

1 Article

2

Impact of nitrogen foamed stimulation fluids 3 stabilized by nanoadditives on reservoir rocks of 4 hydrocarbon deposits

5 **Klaudia Wilk** ^{1,*}, **Piotr Kasza** ¹, **Krzysztof Labus** ²6 ¹ Oil and Gas Institute – National Research Institute; wilkk@inig.pl, kasza@inig.pl7 ² Silesian University of Technology; krzysztof.labus@polsl.pl

8 * Correspondence: wilkk@inig.pl; Tel.: +48134368941

9

10 **Abstract:** First objective of this experiment is to improve the stabilization of N₂ based foam with
11 nanoparticles as an alternative to typical fracturing fluid which consists of a gelling agent (HPG).
12 The second objective of the project is to investigate the damage caused by nanoparticle-based
13 nitrogen foamed fracturing fluids (F.F) on a reference sandstone, using permeability and porosity
14 tests, Optical Microscope with Profilometer and Scanning Electron Microscope (SEM). The
15 properties of F.F with two types of SiO₂ nanoparticles (hydrophilic fumed silica Areosil 300 and
16 silica sol U-2 obtained by sol-gel method), such as rheology and core damage were investigated.
17 The discussion of this research results is based on the stability tests carried out with the use
18 rheology and the foam half-life, formation damage ratio and observation of exposed samples using
19 SEM and Profilometer. The permeability and porosity damage ratios of the damaged core samples
20 were found to decrease when nitrogen foamed fluids were used. These results were confirmed
21 with Profilometer and SEM images. The experimental data showed that the foam stability
22 increased when silica (SiO₂) nanoparticles were added. SiO₂ nanoparticle-surfactant-stabilized
23 foam for fracturing is superior to traditional water-based fracturing fluids and causes lower core
24 permeability damage than a traditional F.F.

25 **Keywords:** nanoadditives; nitrogen foamed stimulation fluids; reservoir stimulation; rheology;
26 formation damage; SEM
27

28

1. Introduction

29 One of problems facing the oil industry is the production of as high as possible amounts of oil
30 remaining in the reservoir after using up natural energy conditions. In many hydrocarbon reservoirs
31 exploited worldwide the mining approaches the final phase [1]. By means of the first extraction
32 methods utilising the reservoir energy it is possible to obtain only approx. 5–20% of resources [2,3].
33 Therefore for many oil companies the development of hydrocarbons stimulation methods is today a
34 priority. Stimulation treatments such as HF [4], matrix acidizing, acid fracturing [5–7] or EOR [8–10]
35 are common techniques used to increase the extraction productivity. In all aforementioned cases the
36 stimulation (injection) fluid is a crucial element and must meet special requirements depending on
37 the goal of application [11–13]. After stimulation treatments a part of this fluid remains within
38 fractures causing damage to the formation and reducing the stimulation effectiveness [14–16].
39 Therefore attention has been drawn to the possibility of applying fluids energised with gases with
40 the addition of nanoparticles, reducing thereby the water content in the injection fluid and also
41 increasing the stabilisation of the process fluid during stimulation treatments [17–21]. The advantage
42 of energised fluids consists also in increased fluid recovery after fracturing due to the natural energy
43 of the gaseous fluid component [22,23]. Because the gas decompresses during the pressure reduction
44 and fluid reception after the treatment, the dissolved gas helps to recover the pumped fluids and
45 facilitates the well cleaning [24,25]. Moreover, high viscosity of the foam, allows better transport of

46 the proppant and more effective placing it in the fracture without excessive falling of the proppant
47 material [26,27]. It ensures also good control of the fluid filtration to the rock matrix and to natural
48 fractures during fracturing. Their application allows to reduce significantly the amount of water
49 necessary for treatments [18,28,29], limiting the possibility of clayey minerals swelling in the deposit,
50 causing reduced permeability [30,31]. In the case, when the fracturing fluids are made on the basis of
51 water, so-called permeability damage can occur, caused by swelling of clayey minerals or action of
52 other physical and chemical mechanisms proceeding in the fractured formation [32]. They reduce
53 the reservoir rocks permeability at the stage of drilling, hydraulic fracturing, production, and other
54 reservoir operations, resulting in decreased reservoir productivity [33], which translates directly into
55 economic effectiveness.

56 The nanotechnology is a fast developing field offering a multitude of potential applications and
57 benefits [34–37]. Nanoparticles feature a number of advantages during the reservoir stimulation
58 with foamed fluids, such as: they can increase the foam stability [38], they are that small that can
59 stabilise small bubbles, which increase viscosity - necessary for effective transfer of the proppant
60 material [39], they are much smaller than rock fractures and pores [40], which allows more effective
61 transport to the surface of the post-treatment fluid during the process of well cleaning, they reduce
62 migration of solid particles [41], they are environment-friendly [42], and they can reduce corrosion.
63 What is more important, the mechanism of nanoparticles movements and action [43–46], and also of
64 foam stabilisation by nanoparticles differs and is more effective than that utilising surfactants and
65 emulsifiers. After the stage of pumping and placing the proppant in the fracture, foam loses its
66 stability and viscosity, and foam bubbles regenerate during the fluid recovery after the treatment
67 [47].

68 2. Materials and Methods

69 Using the tap water as the base, a foamed stimulation fluid was formed by the addition of N₂, of
70 a foamer, of nanoparticles, and of natural polymer. Silicon dioxide (U-2), in the form of 23% water
71 solution, was the first type of used nanoparticles. The silica sol was obtained by the sol-gel method.
72 Tetraethoxysilane (TEOS) was a direct substrate used to obtain the silica sol. The reaction was
73 carried out in a water-alcohol medium at the presence of ammonia solution within a pH range of
74 10.97 to 11.00. The process was proceeding as follows: anhydrous ethanol, ammonia solution, and
75 distilled water were mixed in an Erlenmayer flask using a mechanical mixer. pH of the formed
76 solution was measured after 15 minutes. The pH value of reaction mixture prepared during the
77 process of silica sol formation was strictly controlled to ensure repeatability of SiO₂ particles size.
78 Then TEOS was added at continuous mixing. In the initial stage of synthesis the reaction mixture
79 (sol) was clear, after a dozen or a few dozen minutes the solution opalescence was observed. The
80 process was stopped after 3 hours of intensive mixing. Based on the photon correlation spectroscopy
81 the sol particle size was found to be 30 nm. To obtain a 23% SiO₂ solution the obtained silica sol was
82 concentrated through evaporation of solvents to a defined volume.

