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Abstract: The main ideas of F-transform came from representing expert rules. It would be1

therefore re reasonable to expect that the more accurately the membership functions describe human2

reasoning, the more efficient will be the corresponding F-transform formulas. We know that an3

adequate description of our reasoning corresponds to complicated membership functions – however,4

somewhat surprisingly, most efficient applications of F-transform use the simplest possible triangular5

membership functions. There exist some explanations for this phenomenon which are based on local6

behavior of the signal. In this paper, we supplement this local explanation by a global one: namely,7

we prove that triangular membership functions are the only one that provide the accurate description8

of appropriate global characteristics of the signal.9

Keywords: F-transform; triangular membership function; optimal global characteristics10

1. Formulation of the Problem11

F-transforms: a brief reminder. In many application areas, it turned to be very efficient to transform
the original signal x(t) into the values proportional to

xi =
∫

A
(

t− ti
h

)
· x(t) dt,

where ti = t0 + i · h for appropriate t0 and h > 0, and A(t) is a non-negative function:12

• which is equal to 0 outside the interval [−1, 1],13

• which, starting at t = −1, increases to 1 until it reaches t = 0,14

• which then decreases to 0, and15

• for which

∑
i

A
(

t− ti
h

)
= 1

for all t; this last property is known as the fuzzy partition property.16

This transformation is known as F-transform; see, e.g., [8,9,11–14].17

This transform comes from the general fuzzy approach (see, e.g., [2,3,5,7,10,15]), namely, from18

the idea of describing imprecise (fuzzy) expert knowledge, of the type “if t is close to ti, then x(t) is19

close to x(ti)". From this viewpoint, the function A(t) is a membership function that corresponds to20

the word “close”.21

A somewhat unexpected empirical fact. Intuitively, one would expect that the closer the function22

A(t) to how we actually think, the more efficient would be the results. Empirical studies show that23
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rather complex membership functions are needed to represent our reasoning; see, e.g., [10]. However,24

surprisingly, in many of these applications, very efficient results are obtained when we use a very25

simple triangular membership function A(t) = 1− |t|. Why?26

One possible “local” explanation – based on uncertainty – was proposed in [4]; however, not27

everyone was convinced, so this empirical fact still remains somewhat a mystery.28

What we do in this paper. In this paper, we propose an alternative “global” explanation for this29

efficiency, an explanation based on the need to correctly reconstruct global characteristics of the signal.30

2. Local Vs. Global Characteristics: Main Idea31

What we mean by local and global characteristics. No measuring instrument can provide an32

instantaneous value of a physical quantity. No matter at what time t we perform our measurement,33

the measurement result depends not only on the value of the signal x(t) at this moment of time, but34

also on the values x(s) at nearby moments of time.35

In some cases, we are interested in the local behavior of the signal. In this case, we try to measure36

values which are as close to x(t) as possible. F-transform values are an example of such a local analysis.37

In other cases, we are interested in the global trend. In such cases, instead of concentrating on a38

short-term time interval, we deliberately measure the signal over a long period of time.39

Resulting idea. To most adequately reconstruct the signal, we should be able to adequately reproduce40

both its local and its global characteristics. By definition, F-transform adequately represents the local41

characteristics, no matter what membership function A(t) we select. So, it is reasonable to select a42

membership function which most adequately represents global characteristics.43

Let us describe this idea in precise terms.44

3. Which Global Characteristics Should We Represent: Discussion45

Need for linearization. Signals are usually weak. Thus, for any quantity q that depends on this signal46

x(t) – be it local or global – we should be able to ignore terms which are quadratic or higher order in47

terms of x(t) and thus retains only the linear terms in the corresponding dependence. As a result, we48

should only consider linear quantities, i.e., quantities of the type q =
∫

q(t) · x(t) dt.49

Which linear quantities should we select? Of course, when we perform F-transform, we lose some50

information about the signal. Indeed, on each time interval, we replace infinitely many values x(t)51

corresponding to infinitely many moments of time t from this interval, with finite many values of the52

corresponding F-transform. Thus, we cannot perfectly reconstruct all possible global characteristics q –53

since from the values of all these characteristics, e.g., of the integrals
∫ t
−∞ x(s) ds – we would be able to54

uniquely reconstruct all the values x(t).55

Thus, we need to select the most appropriate global characteristics.56

How to define what is most appropriate? In different situations, different global characteristics may57

be more appropriate. In this paper, instead of trying to list specific notions of appropriateness, we will58

consider all possible criteria of this type.59

Interestingly, it turns out that all reasonable criteria of this type lead, in effect, to the same family60

of optimal global characteristics – and the only way to reconstruct these characteristics exactly is to use61

triangular membership functions.62

Let us describe all this in precise terms.63

4. Towards Precise Formulation of the Problem64

Towards describing what is more appropriate and what is less appropriate. As we have mentioned,65

all global characteristics have the form q =
∫

q(t) · x(t) dt. Thus, selecting a characteristic is equivalent66

to selecting the corresponding function q(t).67
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This function q(t) may be discontinuous, as in the above example of a characteristic
∫ t
−∞ x(s) ds.68

