito22 analysis protocol as it has a mechanism to remove outliers and is less susceptible to issues
243 with the blood volume correction factor.

244 **Author Contributions:** Conceptualization, Kevin McCully, Maxwell Sumner; methodology, Kevin McCully,
245 Maxwell Sumner; software, Indrajit Das; formal analysis, Maxwell Sumner; investigation, Maxwell Sumner,
246 Elizabeth K Pryor; data curation, Maxwell Sumner, Elizabeth K Pryor; writing—original draft preparation,
247 Maxwell Sumner; writing—review and editing, Maxwell Sumner, Kevin McCully, Elizabeth K Pryor;
248 supervision, Max Sumner, Kevin McCully; project administration, Kevin McCully.

249 **Funding:** This research received no external funding

250 **Acknowledgments:** We would like to thank Katie Luqire for her assistance all through the process of data
251 collection for this study.

252 **Conflicts of Interest:** One of the authors; Kevin McCully is the President and Chief Science Officer of Infrared
253 Rx, Inc, a company that develops analysis software related to NIRS measurements.
254

255 References

- 256 1. Hamaoka, T.; McCully, K.K.; Quaresima, V.; Yamamoto, K.; Chance, B. Near-infrared
257 spectroscopy/imaging for monitoring muscle oxygenation and oxidative metabolism in healthy and
258 diseased humans. *J Biomed Opt* **2007**, *12*, 062105, doi:10.1117/1.2805437.
- 259 2. Ryan, T.E.; Erickson, M.L.; Brizendine, J.T.; Young, H.J.; McCully, K.K. Noninvasive evaluation of
260 skeletal muscle mitochondrial capacity with near-infrared spectroscopy: correcting for blood volume
261 changes. *J Appl Physiol* (1985) **2012**, *113*, 175-183, doi:10.1152/japplphysiol.00319.2012.
- 262 3. McCully, K.K.; Iotti, S.; Kendrick, K.; Wang, Z.; Posner, J.D.; Leigh, J., Jr.; Chance, B. Simultaneous in
263 vivo measurements of HbO₂ saturation and PCr kinetics after exercise in normal humans. *J Appl*
264 *Physiol* (1985) **1994**, *77*, 5-10, doi:10.1152/jappl.1994.77.1.5.
- 265 4. Willingham, T.B.; Southern, W.M.; McCully, K.K. Measuring reactive hyperemia in the lower limb
266 using near-infrared spectroscopy. *J Biomed Opt* **2016**, *21*, 091302, doi:10.1117/1.JBO.21.9.091302.
- 267 5. De Blasi, R.A.; Alviggi, I.; Cope, M.; Elwell, C.; Ferrari, M. Noninvasive measurement of forearm
268 oxygen consumption during exercise by near infrared spectroscopy. *Adv. Exp. Med. Biol.* **1994**, *345*,
269 685-692.
- 270 6. Willingham, T.B.; McCully, K.K. In Vivo Assessment of Mitochondrial Dysfunction in Clinical
271 Populations Using Near-Infrared Spectroscopy. *Front. Physiol.* **2017**, *8*, 689,
272 doi:10.3389/fphys.2017.00689.

273 7. Brizendine, J.T.; Ryan, T.E.; Larson, R.D.; McCully, K.K. Skeletal muscle metabolism in endurance
274 athletes with near-infrared spectroscopy. *Med Sci Sports Exerc* **2013**, *45*, 869-875,
275 doi:10.1249/MSS.0b013e31827e0eb6.

276 8. Erickson, M.L.; Ryan, T.E.; Young, H.J.; McCully, K.K. Near-infrared assessments of skeletal muscle
277 oxidative capacity in persons with spinal cord injury. *Eur J Appl Physiol* **2013**, *113*, 2275-2283,
278 doi:10.1007/s00421-013-2657-0.

279 9. Erickson, M.L.; Seigler, N.; McKie, K.T.; McCully, K.K.; Harris, R.A. Skeletal muscle oxidative
280 capacity in patients with cystic fibrosis. *Exp. Physiol.* **2015**, *100*, 545-552, doi:10.1113/EP085037.

281 10. Harp, M.A.; McCully, K.K.; Moldavskiy, M.; Backus, D. Skeletal muscle mitochondrial capacity in
282 people with multiple sclerosis. *Mult Scler J Exp Transl Clin* **2016**, *2*, 2055217316678020,
283 doi:10.1177/2055217316678020.

284 11. Ryan, T.E.; Erickson, M.L.; Verma, A.; Chavez, J.; Rivner, M.H.; McCully, K.K. Skeletal muscle
285 oxidative capacity in amyotrophic lateral sclerosis. *Muscle Nerve* **2014**, *50*, 767-774,
286 doi:10.1002/mus.24223.

287 12. Adami, A.; Cao, R.; Porszasz, J.; Casaburi, R.; Rossiter, H.B. Reproducibility of NIRS assessment of
288 muscle oxidative capacity in smokers with and without COPD. *Respir. Physiol. Neurobiol.* **2017**, *235*, 18-
289 26, doi:10.1016/j.resp.2016.09.008.

290 13. Ryan, T.E.; Erickson, M.L.; Brizendine, J.T.; Young, H.J.; McCully, K.K. Noninvasive evaluation of
291 skeletal muscle mitochondrial capacity with near-infrared spectroscopy: correcting for blood volume
292 changes. *J Appl Physiol* **2012**, *113*, 175-183, doi:10.1152/japplphysiol.00319.2012.

293 14. Southern, W.M.; Ryan, T.E.; Reynolds, M.A.; McCully, K. Reproducibility of near-infrared
294 spectroscopy measurements of oxidative function and postexercise recovery kinetics in the medial
295 gastrocnemius muscle. *Appl Physiol Nutr Metab* **2014**, *39*, 521-529, doi:10.1139/apnm-2013-0347.

296 15. Bossie, H.M.; Willingham, T.B.; Schoick, R.A.V.; O'Connor, P.J.; McCully, K.K. Mitochondrial
297 capacity, muscle endurance, and low energy in friedreich ataxia. *Muscle Nerve* **2017**, *56*, 773-779,
298 doi:10.1002/mus.25524.

299 16. Barstow, T.J. CORP: Understanding near infrared spectroscopy (NIRS) and its application to skeletal
300 muscle research. *J Appl Physiol (1985)* **2019**, *10.1152/japplphysiol.00166.2018*,
301 doi:10.1152/japplphysiol.00166.2018.

302 17. Sako, T.; Hamaoka, T.; Higuchi, H.; Kurosawa, Y.; Katsumura, T. Validity of NIR spectroscopy for
303 quantitatively measuring muscle oxidative metabolic rate in exercise. *J Appl Physiol* **2001**, *90*, 338-344.

304 18. Ryan, T.E.; Southern, W.M.; Reynolds, M.A.; McCully, K.K. A cross-validation of near-infrared
305 spectroscopy measurements of skeletal muscle oxidative capacity with phosphorus magnetic
306 resonance spectroscopy. *J Appl Physiol (1985)* **2013**, *115*, 1757-1766,
307 doi:10.1152/japplphysiol.00835.2013.

308 19. Miura, H.; McCully, K.; Hong, L.; Nioka, S.; Chance, B. Regional difference of muscle oxygen
309 saturation and blood volume during exercise determined by near infrared imaging device. *Jpn. J.*
310 *Physiol.* **2001**, *51*, 599-606.

311
312