83 Silica nanoparticles (Areosil 300) was the second type, obtained from Evonik Industries. The
84 colloidal silica, referred to as 'fumed silica', because it is produced through continuous flame
85 hydrolysis, via combustion of silica tetrachloride SiCl₄ in an oxygen-rich flame. The silica powder
86 features an extremely low density of 90 g/l and a high specific surface area of 300 m²/g (+/- 30 m²/g).
87 Areosil 300 is a mixture of lipophobic and hydrophilic nanoparticles (LHP) with a mean particle size
88 of approx. 7 nm. Its composition contains silicon dioxide (SiO₂) > 99.8%, aluminium oxide (Al₂O₃) <
89 0.05%, titanium dioxide (TiO₂) < 0.03%, hydrogen chloride HCl < 0.025%, and iron III oxide (Fe₂O₃) <
90 0.003%. pH ranged between 3.70 and 4.70. Initially, nanoparticles in the form of a powder (AEROSIL
91 300) or of a suspension (U-2) were added to the tap water at room temperature, then the solution
92 was stirred with a mechanical mixer during 4–5 minutes. After that period the sample was subject to
93 ultrasonic waves action using a homogeniser during 4 minutes, at an amplitude of 70%. Anionic
94 foaming agent A from CESI Chemicals was added next (4 ml/l), and finally optionally polymer W
95 (natural, fast hydrating guar gum for oil field applications) (made by Weatherford) was added at an
96 amount of 1 g/l. Agents A and W were used based on our previous work to assess the best additives

97 to foamed fluids [48,49]. Samples of model rock material, taken from a depth of approx. 300 to 400 m,
98 originating from a deposit situated in the upper part of Lower Istebna beds, were taken for
99 laboratory tests to determine the degree of damage. These strata exist mainly in the form of
100 thick-banked massive fine- and medium-grained sandstones with clayey-limy binder with
101 subordinate shale banks. Beds of Inoceramian facies prevailing with shale exist both above and
102 below those sandstones complexes.

103 *2.1. Viscosity of the Stimulation Fluids*

104 To prepare fracturing fluids with nanoparticles addition, to carry out rheological
105 measurements, the procedure described in sub-section 2 *Materials and Methods* was followed. The
106 fluid was then introduced to tubes of a pipe rheometer designed specifically to measure the
107 rheological properties of foamed systems under extended pressure and temperature conditions and
108 stirred at a rate of 350 s^{-1} . To study rheological properties of foamed fluids the base fluid was first
109 foamed with nitrogen. To this end approx. 500 ml of the tested fluid was placed in the fluid container
110 (Figure 1). Then, by means of pumps, it was pumped into tubes of the measuring system. After its
111 filling and venting the fluid circulation started in the measuring system, stabilising at the same time
112 the temperature and pressure (6.89 MPa, $T = 23\text{ }^{\circ}\text{C}$). Next, gas was additionally pumped to the
113 measuring system, circulating the fluid continuously at a shear rate of 350 s^{-1} . At the same time the
114 fluid was partially collected from the system, and then a partially foamed fluid, increasing thereby
115 the gas share in the foam. The process was carried out till the moment of obtaining 50% or 70% of the
116 foam quality, which was controlled by a densimeter. Once the foam quality stabilised,
117 measurements of rheological properties were started in accordance with the prepared test plan. The
118 stability test lasted 80 minutes, at a pressure of 1000 psi, maintaining a shear rate of 100 s^{-1} . To
119 measure rheological properties during measurement loops (at minute 13, 25, and 38) the shear rates
120 were assumed as follows: 40, 100, 200, 300, 200, 100, 40 s^{-1} . During a measurement loop the shear rate
121 was kept at each of aforementioned levels for 60 seconds, to obtain a stable result. Between
122 measurements the foam was stirred at a rate of 100 s^{-1} during 10 minutes. The foam half-time was
123 determined after generating foam of 50% or 70% quality; the fluid flow through the rheometer was
124 stopped and the foam was closed in the measurement chamber to maintain static measurement
125 conditions. It is defined as the time, after which a half of water phase will be separated from the
126 generated foam [50] and it is an important parameter describing the foam stability. Table 4 presents
127 results of half-time measurements for S.F.

128

129

130

Figure 1. Measuring system to study the damage to the core by fracturing fluids with addition of N₂/CO₂ gases.

131 2.2. Induced Formation Damage

132 To a large extent the damaging tests consisted in pumping through the cores appropriate
133 fracturing fluids, causing damage to the core material at the assumed pressure difference, like it is
134 the case during actual reservoir stimulating treatments.

To simulate the formation damage by fracturing fluids, taking into account the impact of process fluids on the reservoir rock, a measuring system to test the cores' damage was used. To identify the reservoir formation damage it was necessary to appropriately prepare the cores. Samples to perform tests of rock damage by a fracturing fluid (non-foamed or with 50% content of N_2) were prepared from the core material. First, core plugs were cut out by a diamond crown, 3.81 cm in diameter and approx. 2.54 cm high; after cutting they were dried and placed in a desiccator. A decision was made to cut plugs of a larger diameter to have during the tests as high as possible pore volume and also as large as possible front surface of cores, on which the filtration cake will form. Core plugs prepared in such a way were subject to measurements of the permeability coefficient for gas and of the porosity ratio. The results of carried out measurements are specified in Table 5. Then the core plug was set in the measuring chamber using high-temperature silicone. Next the remaining components of the measuring chamber were screwed together and it was left for approx. 24 hours. After that period the chamber was thermostated up to 60 °C and the measurement started. The core was initially saturated with a 2% KCl solution at a constant rate by means of a constatimetric pump and then the chamber was filled with an appropriate fracturing fluid, and a pressure of 6.89 MPa (1000 psi) was applied. After opening a valve at the chamber bottom the core damaging started, lasting 50 minutes.

