

1 Article

2 Trends and correlates of excessive body weight in

3 Czech adolescents in relation to family

4 socioeconomic status over a 16-year study period

5 (2002-2018)

6 Erik Sigmund ^{1,*}, Petr Badura ^{1,2}, Dagmar Sigmundová ¹, Jaroslava Voráčová ³, Vladimír Jr Hobza ²,
 7 Jiří Zácpal ⁴, Zdenek Hamrik ², Jan Pavelka ², Zuzana Půžová ², and Michal Kalman ^{2,*}

8 ¹ Faculty of Physical Culture, Institute of Active Lifestyle, Faculty of Physical Culture, Palacky University
 9 Olomouc, 771 11 Olomouc, Czech Republic; erik.sigmund@upol.cz (E.S.); dagmar.sigmundova@upol.cz
 10 (D.S.)

11 ² Faculty of Physical Culture, Department of Recreation and Leisure Studies, Palacky University Olomouc,
 12 771 11 Olomouc, Czech Republic; petr.badura@upol.cz (P.B.); v.hobza@upol.cz (V.Jr.H.);
 13 zdenek.hamrik@upol.cz (Z.H.); jan.pavelka@upol.cz (J.P.); zuzana.puzova@upol.cz (Z.P.);
 14 michal.kalman@upol.cz (M.K.)

15 ³ Faculty of Physical Culture, Department of Social Sciences in Kinanthropology, Palacky University
 16 Olomouc, 771 11 Olomouc, Czech Republic; jaroslava.voracova@upol.cz (J.V.)

17 ⁴ Department of Computer Science, Faculty of Science, Palacky University Olomouc, 771 46 Olomouc, Czech
 18 Republic; jiri.zacpal@upol.cz (J.Z.)

19 * Correspondence: erik.sigmund@upol.cz; Tel.: +420-585-636-746 (E.S.)

20

21 **Abstract:** The main objective of the study is to analyse time trends in excessive body weight (obesity,
 22 overweight) of Czech adolescents between 2002 and 2018 with regard to the socioeconomic status
 23 (SES) of adolescents' families and to find SES-mediated correlates of adolescents' obesity. A
 24 nationally representative sample of 29,879 adolescents (49.6% of them boys) aged 10.5-16.5 years
 25 was drawn from the Health Behaviour in School-aged Children cross-sectional, self-reported
 26 questionnaire surveys conducted in 2002, 2006, 2010, 2014, and 2018 in the Czech Republic. Across
 27 the quadrennial surveys from 2002 to 2018, we observed a clear increase in the prevalence of
 28 excessive body weight (overweight/obesity) in all SES categories of adolescents, which was most
 29 striking ($p<0.05$) in adolescents with low SES (boys: +5.2/+7.5 percent points (p.p.); girls +6.3/+2.4
 30 p.p.). When all the survey cycles were compared, the highest prevalence of overweight/obesity was
 31 evident in the low-SES adolescents in 2018, both in girls (14.9%/5.1%) and boys (20.4%/12.0%). The
 32 lower odds of obesity were significantly ($p<0.05$) associated with regular vigorous physical activity,
 33 participation in organized sport. An unreasonable increase in the prevalence of obesity in
 34 adolescents with low SES suggests that national health-related and sports programmes have the
 35 least impact on children from low-SES families.

36 **Keywords:** obesity; overweight; socioeconomic status; Health Behaviour of School-aged Children
 37 (HBSC) Study; trends

38

39 1. Introduction

40 The epidemic of obesity in every segment of the population is a serious public health problem
 41 in the high-income as well as low- and middle-income countries of the world [1-3]. The prevalence
 42 of obesity is generally lower but is increasing faster in low- and middle-income countries than in
 43 high-income countries [4,5], but the evidence from, for example, the former Communist Bloc
 44 countries in Europe is still limited [6]. On the evidence of the existing prevalence and trend data [1,7-

45 9] and the epidemiological evidence linking obesity with long-term cardiovascular, metabolic, and
46 other health consequences [10], it is necessary to describe obesity as a public health crisis with serious
47 negative impacts on the quality of life of people and imposing a considerable burden on national
48 health-care budgets [11,12].

