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Abstract

The entropic gravity conception proposes that what has been tra-
ditionally interpreted as unobserved dark matter might be merely the
product of quantum effects. These effects would produce a novel sort
of positive energy that translates into dark matter via E = mc2. In
the case of axions, this perspective as been shown to yield quite sensi-
ble, encouraging results [DOI:10.13140/RG.2.2.17894.88641] . There,
a simple Schrödinger mechanism was utilized, in which his celebrated
equation is solved with a potential function based on the microscopic
Verlinde’s entropic force advanced in [Physica A 511 (2018) 139]. In
this effort we revisit such technique with regards to fermions’ behavior
(specifically, baryons).
KEYWORDS: Fermions, baryons, Emergent entropic force, Schrödringer
equation, Gravitation.
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1 Introduction

1.1 Emergent entropy

In 2011 Verlinde [1] conceived the notion of of linking gravity to an entropic
force. This idea was later proved valid [2], in a classical setting.

In [1], gravity crops up as a result of information concerning material bodies’
positions, joining a thermal treatment of gravitation with ’t Hooft’s holo-
graphic principle. In such terms, gravitation ought to be regarded as an
emergent phenomenon. These Verlinde’s ideas were given great attention.
For example, look at [3, 4]. An excellent review of the statistical mechanics
of gravity was given by Padmanabhan [5].

Verlinde’s conceptions motivated works on cosmology, the dark energy hy-
pothesis, cosmological acceleration, cosmological inflation, and loop quan-
tum gravity. The corresponding literature is very ample [4]. We like to cite
Guseo’s work [6], who showed that the local entropy function, linked to a
logistic distribution, turns up to be catenary and vice versa. This is an in-
variance that can be connected to the Verlindes conjecture mentioned above.
Guseo advances an original interpretation of the local entropy in a system
[6].

1.2 Our goals in using Schrödinger’s equation (SE)

Verlinde depicts gravity as an emergent phenomenon that originates in the
quantum entanglement between small bits of space-time information [7].
Gravitation, viewed á la Verlinde as an emergent force, deviates at very
short distances from Newton’s form. The ensuing new gravitation-potential,
if introduced now into Schrödinger equation (SE), should yield quantified
states, and the associated energies would constitute a novel energy-source,
not contemplated till now, save for our precedent axion treatment of Ref. [8].
Here we will proceed on the basis of a previous analysis [9] that uses the
statistical treatment of quantum fermion gases. We effected in [9] the pro-
cess described above and found a fermion-fermion gravitation force therefrom
(here specifically, baryon-baryon). It turned out to be, as expected, propor-
tional to 1/r2 for distances larger than one micron, but for smaller ones novel,
more involved contributions arose. Accordingly, the ensuing potential V (r)
differed from the Newtonian one at short distances. We will now write down
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below the SE for such V (r) and solve it, expecting to find new unknown till
now quantum gravitational states for baryons.

1.3 Organizing our material

In Section 2 we review relevant details of [9]. We suitably approximate V (r)

so as to proceed in analytic fashion and set V (r) =
3∑
i=1

Vi(r). Our central

discussion is given in Section 3. There one solves our ensuing Schrd̈inger’s
equation for the baryon-baryon, Verlinde-like gravitation potential in sepa-
rate fashion for each of its pieces. The piece V1 becomes protagonist and
yields our most important new findings. In order to illustrate on our prob-
lem’s attack, we probe in Section 4 a perhaps daring conjecture concerning
dark matter. Rough numerical estimates can be obtained. We end with some
conclusions in Section 5.

2 Quantum gravitational potential EP (r) to

be introduced in the SE

2.1 The gravitational potential function for N baryons
of mass m

It was first derived in [9], where the following constants were introduced:

• a and b in the fashion

• a = (3N)
5
2h3 and

• b = 32π(πemK)
3
2 , with a total baryons energy K

• K = 1053c2 Joules [10].

One ascertains in [9] that λ3NkB
8π

= 2
3
GmM, and the potential energy EP (r)

acquires the form

EP (r) = −GmM 2b
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a critical result for us.

2.2 A Taylor approximation (TA) for V (r)

One can not analytically tackle the SE with such an awful EP . Thus, we are
forced to piece-wise approximate V (r) in four different regions: 0 < r < r0,
r0 < r < r1, r1 < r < r2 and r > r2. r1 will be made explicit below. r0 is
conjectured by us as being 10−10 centimeters, and r2 = (a/b)

1
3

V (r) ≈ V1(r) + V2(r) + V3(r).+ V4(r) (2.2)

For convenience we define

V0 = −GmM
(
b

a

) 1
3 7π

6
√

3
, (2.3)

and call V1 the TA, at zeroth order, for very small r. H stands for the
Heaviside function.