152 2.3. Rock Cores Sample Damage Examination

153 The use of a HRM-300 3D (Huvitz, South Korea) optical microscope with profiler and digital
154 equipment and of Panasis software allowed to image the rock samples damage. For each core after
155 damage 3 surface profiles were made using a reference plane - the surface without contact with the
156 stimulation fluid (without filtration cake). The determined profile comprised the area from the core

157 centre to the wall of the rock mini-cylinder (5000 μm). The cake height was determined taking into
158 consideration average roughness from roughness profiles along selected measurement sections.

159 An FEI Quanta 650 FEG (Thermo fisher scientific, USA) scanning electron microscope was used
160 to make pictures and SEM analyses. The Quanta microscope is equipped with a field emission gun
161 (FEG). The core photographs were made using a detector of backscattered electrons (BSE). Based on
162 differences in the image scale of grey a phase contrast is visible on the samples surface (heavier
163 minerals are lighter on the image, while lighter ones - darker). High and low vacuum was used for
164 imaging. Low vacuum was used to avoid 'sample charging' (charge gathering in non-conducting
165 places). The degree of damage was compared for cores, through which non-foamed fracturing fluid
166 was pumped, with cores through which foamed fracturing fluid was pumped.

167 To observe the core plug damage not only on the front surface, but also outside, the core was
168 split transversally into two parts, reproducing a natural rock fracture. It enabled more detailed
169 observations of the range of the rock sample damage by fracturing fluids.

170 3. Results

171 3.1. Viscosity Measurements

172 Figs. 2-5 present results of rheological properties measurements for non-foamed and with
173 nitrogen addition fracturing fluids. Measurements of rheological properties for all tested foamed
174 and non-foamed fluids were carried out at 23 °C. The rheological parameters (n' and K') are
175 presented in Tables 1-3, where n is the dimensionless flow index, and K is the consistency factor.

176 **Table 1.** Rheological parameters of fluids energised with N_2 with the application of Aerosil
177 nanoadditive, foam quality of 50% and 70%.

S.F. composition		Q_f [%]	t [min]	n' [-]	K' [Pa·s n']	Dynamic viscosity at a given γ [mPa·s]		
						40s $^{-1}$	100s $^{-1}$	170s $^{-1}$
Water 0,4 % A, 0,1% Areosil	1a	No-foamed	13	0,9988	0,000022	2	2,3	2,5
			25	0,9989	0,000026	2,1	2,4	2,6
			38	0,9989	0,000027	2	2,3	2,4
	1b	50	13	0,5565	0,002466	23	15,3	12,1
			25	0,4125	0,00512	28,1	16,4	12
			38	0,5116	0,003098	24,5	15,6	12,1
		70	13	0,4479	0,007347	45,9	27,7	20,6
			25	0,5551	0,004069	37,7	25,1	19,8
			38	0,5939	0,003564	38,2	26,3	21,2

178 **Table 2.** Rheological parameters of fluids energised with N_2 with the application of U-2
179 nanoadditive, foam quality of 50% and 70%.

S.F. composition		Q_f [%]	t [min]	n' [-]	K' [Pa·s n']	Dynamic viscosity at a given γ [mPa·s]		
						40s $^{-1}$	100s $^{-1}$	170s $^{-1}$
Water 0,4 % A, 0,1% U-2	2a	No-foamed	13	0,9907	0,0026	2,6	2,5	2,5
			25	0,999	0,0021	2,4	2,5	2,6
			38	0,999	0,0024	2,6	2,6	2,6
	2b	50	13	0,4816	0,003417	24,2	15	11,4
			25	0,5403	0,002568	22,6	14,8	11,6
			38	0,642	0,001544	19,7	14,2	11,8

		70	13	0,5923	0,007221	76,8	52,9	42,6
			25	0,6662	0,005006	69,9	51,5	43,1
			38	0,4845	0,011807	84,4	52,6	40

180
181**Table 3.** Rheological parameters of fluids energised with N₂ with the application of U-2 nanoadditive and natural polymer, foam quality of 50% and 70%.

S.F. composition		Q _f [%]	t [min]	n'	K' [Pa·s ^{n'}]	Dynamic viscosity at a given		
						γ [mPa·s]	40s ⁻¹	100s ⁻¹
Water 0,4 % A, 0,1% U-2 0,1% W	3a	No-foamed	13	0,9989	0,0019	2,9	3,3	3,5
			25	0,9989	0,0017	2,5	2,8	3
			38	0,9989	0,0014	2,5	2,8	3,1
	3b	50	13	0,4283	0,006129	35,6	21,1	15,6
			25	0,4123	0,006996	38,3	22,4	16,4
			38	0,4187	0,006726	37,7	22,1	16,3
	70	70	13	0,7154	0,004226	70,8	54,6	46,9
			25	0,7277	0,004209	73,8	57,5	49,8
			38	0,7496	0,004297	81,7	64,9	56,9

182

Table 4. Measurements of foamed S.F. half-time with addition of 50% and 70% of N₂.