49 To simplify, obesity is the result of a long-term positive energy balance between food intake and
50 expenditure, with its rate being mediated by the complex interaction of multiple behavioural,
51 biological, and environmental factors [13–16]. Lifestyle behaviour is strongly associated with obesity
52 in school-aged children, regardless of country or continent [13,15,16]. Everyday physical activity of
53 moderate-to-vigorous intensity (MVPA) and longer sleep duration have been associated with lower
54 odds of overweight or obesity in school-aged children [16], while shorter sleep duration and longer
55 outside-of-school screen time (ST – watching television and playing video/computer games) have
56 been associated with higher odds of obesity [15,16]. The consumption of sugar-sweetened beverages
57 as an example of unhealthy food intake has been shown to be one of the key contributors to the risk
58 of child overweight/obesity [17]. Although the consumption of sugar-sweetened beverages has
59 declined over the last 15 years, it is still high among children and adolescents, with a negative impact
60 on health – a higher incidence of obesity, insulin resistance, and dental caries [17]. Many of the energy
61 balance-related behaviours in children and young people vary considerably with regard to the socio-
62 economic status (SES) of their families [6,16,18,19].

63 One of the major social determinants of child and adolescent obesity is the SES of their families
64 [7,9,20]. Only a few of the trend-related publications that exist reveal a growing socioeconomic
65 gradient in high-income countries – a stabilized or slight decreasing trend in the prevalence of obesity
66 in children and adolescents from high-SES families, as opposed to a steady increase in the prevalence
67 of obesity among their peers from low-SES families [7,9,20]. Between 2003 and 2014, active
68 participation in the Special Supplemental Nutrition Program for Women, Infants, and Children in
69 Los Angeles [20] was first accompanied by an increase in childhood obesity (2003–2005), followed by
70 a stagnation of obesity (2005–2010), and then a final decline in childhood obesity (2010–2014), with
71 significant differences between children from different SES backgrounds. In most years, the incidence
72 of childhood obesity was highest in the families with the lowest SES [20]. Bann et al. [21] point to a
73 diametric change in the relationship between SES and body weight in a longitudinal survey. In the
74 cohorts before 2001, lower SES was associated with lower weight and inequalities did not differ
75 systematically with age until the 2001 cohort, in which weight and BMI inequalities widened at older
76 ages. Nevertheless, critical information gaps persist in relation to the impact of childhood and life
77 course SES on obesity in low- and middle-income countries [22], as well as an analysis of the impact
78 of health-related programmes on the prevalence of obesity regarding SES [5].

79 Low- and middle-income European countries (including the countries of Central and Southern
80 Europe from the former Communist bloc) appear to tend to replicate the 'negative' health-related
81 behaviour patterns – a decrease in MVPA, an increase in ST [6,23,24] – which had previously been
82 witnessed in high-income countries [25]. The rapid increase in childhood and adolescent obesity in
83 low- and middle-income countries underlines the fact that these countries have failed to learn from
84 the development of obesity in high-income countries. The Czech Republic is one of the most
85 economically developed European countries in the former Communist bloc [26]. Since 2006, it has
86 been implementing a number of national health-related and sports programmes (such as "The
87 Olympic Flag of Versatility", "School Fruit and Vegetable Scheme", and "School Milk Scheme") for
88 children and adolescents, supported by the Ministry of Education, Youth, and Sports [27]. However,
89 the effect of these programmes on the health and health-related behaviour of children and
90 adolescents is not monitored and evaluated to an adequate extent.

91 The present study attempts to bridge the gap between the national health-related and sports
92 programmes that have been implemented and the lack of evidence of their effectiveness in terms of
93 their impact on the prevalence of excessive body weight. Therefore, the main objective of the study
94 is to analyse time trends in excessive body weight (obesity, overweight) among Czech adolescents
95 between 2002 and 2018 with regard to the SES of adolescents' families and to find SES-mediated
96 correlates of adolescents' obesity.

97

98 **2. Materials and Methods**99 *2.1. Study design*

100 This study is based on five cycles of the Czech "Health Behaviour in School-aged Children"
 101 (HBSC) cross-sectional study. The HBSC study is a World Health Organization (WHO) collaborative
 102 cross-national study conducted in 48 countries across Europe, North America, and Asia. The HBSC
 103 study focuses on the description of adolescents' health and health-related behaviours to inform policy
 104 makers, professionals, and practitioners to improve adolescents' lifestyle [28]. An international
 105 standardized questionnaire and research protocol were used across all the participating countries to
 106 ensure the consistency of survey instruments, data collection, and processing procedures [28,29]. As
 107 HBSC is a school-based survey, data is collected through self-completion questionnaires
 108 administered in the classroom.