V1(r) = −GmM
(
b

a

) 1
3 7π

6
√

3
H(r0 − r) = V0H(r0 − r) (2.4)

For large r the pertinent approximation has been obtained in [9]:

V3(r) = −GmM
r

[H(r − r1)−H(r − r2)] (2.5)

For intermediate r−values, r0 < r < r1 (There is experimental evidence to
choose r1 = 25 micrometers [11]). We call W (r) the harmonic interpolating-
form between the two fixed distance values r1 − r0. Thus,

V2(r) = W (r) (2.6)

For V4(r) we have

V4(r) =
2GmM

3r
H(r − r2) (2.7)

We exactly solve below the SE for these four potentials.
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3 Exact solution of the SE

We deal with the (complete) SE and call mr the reduced mass. One faces

U ′′(r) +

[
− l(l + 1)

r2
− 2mr

h̄2 V (r) +
2mr

h̄2 E

]
U(r) = 0, (3.1)

and analytically solve it piece-wise.

3.1 V1’s exact treatment

Let φ be the confluent hyper-geometric function [12]. For V1 one has, for

E > V0 and (a definition to be used below) s =
√

8mr(E−V0)

h̄2
r:

U ′′1 (r) +

[
− l(l + 1)

r2
+

2mr

h̄2 (E − V0)

]
U1(r) = 0, (3.2)

whose solution is (A and B are two arbitrary constants)

Ul1(r) = A(−is)l+1e−isφ (l + 1, 2l + 2;−is)−B(is)l+1eisφ (l + 1, 2l + 2; is)
(3.3)

Thus, the radial solution Rl1(r) adopts the appearance

Rl1(r) = A(−is)l+1 e
−is

r
φ (l + 1, 2l + 2;−is)−B(is)l+1 e

is

r
φ (l + 1, 2l + 2; is) ,

(3.4)
and, appealing to [12] and calling J to the Bessel function [12]
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2

)Γ
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3

2
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2)e−i
s
2Jl+ 1

2

(
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2

)
, (3.5)

so that

Rl1(r) = 22l+1Γ
(
l +

3

2

)
s−

1
2]

r

(
Be

3πil
2 e3is2 − Ae−

3πil
2 e−3is2

)
Jl+ 1

2

(
s

2

)
. (3.6)

Boundary conditions (BC). Rl must satisfy Rl(r0) = 0 and R
′
l(r0) = 0.

The two BE become now

Jl+ 1
2

(
s0

2

)
= 0, (3.7)
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entailing that s0/2 must be a zero of the Bessel function. This zero is denoted
by χl,n [12].

s0 = 2χl,n (3.8)

Energy is duly quantified and reads

El,n =
h̄2

2mr

χ2
l,n

r2
0

+ V0 (3.9)

This energy is something new in the baryonic stage, discovered right here.
We will particularly interested below in the ground state energy El=0, n=1.

3.2 V2’s exact treatment

We have

U ′′2 (r) +

[
− l(l + 1)

r2
+

2mr

h̄2 [E −W (r)]

]
U2(r) = 0, (3.10)

Four operating BC are operative here: Rl2(r0) = 0, R
′
l2(r0) = 0, Rl2(r1) = 0,

and R
′
l2(r1) = 0, and we can only satisfy three of them. Accordingly, the only

solution is Rl2(r) = 0.

3.3 V3’s exact treatment

We face

U ′′3 (r) +

[
− l(l + 1)

r2
+

2mr

h̄2

(
E +

GmM

r

)]
U3(r) = 0. (3.11)

It is of help here to remember that Whitaker’s function W solves the related
differential equation

W ′′ +

(
−1

4
+
λ

z
+

1
4
− µ2

z2

)
W = 0. (3.12)

Choose E < 0

Defining µ = l + 1
2
, λ = GmM

h̄

√
mr
2|E| , it is clear that s =

√
8mr|E|
h̄2

r for solving

(3.11) one can write (A and B are arbitrary constants)

U3(r) = AWλ,µ(s)−BW−λ,µ(−s), (3.13)
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where Wλ,µ(z) is given by

Wλ,µ(z) =
(−1)2µzµ+ 1

2 e−
z
2

Γ
(

1
2
− µ− λ

)
Γ
(

1
2

+ µ− λ
)

∞∑
k=0

Γ
(
k + µ− λ+ 1

2

)
k!(2µ+ k)!

⊗

[
ψ(k + 1) + ψ(2µ+ k + 1)− ψ

(
µ+ k − λ+

1

2

)
− ln z

]
+

(−z)−2µ
2µ−1∑
k=0

Γ (2µ− k) Γ
(
k − µ− λ+ 1

2

)
k!