S.F. composition	Q _f [%]	Foam half-time [s]
4 ml/l A	50	30
4 ml/l A	70	60
0,1% Areosil, 4 ml/l A	50	60
0,1% Areosil, 4 ml/l A	70	90
0,1% U-2, 4 ml/l A	50	80
0,1% U-2, 4 ml/l A	70	240
0,1% U-2, 4 ml/l A, 0,1% W	50	360
0,1% U-2, 4 ml/l A, 0,1% W	70	390

183

184
185**Figure 2.** Viscosity of non-foamed and N₂ foamed fluid of 50% and 70% quality at 23 °C at a shear rate of 100s⁻¹.186
187
188**Figure 3.** Viscosity of non-foamed and N₂ foamed fluid of 50% and 70% quality at 23 °C at a shear rate of 100s⁻¹.189
190
191**Figure 4.** Viscosity of non-foamed and N₂ foamed fluid of 50% and 70% quality at 23 °C at a shear rate of 100s⁻¹.192
193
194
195
196
197
198
199
200

Graphs 2-4 present the apparent viscosity registered during the test for process fluid solutions with addition of a surfactant, nanoadditives Aerosil 300 (Figure 2) or U-2 (Figure 3), and polymer in certain cases (Figure 4). For each composition of additives two tests were performed: to measure n' and K' (Tables 1-3) and the measurement of apparent viscosity over time (Figures 2-4). Each time basic rheological parameters were tested for the foam of 50% and 70% quality. Nanoadditive Aerosil 300 was used in the first series of tests. The initial viscosity of 50% foam with the addition of only a foamer and the nanoadditive was 16 cP and 26 cP ($Q_f = 70\%$) at 100 s⁻¹. The non-foamed fluid featured the viscosity of approx. 2 cP at 100⁻¹. In the second series of tests the U-2 nanoadditive was used at the amount of 0.1% vol. The viscosity with the addition of only a surfactant and the

201 nanoadditive was 15 cP in the case of foam at a temperature of 23 °C and 50% quality, and 52 cP for
 202 the foam of 70% quality. After adding 0.1 wt. % of natural polymer to U-2 nanoparticles the viscosity
 203 went up to 22 and 55 cP for the tested foam qualities, respectively. The nanoparticles addition
 204 increases stability of the foamed fluid, which was confirmed by authors of paper [51]. The increased
 205 stability may be confirmed also when analysing the half-time. It increases 12 times in the case of 50%
 206 nitrogen content in the fluid with U-2 addition and polymer, and 6.5 times for the 70% foam as
 207 compared with the fluid without the SiO₂ addition.

208 *3.2. Formation Damage Evaluation*

209 **Table 5.** Results of porosity ratio and permeability coefficient measurement before and after
 210 performance of damaging tests.

Fluids injected through the core	core number	k_0 [md]	k_k [md]	% k_{red}	ϕ_0 [%]	ϕ_k [%]	% ϕ_{red}
S.F. 1a 0,1 % Areosil, 4ml/l A No-foamed	3231	5,03	1,93	61,00	15,05	13,53	10,09
S.F. 1b 0,1 % Areosil, 4ml/l A Foamed with N ₂	3232	4,72	2,78	41,10	15,20	13,84	8,95
S.F. 2a 0,1 % U-2 4ml/l A No-foamed	3226	4,11	2,06	49,88	15,70	13,37	14,81
S.F. 2b 0,1 % U-2 4ml/l A Foamed with N ₂	3224	3,96	2,99	24,49	15,07	14,60	3,12
S.F. 3a 4ml/l A 0,1 % W No-foamed	3233	7,65	2,32	69,67	15,80	14,08	8,10
S.F. 3b 4ml/l A 0,1 % W Foamed with N ₂	3229	6,92	4,82	30,35	15,77	15,38	2,47

211 The permeability coefficient was significantly decreasing, in particular in the case of cores
 212 treated with non-foamed process fluids. Foamed fluids caused a smaller permeability and porosity
 213 reduction than non-foamed fluids. The biggest damage to permeability was caused by non-foamed
 214 fluids with the addition of polymer W (fig. 5). The estimated permeability damage was approx. 20%
 215 smaller for foamed fluids as compared with fluids without the nitrogen addition. Concentration of
 216 nanoparticle suspension, well-dispersion solution, injection rate, and pore volume injected are the
 217 most important parameters affecting the permeability impairment [52].

218
 219 **Figure 5.** The cores surface after damage with S.F.

220
221 **Figure 6.** Results of microscopic analysis of the front surface of core No 3231 and 3232 after the
222 damaging test S.F.: a) 1a, b) 1b.

222
223 **Figure 7.** Results of microscopic analysis of the front surface of core No 3226 and 3224 after the
224 damaging test S.F.: a) 2a, b) 2b.

224
225 **Figure 8.** Results of microscopic analysis of the front surface of core No 3233 and 3229 after the
226 damaging test S.F.: a) 3a, b) 3b.

227 The filtration cake height was determined thanks to the 3D software in the optical microscope,
228 using an arithmetical mean of three selected areas on the front surface of the tested rock sample. An
229 average height of the cake for non-foamed fluids ranged between 1161 and approx. 108 μm . Instead,
230 in the case of cores treated with foamed fracturing fluids, the measured filtration cake was definitely
thinner and was from a few dozen to approx. a dozen μm thick. Figure 6 presents the front surface of

231 cores 3231 and 3232 after pumping through it the fluid with Aerosil addition, non-foamed (Figure
 232 11a) and foamed (Figure 11b), respectively. A layer of filtration cake is especially visible on the
 233 profile of non-foamed fluid (Figure 11a). Results of presented tests show that the N₂ foamed fluid
 234 based on nanoparticles with the addition of a foamer and U-2 additive is least invasive (Figure 7b).
 235 Only small traces of a filtration cake in the form of an uneven coating are visible on the surface. In
 236 the case of filtration of fluid based on polymer with nanoparticles addition the filtration cake is best
 237 visible (Figure 8a and 8b). Its thickness in the case of U-2 application in a non-foamed fluid is
 238 estimated at approx. 170 µm (Figure 8a), while in the case of foamed fluids at approx. 110 µm
 239 (Figure 8b).

240 **Figure 9.** SEM image of the 3231 core face after contact with Areosil S.F. 1a, a) top view of the core
 241 face; Q - quartz, Feld - feldspar, b) top view of the core face at a high magnification.

242 **Figure 10.** SEM image of the 3232 core face after contact with foamed Areosil S.F. 1b, a) top view of
 243 the core face, b) top view of the core face at a high magnification.