However, at least it should be measurable (non-measurable functions cannot be defined without using69

the Axiom of Choice, which means that they are not definable).70

Of course, if we can reconstruct the value
∫

q(t) · x(t) dt, then, for every real value c, we can also
reconstruct the related value

∫
(c · q(t)) · x(t) dt, since this related value is simply equal to

c ·
∫

q(t) · x(t) dt.

Thus, strictly speaking, a characteristics is represented not by a single function, but by the entire family71

{c · q(t)}c 6=0 of the related functions. So, we arrive at the following definition.72

Definition 1. By a characteristic or, alternatively, a family, we mean a family of the type {c · q(t)}c 6=0, where73

q(t) is a given measurable function, and c runs over all possible non-zero real numbers.74

Discussion. What do we mean when we say that some characteristic (family) are more appropriate75

and some are less appropriate? We mean that we have some criterion according to which, for every76

two families F and G, we can say one of the three things:77

• we can say that F is more appropriate than G; we will denote this by G ≺ F;78

• we can say that G is more appropriate than F; we will denote this by F ≺ G;79

• or we can say that the two characteristics are equally appropriateness; we will denote this by

F ∼ G.

No matter what is the criterion, we have these relations. Thus, we can simply make these relations the80

definition of a criterion.81

Of course, we need to make sure that these relations are consistent: e.g., if F is better than G and82

G is better than H, then F should be better than H. Thus, we arrive at the following definition.83

Definition 2. By a criterion for selecting a characteristic, we means a pair of relations 〈≺,∼〉 that satisfies the84

following properties:85

• for every two characteristics F and G, we have one of only one of three options:

F ≺ G, G ≺ F, and F ∼ G;

• if F ≺ G and G ≺ H, then F ≺ H;86

• if F ≺ G and G ∼ H, then F ≺ H;87

• if F ∼ G and G ≺ H, then F ≺ H;88

• if F ∼ G and G ∼ H, then F ∼ H;89

• F ∼ F, and90

• if F ∼ G, then G ∼ F.91

Discussion. The whole purpose of selecting a criterion is to use this criterion for selecting the best92

(most adequate) characteristic, i.e., a characteristic which is better – according to this criterion – than93

any other characteristic.94

So, if there is no such optimal characteristics, the corresponding criterion is useless. But what if95

there are several characteristics which are all the most appropriate according to the given criterion?96

In this cases, we can use this non-uniqueness to optimize something else. For example, if several97

characteristics are equally good in terms of accuracy with which we can predict the future behavior98

of the signal, then we can select among them the characteristic which is the easiest to compute. As a99

result, we get, in effect, a new criterion, according to which F is better than G if:100

• either F better than G according to the original criterion,101
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• or F equivalent to G in terms of the original criterion but better according to the additional102

criterion.103

If for the new criterion, we still have several different optimal characteristics, we can then optimize104

something else, etc., until we reach a final criterion for which there is exactly one optimal characteristic.105

Definition 3.106

• We say that a characteristic F is optimal with respect to the criterion 〈≺,∼〉 if for every characteristic G,107

we have G ≺ F or G ∼ F.108

• We say that the criterion is final if there exists exactly one characteristic which is optimal with respect to109

this criterion.110

Need for scale-invariance. A signal x(t) describes how the value of a physical quantity x depends on111

time. We may have a starting point for the corresponding process, which provides a natural starting112

point for measuring time, but in general, the numerical value of time depends on what unit we use for113

measuring time. We can use seconds or minutes or hours – the time interval will be the same but the114

numerical values will change.115

When we replace the original unit for measuring time with a new unit which is λ times smaller,116

then all numerical values of time are re-scaled, i.e., multiplied by λ. For example, if we go from117

seconds to milliseconds, all numerical values are multiplies by 1000. The function q(t) in the new unit118

becomes q(λ · t).119

It is reasonable to require that the relative quality of different characteristics should not change if120

we simply change the unit used for measuring time, without changing anything of substance. In other121

words, it is reasonable to require that the criterion be “scale-invariant”. Here is a precise definition.122

