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Abstract

The entropic gravity conception proposes that what has been tra-
ditionally interpreted as unobserved dark matter might be merely the
product of quantum effects. These effects would produce a novel sort
of positive energy that translates into dark matter via £ = mc?. In
the case of axions, this perspective as been shown to yield quite sensi-
ble, encouraging results [DOI:10.13140/RG.2.2.17894.88641] . There,
a simple Schrédinger mechanism was utilized, in which his celebrated
equation is solved with a potential function based on the microscopic
Verlinde’s entropic force advanced in [Physica A 511 (2018) 139]. In
this effort we revisit such technique with regards to fermions’ behavior
(specifically, baryons).
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1 Introduction

1.1 Emergent entropy

In 2011 Verlinde [1] conceived the notion of of linking gravity to an entropic
force. This idea was later proved valid [2], in a classical setting.

In [1], gravity crops up as a result of information concerning material bodies’
positions, joining a thermal treatment of gravitation with 't Hooft’s holo-
graphic principle. In such terms, gravitation ought to be regarded as an
emergent phenomenon. These Verlinde’s ideas were given great attention.
For example, look at [3, 4]. An excellent review of the statistical mechanics
of gravity was given by Padmanabhan [5].

Verlinde’s conceptions motivated works on cosmology, the dark energy hy-
pothesis, cosmological acceleration, cosmological inflation, and loop quan-
tum gravity. The corresponding literature is very ample [4]. We like to cite
Guseo’s work [6], who showed that the local entropy function, linked to a
logistic distribution, turns up to be catenary and vice versa. This is an in-
variance that can be connected to the Verlindes conjecture mentioned above.
Guseo advances an original interpretation of the local entropy in a system
6].

1.2 Our goals in using Schrédinger’s equation (SE)

Verlinde depicts gravity as an emergent phenomenon that originates in the
quantum entanglement between small bits of space-time information [7].
Gravitation, viewed & la Verlinde as an emergent force, deviates at very
short distances from Newton’s form. The ensuing new gravitation-potential,
if introduced now into Schriodinger equation (SE), should yield quantified
states, and the associated energies would constitute a novel energy-source,
not contemplated till now, save for our precedent axion treatment of Ref. [§].
Here we will proceed on the basis of a previous analysis [9] that uses the
statistical treatment of quantum fermion gases. We effected in [9] the pro-
cess described above and found a fermion-fermion gravitation force therefrom
(here specifically, baryon-baryon). It turned out to be, as expected, propor-
tional to 1/7? for distances larger than one micron, but for smaller ones novel,
more involved contributions arose. Accordingly, the ensuing potential V' (r)
differed from the Newtonian one at short distances. We will now write down
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below the SE for such V(r) and solve it, expecting to find new unknown till
now quantum gravitational states for baryons.

1.3 Organizing our material

In Section 2 we review relevant details of [9]. We suitably approximate V(r)

3
so as to proceed in analytic fashion and set V(r) = Y Vi(r). Our central
i=1

discussion is given in Section 3. There one solves our ensuing Schrdinger’s
equation for the baryon-baryon, Verlinde-like gravitation potential in sepa-
rate fashion for each of its pieces. The piece V) becomes protagonist and
yields our most important new findings. In order to illustrate on our prob-
lem’s attack, we probe in Section 4 a perhaps daring conjecture concerning
dark matter. Rough numerical estimates can be obtained. We end with some
conclusions in Section 5.

2 Quantum gravitational potential Ep(r) to
be introduced in the SE

2.1 The gravitational potential function for N baryons
of mass m

It was first derived in [9], where the following constants were introduced:
e ¢ and b in the fashion
e a=(3N)2h3 and
o b= 327T(7T€mK)%, with a total baryons energy K
o K =10%¢? Joules [10].

One ascertains in [9] that % = 2GmM, and the potential energy Ep(r)
acquires the form
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a critical result for us.

2.2 A Taylor approximation (TA) for V (r)

One can not analytically tackle the SE with such an awful Ep. Thus, we are
forced to piece-wise approximate V(r) in four different regions: 0 < r < ry,
ro <r<ry,r,<r<ryandr > ry. r; will be made explicit below. rg is
conjectured by us as being 1070 centimeters, and ry = (a/b)3

V(r) = Vi(r) 4+ Va(r) + Va(r). + Vi(r) (2.2)

For convenience we define

b%77r
Vo= —GmM (2] T 2.3
— —Gm () - (2.3)

and call V; the TA, at zeroth order, for very small r. H stands for the
Heaviside function.