244
245

Figure 11. SEM image of the 3226 core face after contact with U-2, S.F. 2a, a) top view of the core face, b) top view of the core face at a high magnification.

246
247

Figure 12. SEM image of the 3224 core face after contact with foamed U-2 S.F. 2b, a) top view of the core face, b) side view of the core face.

248
249

Figure 13. SEM image of the 3233 core face after contact with U-2 S.F. 3a, a) top view of the core face, b) side view of the core face.

250
251

Figure 14. SEM image of the 3229 core face after contact with foamed U-2 and polymer S.F. 3b, a) top view of the core face, b) side view of the core face.

252
253
254
255
256
257
258

Figure 9 presents the front surface of core 3231 after the core damage with the fluid with Aerosil additive - 1a. The filtration cake coating (Figure 9a) is a silica gel; it exists only in fragments, is strongly crushed and fills cavities between detrital rock components (quartz and feldspars). It is possible to distinguish one type of cake fragments: fragments with a flat but slightly lumpy surface. Figure 9b is a filtration cake coating (silica gel) at a high magnification. The surface is uneven, and relief elements are spread irregularly. The cake structure is not uniform, it seems to be formed of grains much smaller than 1 μm .

259
260
261
262
263

In the case of foamed fluid application - 1b, the front surface of the sample is covered with a highly crushed coating, filling cavities between the quartz grains (Figure 10a). In the close-up one can see fragments of the cake with a porous surface, with finer cavities after gas bubbles up to a dozen or so micrometres in diameter (Figure 10a). The structure reveals sub-micron elements forming the coating.

264 Figure 11 presents the surface of sample 3226. The cake coating is strongly crushed and fills
265 cavities between detrital rock components (Figure 11a). It is possible to distinguish polymer
266 fragments with a smooth surface; cavities after gas bubbles are not visible. Fractures are visible on
267 the magnification of a cake fragment; small white crystals are KCl, which crystallised from the pad
268 fluid (Figure 11b).

269 Figure 12a shows a polymer coating, which is strongly crushed and fills cavities between
270 detrital rock components (quartz and feldspar) of sample 3224. It is possible to distinguish two types
271 of polymer fragments: 1) - fragments with a smooth surface, with possibly noticeable cavities after
272 gas bubbles, a few dozen μm in diameter, 2) - fragments with a porous surface, covered with finer
273 cavities after gas bubbles, up to a dozen or so μm in diameter. The presence of those two types
274 suggests zonal differentiation of fluid viscosity and surface tension. Photograph 12b presents the
275 front surface of sample - a side view. The cake coating, approx. 30 μm thick, is visible only on the
276 surface.

277 The filtration cake coating on core 3233 it is characterized by considerable continuity, which is
278 related to the addition of polymer W, but with finely diversified relief: shallow pseudo-polygonal
279 cavities and few irregular fractures are marked. Occasionally existing small mineral fragments are
280 dispersed on the polymer surface - Figure 13a. Figure 13b presents the front surface of sample 3233 -
281 a side view. A uniform polymer coating (red arrow) is a few μm thick.

282 In the case of foamed fluid 3b the coating on the core surface (Fig. 14a) is also continuous, with
283 finely diversified relief and shallow pseudo-polygonal cavities. Contrary to sample 3223 (Figure 13a)
284 oval cavities are visible, probably related to gas bubbles, with dimensions up to 150 μm . These
285 cavities reveal the rock grains, that are lying under the coating. Small mineral fragments are
286 dispersed sparsely on the polymer layer surface.

287 Figure 14b presents the front surface of sample - a side view. Uniform polymer coating, a few
288 μm thick, is contaminated with mineral particles. The coating separates from the rock surface, which
289 can result from polymer drying and sample splitting.

290 4. Discussion

291 1. The knowledge of rheological parameters of base fluids is indispensable to prepare a design of
292 technological treatment. On this basis fracturing fluids are selected for a specific type of reservoir
293 rock and for the reservoir conditions. They also prove a specific fluid's potential to transport the
294 proppant. Apparent viscosity was studied for process fluid solutions with addition of surfactant A,
295 nanoadditives U-2 or Aerosil 300, and in certain cases of polymer W. Each time basic rheological
296 parameters were studied for the foam of 50% and 70% foam quality at 23 °C. Viscosity of 50% foam
297 with addition of a foamer and of both nanoadditives did not differ and was approx. 15 cP. The
298 viscosity coefficient of foam (at $Q_f = 70\%$) with U-2 addition was much higher than that with Aerosil
299 additive. After polymer addition to U-2 nanoparticles the viscosity significantly increased, in
300 particular at 50% foam quality. The viscosity grows from a few cP for the non-foamed fluid to a few
301 dozen cP in the case of foam with the nanoadditive and natural polymer; the foaming resulted in a
302 dozen or so times increase in S.F. viscosity and in its stability, which was confirmed also by the
303 half-time measurement.

304 2. The permeability coefficient was significantly decreasing, in particular in the case of cores
305 treated with non-foamed process fluids. Foamed fluids caused a smaller permeability and porosity
306 reduction than non-foamed fluids. The biggest damage to permeability was caused by a non-foamed
307 fluid with the addition of polymer W. The addition of nanoparticles caused also reduction of
308 permeability, in particular after the application of Aerosil. Instead, the addition of U-2 sol did not
309 result in a significant reduction of the permeability coefficient, especially after the fluid foaming
310 with N_2 . The estimated permeability damage was approx. 20% smaller for foamed fluids as
311 compared with fluids without the nitrogen addition.

312 3. An average height of the cake for non-foamed fluids, determined thanks to 3D software in the
313 optical microscope, ranged between 1161 and approx. 30 μm . Instead, in the case of cores treated
314 with foamed fracturing fluids, the measured filtration cake was definitely thinner and was from a
315 few dozen to approx. a dozen μm thick. The results of presented studies show that the foamed fluid
316 based on U-2 nanoparticles with a foamer addition is least invasive. Only small traces of a filtration
317 cake in the form of an uneven coat are visible on the surface. Its thickness in the case of U-2
318 application is estimated at approx. 63 μm , while in the case of fluid with Aerosil 300 addition at
319 approx. 1161 μm .