109 *2.2. Sample and data collection*

110 Nationally representative samples of Czech adolescents in the age range 10.5-16.49 years were
 111 recruited during the 2002 (n=4912; 47.7% boys), 2006 (n=4629; 50.4% boys), 2010 (n=4121; 48.7% boys),
 112 2014 (n=4588; 47.6% boys), and 2018 (n=11,629; 50.4% boys) school years by using multistage stratified
 113 designs, with census regions, ratio of primary vs. multi-year grammar schools, and grades as strata,
 114 with schools acting as the primary sampling units (Table 1). The school response rate among the
 115 survey cycles varied from 75% to 99% and the adolescent participants' response rate exceeded 80%.
 116 The participating teenagers were predominantly white Caucasian (>96.5%), which corresponds to the
 117 very homogeneous ethnic demography of the Czech Republic [30].

118 **Table 1.** Descriptive characteristics of the samples, HBSC study, Czech Republic 2002-2018.

n=	2002		2006		2010		2014		2018†	
	Boys (2345)	Girls (2567)	Boys (2332)	Girls (2297)	Boys (2008)	Girls (2113)	Boys (2183)	Girls (2405)	Boys (5856)	Girls (5773)
	%	%	%	%	%	%	%	%	%	%
Age category^s										
11 years	34.1	33.1	31.4	31.2	32.6	30.6	29.9	30.3	32.7	32.8
13 years	32.5	33.8	33.5	33.9	31.4	35.2	33.9	34.4	34.5	34.4
15 years	33.4	33.1	35.0	34.9	36.0	34.2	36.2	35.3	32.8	32.8
Family affluence										
Low	34.2	40.5	25.7	30.3	13.1	17.0	32.4	34.4	23.7	27.2
Medium	56.5	53.0	54.9	55.9	54.2	53.3	44.3	45.4	45.3	44.6
High	9.3	6.5	19.4	13.8	32.7	29.7	23.3	20.2	31.0	28.2
Weight status[*]										
Non-overweight	81.6	91.7	77.9	83.8	73.7	88.1	74.8	87.9	73.2	84.7
95% CI	80.0-83.2	90.6-92.7	76.2-79.6	82.3-85.3	71.8-75.7	86.7-89.5	73.0-76.6	86.6-89.2	72.1-74.4	83.8-85.7
Overweight	14.5	6.5	14.2	11.8	18.7	9.5	18.1	9.3	17.9	11.9
95% CI	13.1-16.0	5.6-7.4	12.8-15.6	10.5-13.1	17.0-20.4	8.3-10.7	16.5-19.7	8.2-10.5	16.9-19.0	11.0-12.7
Obesity	3.9	1.8	7.9	4.4	7.6	2.4	7.1	2.8	8.8	3.4
95% CI	3.1-4.7	1.3-2.3	6.8-9.0	3.6-5.3	6.4-8.8	1.7-3.1	6.0-8.2	2.1-3.5	8.1-9.6	2.9-3.9

119 ^s11 years (13 years and 15 years) includes adolescents in the age range 10.5-12.49 years (12.50-14.49 years and
 120 14.50-16.49 years); [†] in the 2018 data analyses, the weights for strata (administrative regions) were applied;

121 *obesity and overweight were represented by the >97th percentile and 85th-97th percentile, respectively, on
 122 gender-specific Body Mass Index-for-age growth charts [31,32]; CI - 95% confidence interval.

123 Trained researchers collected the data during a single morning lesson in the classroom using
124 pen-and-paper questionnaires between 2002 and 2014 and in the IT classroom using online
125 questionnaires in 2018. The participation of the adolescents in the quadrennial surveys was
126 voluntary, and the respondents were assured of anonymity and the confidentiality of their responses.
127 To ensure anonymity, the participants were instructed to put the questionnaire in an envelope, which
128 they sealed and handed over to the researchers (2002-2014) after the survey was completed. In 2018,
129 during the online data collection, each participant received a unique application code to access a
130 questionnaire from the researcher. All the survey procedures for each data collection cycle were
131 stored and can be downloaded from [33]. This trend-related study was approved by the Institutional
132 Research Ethics Committee of the Faculty of Physical Culture, Palacký University Olomouc, with the
133 reference No. 9/2016.