1
b\? 7w
Vi(r) = —-GmM (a) ﬁﬂ(ro —r)=VoH(rg —1) (2.4)
For large r the pertinent approximation has been obtained in [9]:
GmM
Vi(r) = — . [H(r —ry) — H(r — )] (2.5)

For intermediate r—values, o < 7 < r; (There is experimental evidence to
choose 7 = 25 micrometers [11]). We call W (r) the harmonic interpolating-
form between the two fixed distance values r; — rg. Thus,

Va(r) = W(r) (2.6)

For V,(r) we have
2GmM
Valr) = 3r

We exactly solve below the SE for these four potentials.

H(r —ry) (2.7)

5
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3 Exact solution of the SE

We deal with the (complete) SE and call m, the reduced mass. One faces

[(1+1) 2m,
2 p2

2m,

U”(T> + = h2

V(r)+

E] U(r) =0, (3.1)
and analytically solve it piece-wise.

3.1 V7’s exact treatment

Let ¢ be the confluent hyper-geometric function [12]. For V; one has, for
E >V and (a definition to be used below) s = 4/ WT:

(I+1)  2m,

(B - vo>] Ur(r) =0, (3.2

r
whose solution is (A and B are two arbitrary constants)

Un(r) = A(—=is) e ¢ (1 + 1,20 + 2; —is) — B(is) ™ e™¢ (14 1,21 + 2;is)

(3.3)
Thus, the radial solution Rj;(r) adopts the appearance
Ru(r) = A(—z’s)l+1€7¢ (L4 1,20+ 2; —is) — B(is)l“e?qﬁ (141,20 +2;is),
(3.4)

and, appealing to [12] and calling J to the Bessel function [12]

¢(l + 17 21 + 2’ —ZS) — 22l+167iﬂ'(l+%)1—‘ <l + 2) 3_(l+%)€*i%‘.7l+% (;) , (35)

so that

3\ 57 w
Rll(r) = 22l+1F <l + 2) T (B€32

3mil S

Lo3is2 7% 6—3i52> jl—i—% <2> (3.6)

Boundary conditions (BC). R; must satisfy R;(ro) = 0 and R;(ry) = 0.
The two BE become now

Jiv1 (820> =0, (3.7)
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entailing that so/2 must be a zero of the Bessel function. This zero is denoted

by Xin [12].
S0 = 2Xin (3.8)
Energy is duly quantified and reads
n’oxi
E, = =+ V 3.9
YT om, 12 +Vo (39)

This energy is something new in the baryonic stage, discovered right here.
We will particularly interested below in the ground state energy Fji—g n=1.

3.2 V5’s exact treatment
We have
(+1)  2m,

Ué/ (r> + = 7,2 h2

(B — W ()| Us(r) =0, (3.10)

Four operating BC are operative here: Ryy(ro) = 0, Ryy(ro) =0, Rip(r1) = 0,
and R,(r1) = 0, and we can only satisfy three of them. Accordingly, the only
solution is Ry (r) = 0.

3.3 14’s exact treatment

We face

U(r) + [—l(l; D, Q;ZZ’” (5+ G”ZM)] Us(r) = 0. (3.11)

It is of help here to remember that Whitaker’s function W solves the related
differential equation

TS W a—
w” ——+-+4 W =0. 3.12
+ ( 4 + z + 22 (3.12)
Choose F <0
Defining p =1 + %, A= G"LTM QTL;', it is clear that s = \/8%2“9‘7“ for solving

(3.11) one can write (A and B are arbitrary constants)

Us(r) = AWy u(s) — BW_ u(—s5), (3.13)

7
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where W), ,(2) is given by

WA,M(Z> =

(_1)2;{2#4%675 i r (k +pu— A+ %)
T(E=n=NT(G+u-2) lizm  HCutk)

[¢(k+1)+¢(2ﬂ+k+1)—1/1<,u+k‘—)\—|—;)—lnz}—k

2D (2 — k)T (k—p— A+ 3
SR CRNCTRL (k! oAt

k=0

—z)". (3.14)

Here 210+ 1 is a natural number. The last sum vanishes for 4 = 0. Accord-

ingly,
ng(T) = T_l[AW)“M(S) — BW,)\#(—S)]. (315)
The operating BC here are Rj3(r1) = Rj3(r1) = 0. They can be translated
into Wa(s1)
W, 2Py (—sp) = 0. 3.16
)\,,u(sl) + WA#(—Sl) —)\,,u( 81) ( )