320 4. The SEM analysis allowed to determine the filtration cake thickness, and also the polymer
321 presence in the analysed rock material. The results of presented SEM studies show that least
322 invasive are foamed fluids, forming an irregular flaky coating of core surfaces, which is consistent
323 with the analysis by means of an optical microscope and a profilometer. Nanoadditives affected the
324 formation of filtration cake on the sample's surface, especially during cores damaging with a
325 non-foamed fluid with the Aerosil additive. During the non-foamed fluids filtration the filtration
326 cake was creating a pretty compact and more even coating. Its thickness ranges from a few to a few
327 dozen μm .

328 5. Taking into consideration the foam stability, rheology parameters, and the degree of damage, a
329 foamed fracturing fluid based on 0.1 % of U-2 with addition of 4 ml/l of surfactant is the best fluid.
330 The experimental data showed that the stability foam increased when silica (SiO_2) nanoparticles
331 were added. SiO_2 nanoparticle-surfactant-stabilized foam for fracturing is superior to traditional
332 water based fracturing fluids and causes lower core permeability damage than a traditional F.F. It is
333 recommended for use in hydraulic fracturing, particularly for fracturing stimulation in tight and
334 shale gas reservoirs. The obtained results demonstrate that the suitability of adding nanoparticles to
335 fracturing fluid for stimulations will improve its performance.

336 **Author Contributions:** Conceptualization, K.W., P.K. and K.L.; Formal analysis, K.W.; Investigation, K.W.,
337 P.K., K.L. Methodology, K.W. and P.K.; Resources, K.W.; Supervision, P.K. and K.L.; Validation, K.W., P.K. and
338 K.L.; Writing—original draft, K.W.; Writing—review&editing, P.K., K.L and KW.

339

340 **Funding:** Part of the research leading to these results was prepared on the basis of statutory study financed by
341 Ministry of Science and Higher Education – archival no.: 0010/KS/18, order no.: DK-4100-10/18.

342 **Acknowledgments:** The authors would like to thank the Oil and Gas Institute – National Research Institute,
343 Poland, for providing access to laboratory equipment. Authors thank Evonik Industries for supplying Aerosil
344 300 and Witchem company for supplying U-2 nanofluid, CESI for Foamer A and Weatherford for polymer used
345 in this study.

346 **Conflicts of Interest:** The authors declare no conflict of interest.

347 **Abbreviations**

348 The following abbreviations are used in this manuscript:

349 $\%k_{\text{red}}$ permeability reduction

350 $\% \phi_{\text{red}}$ porosity reduction

351 A anionic foamer

352 EOR Enhanced oil recovery

353 F Feld feldspar

354 F.F. Fracturing fluids

355 HF hydraulic fracturing

356 HPG hydroxypropyl guar

357 K consistency factor

358 k_0 initial core permeability

359 k_k final core permeability

360 n flow index
361 Q quartz
362 Q_f foam quality
363 S.F. stimulation fluids
364 T temperature
365 t test time
366 TEOS tetraethoxysilane
367 W fast hydrating guar gum (HPG)
368 γ shear rate
369 ϕ_i initial core porosity
370 ϕ_f final core porosity

371

372 **References**

1. Bentley, R. W. Global oil & gas depletion: an overview. *Energy Policy* **2002**, *30*, 189–205. doi.org/10.1016/S0301-4215(01)00144-6.
2. Lubaś, J., Szott, W., Dziadkiewicz, M. Analiza możliwości zwiększenia stopnia sczerpania zasobów złóż ropy naftowej w Polsce. *Nafta-Gaz* **2012**, *8*, 481-489.
3. Bhattacharyya, S.C. Energy Economics: Concepts, Issues, Markets and Governance, 1nd ed.; Springer-Verlag London; **2011**, 1-5. ISBN 978-0-85729-268-1.
4. Bohloli, B., de Pater, C.J. Experimental study on hydraulic fracturing of soft rocks: Influence of fluid rheology and confining stress, *Journal of Petroleum Science and Engineering*, **2006**, Vol. 53, Issues 1–2, 1-12. DOI:https://doi.org/10.1016/j.petrol.2006.01.009.
5. Guo, B.; Liu, X.; Tan, X. Hydraulic Fracturing, In *Petroleum Production Engineering*, 2nd ed.; Gulf Professional Publishing, Elsevier, **2017**, ISBN 9780128096123.
6. McAleese, S. Test Design, In *Operational Aspects of Oil and Gas Well Testing*, Elsevier, **2000**; 1, pp. 57-70, ISBN: 978-0-444-50311-4.
7. Gharibi, A.; Zoveidavianpoor, M.; Ghadikolaei, F.D. On the Application of Well Stimulation Method in Improvement of Oil Recovery. *Applied Mechanics and Materials*, **2015**, *735*, 31-35. doi.org/10.4028/www.scientific.net/AMM.735.31.
8. Tunio, S.Q., Tunio, A.H., Ghirano, N.A., El Adawy, Z.M. Comparison of Different Enhanced Oil Recovery Techniques for Better Oil Productivity. *Int. J. of Appl. Sci. and Technol.*, **2011**, *1*, 143-153.
9. Karadkar, P., Bataweel, M., Bulekbay, A., Alshaikh A.A.: Energized Fluids for Upstream Production Enhancement: A Review. *SPE-192255-MS*. Society of Petroleum Engineers, **2018**, 1-26. doi.org/10.2118/192255-MS.
10. Hou, Q., Zhu, Y., Luo, Y., Weng, R. Studies on Foam Flooding EOR Technique for Daqing Reservoirs After Polymer Flooding. *SPE-151955-MS*, **2012**. DOI 10.2118/151955-MS.
11. Dankwa, O., Appah, D., Joel, O.F., Asiam, E.K. Compatibility: A Key To An Efficient Matrix Acidizing Fluid Design. *J Pet Environ Biotechnol* **2016**, *7*, 1-5. doi:10.4172/2157-7463.1000274.
12. Subhash, N.S., Patel, H., Pandy, S. Motion of Fracturing Fluid and Associated Environmental Impacts Conference Paper: Conference: NSF sponsored workshop: Reducing the Impact of Hydraulic Shale Fracturing and Natural Gas Drilling on Environments: Development of Green Fracturing Fluids and Sustainable Remediation and Containment Technologies, At The University of Arkansas at Little Rock, Arkansas, **2015**, 1-22.
13. Taber, J.J., Martin, F.D., Sergiht, R.S. EOR screening criteria revised – Part 1, : Introduction to Screening Criteria and Enhanced Recovery Field Projects. *SPE-35385-PA*, Society of Petroleum Engineers, **1997**, *12*(3):189-198. doi.org/10.2118/35385-PA.
14. Yuan, B., Wood, D.A. A comprehensive review of formation damage during enhanced oil recovery. *J. Petr. Sci. Eng.* **2018**, *167*, 287-299. doi.org/10.1016/j.petrol.2018.04.018.
15. Sheng, J.J. Formation damage in chemical enhanced oil recovery processes. *Asia-Pacific. J. Chem. Eng.* **2016**, *11*, 826-835. doi.org/10.1002/ajp.2035.