Definition 4. We say that a criterion 〈≺,∼〉 is scale-invariant if for every two functions q(t) and r(t) and for123

every λ > 0, the following two conditions hold:124

• if {c · q(t)}c ≺ {c · r(t)}c, then {c · q(λ · t)}c ≺ {c · r(λ · t)}c;125

• if {c · q(t)}c ∼ {c · r(t)}c, then {c · q(λ · t)}c ∼ {c · r(λ · t)}c.126

Discussion. We want to find all membership functions that allow us to reconstruct the most adequate127

global characteristics. To find these functions, we will first describe which characteristics are the most128

adequate. Then, we will analyze which membership functions allow us to reconstruct the values of129

these characteristics from the results of the F-transform.130

5. Which Characteristics Are the Most Adequate: Preliminary Result131

Discussion. In the previous section, we argued that the most adequate global characteristic must be132

optimal with respect to some final scale-invariant criterion. Let us describe all such characteristics.133

Proposition 1. For every final scale-invariant criterion, each optimal characteristic has the form {c · xβ}c, for134

some real value β.135

Proof. Let us denote the scaling transformation that transforms a family F = {c · q(t)}c into a re-scaled136

family {c · q(λ · t)}c by Tλ. In terms of this notation, scale-invariance means that:137

• if F ≺ G, then Tλ(F) ≺ Tλ(G); and138

• if F ∼ G, then Tλ(F) ∼ Tλ(G).139

Let 〈≺,∼〉 be the final scale-invariant criterion. Since this criterion is final, there exists exactly one140

optimal characteristic Fopt. Let us prove that this characteristic is scale-invariant, i.e., that Tλ(Fopt) =141

Fopt for all λ > 0. (This proof is similar to the one given in [6].)142

Indeed, since Fopt is optimal, it is better than or equivalent to any other characteristic. In particular,
for every G, the characteristic Fopt is better than or equivalent to T1/λ(G):

T1/λ(G) ≺ Fopt or T1/λ(G) ∼ Fopt.
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By applying scale-invariance, we conclude that Tλ(T1/λ(G)) ≺ Tλ(Fopt) or Tλ(T1/λ(G)) ∼ Tλ(Fopt).143

However, one can easily check that Tλ(T1/λ(G)) = G.144

Thus, for every characteristic G, we have either G ≺ Tλ(Fopt) or G ∼ Tλ(Fopt). By definition145

of an optimal characteristic, this means that the characteristic Tλ(Fopt) is optimal. However, for the146

final criterion, there is only one optimal characteristic, so we conclude that Tλ(Fopt) = Fopt. Thus, the147

optimal characteristic is indeed scale-invariant.148

By definition, each characteristic has the form {c · q(t)}c. Let us denote the function q(t)149

corresponding to the optimal characteristic by qopt(t). The fact that the optimal family is scale-invariant150

means, in particular, that for every λ > 0, the function qopt(λ · t) – which belongs to the re-scaled151

family Tλ(Fopt) – also belongs to the original family, i.e., has the form c(λ) · qopt(t) for some value c(λ):152

qopt(λ · t) = c(λ) · qopt(t). It is known that the only measurable functions satisfying this functional153

equation are functions of the type C · tβ; see, e.g., [1]. The proposition is proven.154

Discussion. Let us now find out which membership functions can allow us to reconstruct these most155

adequate characteristics.156

6. Which Membership Functions Enable Us to Reconstruct the Most Adequate Global157

Characteristics158

Definition 5. We say that for a membership function A(t), it is possible to always reconstruct a global
characteristic

∫
q(t) · x(t) dt if for every t0 and h, the value of this characteristic can be uniquely determined

once we know all the values

xi =
∫

A
(

t− ti
h

)
· x(t) dt.

159

Case of β = 0. A particular case of the most adequate global characteristic is the case β = 0, when
q(t) = const and the corresponding global characteristic is simply the integral

∫
x(t) dt = 1. This

characteristic can always be reconstructed from the F-transform, since we require that ∑
i

A
(

t− ti
h

)
= 1

for all t and thus, ∫
x(t) dt = ∑

i

∫
A
(

t− ti
h

)
· x(t) dt = ∑

i
xi.

160

General case. Thus, we should worry only about the case when β 6= 0. In this case, we have the161

following result.162

Proposition 2. The only membership function A(t) for which it is possible to always reconstruct a most163

adequate global characteristic with β 6= 0 is the triangular membership function – it can reconstruct the164

characteristic
∫

t · x(t) dt corresponding to β = 1.165

Comment. This result provides the desired global explanation of why triangular membership functions166

are so efficient in F-transform applications.167

Proof. Let us assume that for some β 6= 0, the membership function A(t) enables us to always uniquely
reconstruct the corresponding characteristic∫

tβ · x(t) dt.