Let 07, be the zeroes of such an equation. Then,
S1 = Opn, (3.17)

and the energy becomes quantized, as one should expect

n* oty
E,=— —. 3.18
b 8m, 12 (3.18)
Choose F >0
We have = l—l—%, A= —z'G’ZM, /5% s = S”ggE'r’. Now, the solution becomes
Us(r) = AWy . (—is) — BW_, ,(is), (3.19)
and then
Riz(r) = r AW, ,(—is) — BW_, .(is)]. (3.20)
The operating BC are, once again, R;3(r;) = R;3(r1) = 0, that translate into
/ . W)\ (_iS]_) ’ .
Wy (= —R W =0. 3.21
A,,u( ZSI) + W,\M(Z'Sl) _)\“u<’1,81) ( )

8
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Denote by ¢ ,, the zeroes of the above equation:
S1 =291 (3.22)
Energy becomes quantized again and the quantized eigenvalues become

2 2
h” S

E, = .
" 8m, i

(3.23)

In the two cases considered in the present Subsection, the separation between
quantum energy levels is of the order of 10717 Joules, entailing that one is
facing a continuum-energy, as should be expected.

3.4 V,’s exact treatment

We face
I(l+1) 2m 2GmM
" N T _
Uy (r) + l Tt (E +—3 ﬂ Us(r) = 0. (3.24)
We remember again that Whitaker’s function W solves the related differential
equation
TR W a—
w” —— 4+ -+ 4 W =0. 2
+< Vi ) 0 (3.25)
Choose F < 0
Defining p =1 + %, A= 2G§2M 2’&:', it is clear that s = 4/ S%JEW for solving
(3.11) one can write (A and B are arbitrary constants)
Uy(r) = AWy ,.(s) — BW_, .(—s), (3.26)
And therefore
Ru(r) = r AW, u(s) — BW_, .(—s)], (3.27)

Ry should verify Ry (ry) = Ris(ry) and Rj,(ry) = Rj5(rs)

Observe that the energy is not quantized in this case

Choose F >0
We have u = [ + %, A= —inggM,/% 5 = \/S’ZQET. Now, the solution
becomes
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Us(r) = AWy .(—is) — BW_y (i), (3.28)

and then
Ruy(r) = r AW, ,(—is) — BW_, .(is)]. (3.29)

The operating BC are, once again, Ry (rs) = Rj3(r2) and Ry, (rs) = Ry3(r2)
The energy is not quantized again.

4 Interesting numerical baryonic assessment

Refer now to Egs. (3.9) and (2.3), revisiting also the various definitions
made at the start of Subsection (2.1). A nucleon’s mass is ~ 1.6 x 10727
Kg, from which we get m, so as to obtain Eg; ~ 1072! Joule and realize
that Vo << FEp;. Since mc? = 1.44 x 1071° Joule, we have Fyoy << mc?.
For axions the last inequality is just the opposite one (see [8]). For them
Epq >> mc?.

Now we can assess the total number N of baryons in the Universe as N =
K/mc?*, with [10] K = 10° x ¢* Joule. The result is N ~ 6.25 x 10™.

FEo1 ~ 1072', and assuming that the major contribution of the baryonic-
pairs of gravitationally interacting baryions comes from their ground state,
we can estimate that their contribution to dark matter is Fg ~ 2 x 1077
eV, very small in comparison to the estimated value for dark matter of
K = 2.86 ~ 10% eV [8]. In this last reference, though, it it see that the
gravitationinteration between axions does significantly controbute to the ex-
tant amount of dark matter.

5 Discussion

We have here solved, for fermions, Schrodinger’s equation (SE) for gravity.
The logic on which this paper was written can be summarized as follows.

e We begun by adopting Verlinde’s stance that gravity emerges from an
entropy S (entropic force).

e In [9], for a gas of free fermions, we obtained 1) S, 2) Verlinde’s entropic
force F,, and from it 3) gravity’s potential V(7). We also encountered

10
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in [9] that V(r) differs from the Newton’s form at extremely short and
extremely large distances..

The above potential V' (r) was approximated in suitable manner so as to be in
a position to obtain analytical solutions to the pertinent SE for the potential
V(r).

The novel results of our treatment emerge at short distances (the V; com-
ponent of V(r)). The ensuing low-lying SE-quantum states yield energy-
eigenvalues (most importantly, the ground state Ej 1, not accounted for be-
fore. They produce, via Einstein’s relation energy= mc?, some quantity of
matter, that we might identify as dark one. This Schrodinger-baryonic dark
mass is insignificant, though. Baryons do not contribute to dark matter in
this gravity fashion, which constitute an important result, we believe, since
bosons do contribute [§]

6 Authors’ contributions

Both authors worked on an equal footing in conceptualization and research.
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