410 16. Reinicke, A., Rybacki, E., Stanchits, S., Huenges, E., Dresen G. Hydraulic fracturing stimulation techniques
411 and formation damage mechanisms—Implications from laboratory testing of tight sandstone–proppant
412 systems. *Geochemistry* **2010**, *70*, 107–117. doi.org/10.1016/j.chemer.2010.05.016.

413 17. Yekeenac, N., Manan, M.A., Idrisb, A.K., Padmanabhanc, E., Junina, R., Samina, A.M., Gbadamosia, A.O.,
414 Oguamahd, I. A comprehensive review of experimental studies of nanoparticles-stabilized foam for
415 enhanced oil recovery. *J. Petr. Sci. Eng.* **2018**, *164*, 43–74. doi.org/10.1016/j.petrol.2018.01.035.

416 18. Qajar, A., Xue, Z., Worthen, A.J., Johnston, P.K., Huh, C., Bryant S.L., Prodanović, M. Modeling Fracture
417 Propagation and Cleanup for Dry Nanoparticle-Stabilized-Foam Fracturing Fluids, *Journal of Petroleum
418 Science and Engineering*, **2016**, *146*, 210–221. DOI: 10.1016/j.petrol.2016.04.008

419 19. Yekeen, N., Manan, M.A., Idris, A.K., Gbadmosi, A.O. A comprehensive review of experimental studies
420 of nanoparticles-stabilized foam for enhanced oil recovery, *Journal of Petroleum Science and Engineering*,
421 **2018**, *164*, 43–74. DOI: 10.1016/j.petrol.2018.01.035.

422 20. Zhang, T., Roberts, M., Bryant, S.L., Huh, C. Foams and Emulsions Stabilized With Nanoparticles for
423 Potential Conformance Control Applications, *SPE-121744-MS*, **2009**, 1–17. DOI:
424 https://doi.org/10.2118/121744-MS.

425 21. Singh, R., Mohanty, K.K. Nanoparticle-stabilized foams for high-temperature, high-salinity oil reservoirs,
426 *SPE-187165-MS*, **2017**, 1–15. Proceedings of the SPE Annual Technical Conference and Exhibition, San
427 Antonio, Texas, USA. https://doi.org/10.2118/187165-MS.

428 22. Gidley L.J., S.A. Holditch, D.E. Nierode, W.R. Veatch, SPE Monograph Series **1989**, *12*, 198.

429 23. Chaudhary, S., Singh, S., Singh, V.K. A Novel approach for formulating CO₂ Foam Based Fracturing Fluid
430 by Synthesized Grafting Copolymerization to Enhance its Stability for HPHT Shale Reservoirs, *Petro.
431 Chem. Indus. Intern.*, **2019**, vol.2, issue 2, 1-6, ISSN: 2639-7536.

432 24. Wanniarachchi, W. A. M., Ranjith, P. G., Perera M. S. A., Lashin, A., Al Arif, N., Li, J. C. Current opinions
433 on foam-based hydro-fracturing in deep geological reservoirs, *Geomechanics and Geophysics for Geo-Energy
434 and Geo-Resources*, **2015**, Vol. 1, Issue 3–4, 121–134. DOI https://doi.org/10.1007/s40948-015-0015-x.

435 25. Kong, X., McAndrew, J., Cisternas, P. CFD Study of Using Foam Fracturing Fluid for Proppant Transport
436 in Hydraulic Fractures, *SPE-183549-MS*, **2016**, 1–15. DOI. 10.2118/183549-MS.

437 26. Tong, S., Singh, R., Mohanty, K.K. A visualization study of proppant transport in foam fracturing fluids. *J
438 Natural Gas Sci Eng* **2018**, *52*, 235–247. doi.org/10.1016/j.jngse.2018.01.030.

439 27. Laura, A. Analysis of fracturing fluid system, effect of rock mechanical properties on fluid selection. *AGH
440 Drill Oil Gas* **2014**, *31*(1), 167–178.

441 28. Wilk K., Kasza P., Czupski M.: Dobór dodatków do energetyzowanych płynów szczelinujących. *Nafta-Gaz*
442 **2016**, *12*, 1092–1100, DOI: 10.18668/NG.2016.12.12.

443 29. Yekeen, N., Padmanabhan, E., Idris, A.K. A review of recent advances in foam-based fracturing fluid
444 application in unconventional reservoirs, *Journal of Industrial and Engineering Chemistry*, **2018**, Vol.66, 45–71,
445 DOI.10.1016/j.jiec.2018.05.039.

446 30. Harris, P.C. Application of Foam to Minimize Damage During Fracturing. *SPE 22394*, **1992**, 1–6.