Let us first consider the case when t0 = 0, h = 1, and the signal x(t) is equal to 0 everywhere168

except for the interval [0, 1]. Then, only two F-transform values are different from 0:169

• the value x0 =
∫ 1

0 A(t) · x(t) dt, and170

• the value x1 =
∫ 1

0 A(t− 1) · x(t) dt.171
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The fuzzy partition requirement implies that A(t) + A(t− 1) = 1, so

A(t− 1) = 1− A(t).

The only way to be able to always reconstruct the value
∫ 1

0 tβ · x(t) dt from these two values, no172

matter how the signal x(t) behaves on the interval [0, 1], is to have tβ equal to a linear combination of173

A(t) and A(t− 1) = 1− A(t). Thus, the function tβ is a linear combination of A(t) and 1, and hence,174

A(t) is a linear combination of tβ and 1, i.e., A(t) = a + b · tβ.175

For t = 1, we must have A(t) = 0, so a + b = 0 and thus, A(t) = a · (1− tβ). For t = 0, we must176

have A(0) = 1, so we have a = 1 and A(t) = 1− tβ for t ∈ [0, 1]. Correspondingly, for s ∈ [−1, 0], due177

to A(t− 1) = 1− A(t), we have A(s) = 1− A(s + 1) = (s + 1)β.178

Let us now consider a signal which is different from 0 only on the interval [1, 2]. For this signal, the179

desired global characteristic has the form
∫ 2

1 tβ · x(t) dt, and the only non-zero values of F-transform are180

x1 =
∫ 2

1 (1− (t− 1)β) · x(t) dt and x2 =
∫ 2

1 (t− 1)β · x(t) dt. Thus, the only way to exactly reconstruct181

the global characteristic is to have tβ to be a linear combination of 1− (t− 1)β and (t− 1)β, i.e., as a182

linear combination of (t− 1)β and 1: tβ = a · (t− 1)β + b.183

Let us show that β = 1. For this, we need to show that cases when β > 1 and β < 1 are impossible.184

Indeed, differentiating both sides by t, we get β · tβ−1 = a · β · (t− 1)β−1. If β > 1, then for t = 1,185

we get β = 0, which contradicts the assumption that β > 1. If β < 1, then for t = 1, we get β = ∞ –186

also a contradiction.187

Thus, β = 1, so A(t) = 1− |t|, i.e., we indeed have a triangular membership function. The188

proposition is proven.189

Comment. Once we have a triangular membership function, it is easy to combine the F-transform190

values to get an integral of a linear function. For simplicity, assume that we start with the signal which191

is 0 for t < 0, and that h = 1. Then, the values x(t) corresponding to t ∈ [0, 1], affect the value x0,192

with the weight 1− t, and the value x1, with weight t. If we take the difference x1 − x0, this difference193

corresponds to the weight 2t− 1 on [0, 1] (and the weight 2− x for x ∈ [1, 2]).194

We can normalize the difference x1 − x0 to get the coefficient at t on [0, 1] to be equal to 1. For the195

resulting normalized linear combination
1
2
· (x1 − x0), on [0, 1], we have the weight t− 1

2
, and on [1, 2],196

the weight 1− t
2

.197

On the interval [1, 2], the next F-transform value x2 corresponds to the coefficient t− 1 (and 0198

before that). Thus, by adding x2 with the appropriate coefficient, we can make sure that the linear199

combination continues to have t with coefficient 1 on the interval [1, 2] as well. For that, we need to200

add x2 with coefficient
3
2

. Then the resulting linear combination
1
2
· (x1 − x0) +

3
2
· x2 is equal to t− 1

2
201

on the whole interval [0, 2].202

On [2, 3], this combination is equal to
3
2
· (3− t). So, to make sure that we get a linear combination

which is equal to t− 1
2

on the interval [2, 3] as well, we need to add x3 with coefficient
5
2

, etc. At the
end, when we reach the end of the time interval on which the signal is defined, the corresponding
linear combination gives us the integral

∫ (
t− 1

2

)
· x(t) dt =

∫
t · x(t) dt− 1

2
·
∫

x(t) dt.

Since, as we have mentioned, we can easily determine the integral
∫

x(t) dt by adding all the values of203

the F-transform, we can thus indeed determine the value of the desired global characteristic
∫

t · x(t) dt.204
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