134 2.3. Survey items

135 2.3.1. Excessive body weight

136 The adolescents' self-reported actual body weight (kg), body height (cm), and chronological age
137 were used to calculate the weight status of the participants. The Body Mass Index (BMI) was
138 calculated as body weight (kg) divided by body height (m) squared. Body weight status (non-
139 overweight, overweight, obesity) was determined in accordance with the WHO's gender-specific
140 BMI-for-age growth charts [32]. Obesity and overweight were represented by the >97th percentile and
141 85th-97th percentile, respectively, on the gender-specific BMI-for-age growth charts [31,32] (Table 1).
142 The BMI calculated from the self-reported body height and weight demonstrated good diagnostic
143 ability to identify excessive body weight in children and adolescents (sensitivity, specificity, and
144 positive and negative predictive values ranged from 0.83 to 0.98) [34]. Self-reported body height and
145 weight show high agreement with the values measured in the laboratory, thus making it possible to
146 identify excessive body weight in children and adolescents in epidemiological studies substantially
147 [34-36].

148 2.3.2. Socio-demographic variables

149 Because of repeatedly detected gender and socio-economically related differences in the
150 prevalence of excessive body weight [18,37] of adolescents, all the analyses were stratified according
151 to the gender of the participants and family SES. An estimate of family SES was provided by the
152 Family Affluence (FA) Scale. The FA scale comprised several simple-to-answer age-appropriate
153 questions created to quantify material assets in the family [38,39]. Between 2002 and 2010, four
154 questions were included to determine FA: *having one's own bedroom* (No=0; Yes=1), *number of computers*
155 (None=0; One=1; Two=2; Three or more=3), *car ownership* (No=0; One=1; Two or more=2), and *family*
156 *holidays in the past year* (Never=0; Once=1; Twice=2; Three or more times=3) [38]. In 2014, an updated
157 version of the FA scale was used to compensate for the changing social environment [23,28]. Two
158 new FA-related items – *dishwasher ownership* (No=0; Yes=1) and *number of bathrooms* (None=0; One=1;
159 Two=2; Three or more=3) were added to the existing FA scale. The response codes to these items were
160 summed and treated as a composite sum score. For the analyses, three categories of FA ("low",
161 "medium", and "high") were created from the composite sum score. Between 2002 and 2010 the FA
162 categories correspond to tertiles of the sum score ("low"=0-3; "medium"=4-6, "high"=7-9) and in 2014
163 and 2018 as follows: "low"=0-6, "medium"=7-9, and "high"=10-13 [18]. High validity (kappa
164 coefficient 0.41-0.74; 76.2-88.1 agreement) and moderate reliability (Cronbach's α =0.58) between
165 children's and parents' responses on the FA scale-related items have been documented repeatedly
166 [40-44].

167 2.3.3. Energy balance-related behaviours

168 The energy balance-related behaviours covered physical activity patterns (daily MVPA, weekly
169 vigorous physical activity (VPA), and participation in organized sport), sedentary behaviour (daily
170 entertainment screen time), dietary patterns (daily consumption of fruits, vegetables, sweets, and

171 sweetened soft drinks; daily breakfast on school and weekend days, and frequency of fast food
172 meals).

173 Among all the survey cycles MVPA was examined by a single question, '*Over the past seven days, on how many days were you physically active for a total of at least 60 minutes per day?*' A definition of
174 MVPA was provided as any activity that usually increases your heart rate and makes you get out of
175 breath some of the time, with examples of activities that produce such an effect. The response
176 categories were consistent among all the survey cycles and ranged from '0 days' to '7 days'. For the
177 analyses of current MVPA recommendations (≥ 60 min per day [45]) a dichotomous outcome variable
178 was created. The weekly participation in VPA was determined by the question '*How often do you*
179 *usually exercise in your free time so much that you get out of breath or sweat?*' with seven response
180 categories: 'Every day', '4 to 6 times a week', '2 to 3 times a week', 'Once a week', 'Once a month', 'Less than
181 once a month', and 'Never'. In line with existing precedents [46], the outcome variable for VPA was
182 dichotomized as follows: ≥ 4 days of the week vs. less frequent VPA. The assessment of self-reported
183 MVPA and VPA during the past seven days in adolescents was originally developed and validated
184 against seven-day continuous measurement with an accelerometer ($r_{MVPA}=0.40$ $p<0.01$; $r_{VPA}=0.36$
185 $p<0.01$) [47]. A recent study supports the validity of self-reported past-seven-days MVPA ($r=0.49$
186 $p<0.01$ correlation with seven-day continuous monitoring with an Actigraph accelerometer) [48],
187 with almost perfect test-retest stability of the MVPA item in Polish ($ICC=0.98$) and Chinese ($ICC=0.82$)
188 11-15-year-old adolescents [49,50]. The VPA-related question in the HBSC questionnaire
189 demonstrated moderate stability ($ICC=0.68$) [50].