447 31. Kong, B., Wang, S., Chen, S., Dong, K. Minimize Formation Damage in Water-Sensitive Unconventional
448 Reservoirs by Using Energized Fracturing Fluid. *SPE International Conference and Exhibition on Formation
449 Damage Control*, 24–26 February 2016, Lafayette, Louisiana, USA. *SPE-179019-MS*.
450 doi.org/10.2118/179019-MS.

451 32. Bennion, D.B., Thomas, F.B., Bennion, D.W., Bietz, R.F. Mechanisms of Formation Damage and
452 Permeability Impairment Associated With the Drilling, Completion and Production of Low API Gravity
453 Oil Reservoirs. *SPE 30320*, *Society of Petroleum Engineers*, **1995**, 1–19. doi.org/10.2118/30320-MS.

454 33. Puthalath, R., Murthy, C.S.N., Surendranathan, A.O. Reservoir formation damage during various phases
455 of oil and gas recovery - an overview. *International Journal of Earth Sciences and Engineering*, **2012**, *5*(2),
456 224–231.

457 34. Fletcher, A.J.P., Daviss, J.P. How EOR Can be Transformed by Nanotechnology, *SPE 129531-MS*, **2010**,
458 DOI: 10.2118/129531-MS.

459 35. Lau, H.C., Yu, M., Nguyen, Q.P. Nanotechnology for Oilfield Applications: Challenges and Impact.
460 *SPE-183301-MS* **2016**, DOI https://doi.org/10.2118/183301-MS.

461 36. Gottardo, S., Mech, A., Gavriel, M., Gaillard, C., Sokull-Klüttgen, B. Use of nanomaterials in fluids,
462 proppants, and downhole tools for hydraulic fracturing of unconventional hydrocarbon reservoirs. *JRC
463 Technical report*, Publications Office of the European Union, **2016**.

464 37. Friedheim, J., Young, S., De Stefano, G., Lee, J., Guo, Q. Nanotechnology for Oilfield Applications – Hype
465 or Reality? SPE 157032, **2012**, s. 1–7, DOI: 10.2118/157032-MS.

466 38. Montgomery, C. *Fracturing Fluids*, Intech **2013**

467 39. Ariza, C.A.F., Correa, F.B.C. *Formation Damage in Oil and Gas Reservoirs: Nanotechnology Applications*
468 for its Inhibition/Remediation, Publisher: Nova Science Publishers, ISBN: 9781536139020, Inc (US) (2 Sept.
469 **2018**).

470 40. Youssifa, M.I., El-Maghrabyb, R.M., Saleh, S.M., Elgibaly, A. Silica nanofluid flooding for enhanced oil
471 recovery in sandstone rocks. *Egyptian Journal of Petroleum*, Volume 27, Issue 1, March **2018**, 105–110.

472 41. Habibi, A., Ahmadi, M., Pourafshary, P., Ayatollahi, S., Al-Wahaibi, Y. Reduction of Fine Migration by
473 Nanofluids Injection, An Experimental Study, SPE-144196-PA, **2012**, 1-10. DOI:<https://doi.org/10.2118/144196-PA>.

475 42. Kong, X. Applications of Micro and Nano Technologies in the Oil and Gas Industry – An Overview of the
476 Recent Progress, SPE 138241-MS, **2010**, DOI: 10.2118/138241-MS.

477 43. Hendraningrat, L., Li, S., Torsæte, O. A Coreflood Investigation of Nanofluid Enhanced Oil Recovery in
478 Low-Medium Permeability Berea Sandstone. SPE-164106, **2013**, s.1-14, DOI: 10.2118/164106-MS.

479 44. Aly, A.M. Understanding the Mechanism of Nanoparticles Applications in Enhanced Oil Recovery.
480 SPE-175806-MS, **2015**; DOI: 10.2118/175806-MS.

481 45. McElfresh, P., Holcomb, D., Ector, D. Application of Nanofluid Technology to Improve Recovery in Oil
482 and Gas Wells. **2012**, SPE 154827, DOI:10.2118/154827-MS.

483 46. Chengara, A., Nikolov, A. D., Wasan, D.T. Spreading Of Nanofluids Driven By The Structural Disjoining
484 Pressure Gradient, 2004, *Journal of Colloid and Interface Science*, 2004, vol. 280, issue 1, s.192–201. DOI:
485 10.1016/j.jcis.2004.07.005.

486 47. McAndrew, J., Cisternas, P., Pruvot, A., Kong, X., Tong, S. Water Consumption and Proppant Transport
487 Aspects of Foam Fracturing Fluids, **2017**, 1-8, SPE/AAPG/SEG Unconventional Resources Technology
488 Conference, Austin, Texas, USA, DOI: <https://doi.org/10.15530/URTEC-2017-2670102>.

489 48. Wilk, K., Kasza, P., Czupski, M. Dodatki do spienionych plynów szczelinujących. *Przemysł chemiczny*,
490 **2018**, 92/2, 1000-1005. DOI: 10.15199/62.2018.2.10.

491 49. Wilk, K., Kasza, P., Czupski, M. Dobór dodatków do energetyzowanych plynów szczelinujących. *Nafta-Gaz* **2016**, 12, 1092-1100. DOI: 10.18668/NG.2016.12.12.

493 50. Torabzadeh J., Langnes G.L., Robertson Jr. J. O., Yen T. F., Donaldson E. C., Chilingarian G. V., Yen T. F.
494 (eds.): Enhanced Oil Recovery, II: Processes and Operations. *Elsevier Science Publishers* B. V. **1989**, 91-106.

495 51. AlYousef, Z., Almobarky, M., Schechter, D. Enhancing the Stability of Foam by the Use of Nanoparticles.
496 *Energy Fuels*, **2017**, 31 (10), 10620–10627. DOI: 10.1021/acs.energyfuels.7b01697.

497 52. Bjørnar, E. The Potential of Hydrophilic Silica Nanoparticles for EOR Purposes, *Petroleum Engineering and
498 Applied Geophysics*, NTNU, Trondheim, Master thesis **2012**, 1-111.