(−z)k. (3.14)

Here 2µ + 1 is a natural number. The last sum vanishes for µ = 0. Accord-
ingly,

Rl3(r) = r−1[AWλ,µ(s)−BW−λ,µ(−s)]. (3.15)

The operating BC here are Rl3(r1) = R
′
l3(r1) = 0. They can be translated

into

W
′

λ,µ(s1) +
Wλ,µ(s1)

Wλ,µ(−s1)
W

′

−λ,µ(−s1) = 0. (3.16)

Let σl,n be the zeroes of such an equation. Then,

s1 = σl,n, (3.17)

and the energy becomes quantized, as one should expect

El,n = − h̄2

8mr

σ2
l,n

r2
1

. (3.18)

Choose E > 0

We have µ = l+ 1
2
, λ = −iGmM

h̄

√
mr
2E

s =
√

8mrE
h̄2

r. Now, the solution becomes

U3(r) = AWλ,µ(−is)−BW−λ,µ(is), (3.19)

and then
Rl3(r) = r−1[AWλ,µ(−is)−BW−λ,µ(is)]. (3.20)

The operating BC are, once again, Rl3(r1) = R
′
l3(r1) = 0, that translate into

W
′

λ,µ(−is1) +
Wλ,µ(−is1)

Wλ,µ(is1)
W

′

−λ,µ(is1) = 0. (3.21)
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Denote by ςl,n the zeroes of the above equation:

s1 = ςl,1. (3.22)

Energy becomes quantized again and the quantized eigenvalues become

El,n =
h̄2

8mr

ς2
l,n

r2
1

. (3.23)

In the two cases considered in the present Subsection, the separation between
quantum energy levels is of the order of 10−17 Joules, entailing that one is
facing a continuum-energy, as should be expected.

3.4 V4’s exact treatment

We face

U ′′4 (r) +

[
− l(l + 1)

r2
+

2mr

h̄2

(
E +

2GmM

3r

)]
U4(r) = 0. (3.24)

We remember again that Whitaker’s functionW solves the related differential
equation

W ′′ +

(
−1

4
+
λ

z
+

1
4
− µ2

z2

)
W = 0. (3.25)

Choose E < 0

Defining µ = l + 1
2
, λ = 2GmM

3h̄

√
mr
2|E| , it is clear that s =

√
8mr|E|
h̄2

r for solving

(3.11) one can write (A and B are arbitrary constants)

U4(r) = AWλ,µ(s)−BW−λ,µ(−s), (3.26)

And therefore
Rl4(r) = r−1[AWλ,µ(s)−BW−λ,µ(−s)], (3.27)

Rl4 should verify Rl4(r2) = Rl3(r2) and R
′
l4(r2) = R

′
l3(r2)

Observe that the energy is not quantized in this case

Choose E > 0

We have µ = l + 1
2
, λ = −i2GmM

3h̄

√
mr
2E

s =
√

8mrE
h̄2

r. Now, the solution

becomes
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U4(r) = AWλ,µ(−is)−BW−λ,µ(is), (3.28)

and then
Rl4(r) = r−1[AWλ,µ(−is)−BW−λ,µ(is)]. (3.29)

The operating BC are, once again, Rl4(r2) = Rl3(r2) and R
′
l4(r2) = R

′
l3(r2)

The energy is not quantized again.

4 Interesting numerical baryonic assessment

Refer now to Eqs. (3.9) and (2.3), revisiting also the various definitions
made at the start of Subsection (2.1). A nucleon’s mass is ∼ 1.6 × 10−27

Kg, from which we get mr so as to obtain E0,1 ∼ 10−21 Joule and realize
that V0 << E0,1. Since mc2 = 1.44 × 10−10 Joule, we have E0,0 << mc2.
For axions the last inequality is just the opposite one (see [8]). For them
E0,1 >> mc2.

Now we can assess the total number N of baryons in the Universe as N =
K/mc2, with [10] K = 1053 × c2 Joule. The result is N ∼ 6.25× 1079.
E0,1 ∼ 10−21, and assuming that the major contribution of the baryonic-
pairs of gravitationally interacting baryions comes from their ground state,
we can estimate that their contribution to dark matter is EB ∼ 2 × 1077

eV, very small in comparison to the estimated value for dark matter of
K = 2.86 ∼ 1084 eV [8]. In this last reference, though, it it see that the
gravitationinteration between axions does significantly controbute to the ex-
tant amount of dark matter.

5 Discussion

We have here solved, for fermions, Schrödinger’s equation (SE) for gravity.
The logic on which this paper was written can be summarized as follows.

• We begun by adopting Verlinde’s stance that gravity emerges from an
entropy S (entropic force).

• In [9], for a gas of free fermions, we obtained 1) S, 2) Verlinde’s entropic
force Fe, and from it 3) gravity’s potential V (r). We also encountered
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in [9] that V (r) differs from the Newton’s form at extremely short and
extremely large distances..

The above potential V (r) was approximated in suitable manner so as to be in
a position to obtain analytical solutions to the pertinent SE for the potential
V (r).

The novel results of our treatment emerge at short distances (the V1 com-
ponent of V (r)). The ensuing low-lying SE-quantum states yield energy-
eigenvalues (most importantly, the ground state E0,1, not accounted for be-
fore. They produce, via Einstein’s relation energy= mc2, some quantity of
matter, that we might identify as dark one. This Schrödinger-baryonic dark
mass is insignificant, though. Baryons do not contribute to dark matter in
this gravity fashion, which constitute an important result, we believe, since
bosons do contribute [8]

6 Authors’ contributions

Both authors worked on an equal footing in conceptualization and research.
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