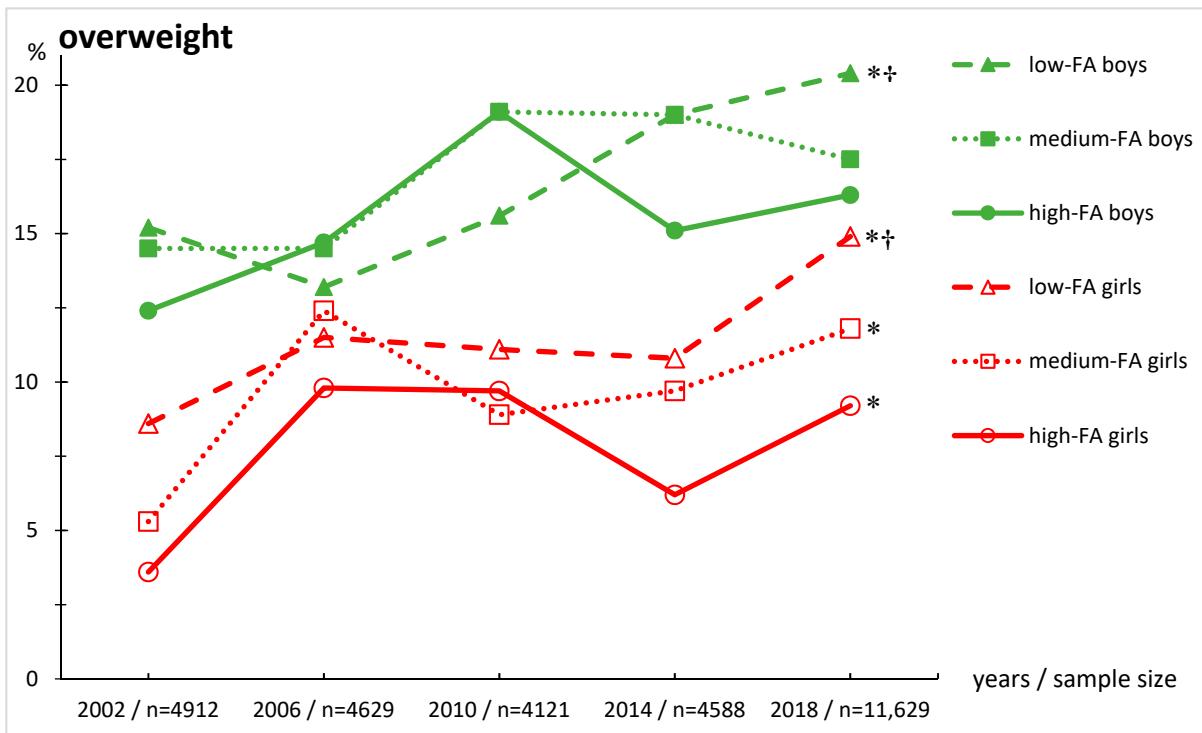
190
191 Participation in organized sport was investigated using the question on involvement in
192 organized activities (six activities including team sports, individual sports): '*In your free time, do you*
193 *do any of these organized activities? We mean activities you do in a sports or other club or organization?*' with
194 the dichotomous response 'yes'/no' [51,52]. The participating adolescents were categorized as 'active'
195 (involved in organized team and/or individual sport) or 'inactive' (not involved in any organized
196 sport). The scale of participation in organized sport has an acceptable level of agreement ($ICC=0.64$),
197 indicating good reliability [52].

198 In 2002, two items related to ST in free time were assessed. The adolescents were asked the
199 following questions: '*About how many hours a day, in your free time, do you usually spend watching*
200 *television (including DVDs and videos) in your free time?*' and '*About how many hours a day, in your free*
201 *time, do you usually spend using a computer (for playing games, emailing, chatting, or surfing on the*
202 *internet)?*' In all the other data collection cycles, the question related to computer use was subdivided
203 into two questions to better reflect the changes in screen-based activities. The first sub-question,
204 '*About how many hours a day, in your free time, do you usually spend using electronic devices such as*
205 *computers, tablets (such as an iPad) or smartphones for other purposes, for example, homework, emailing,*
206 *tweeting, Facebook, chatting, or surfing the internet?*', represents the non-gaming part of computer use.
207 The second sub-question, '*About how many hours a day, in your free time, do you usually spend playing*
208 *games on a computer, games console, tablet (such as an iPad), smartphone, or other electronic device (not*
209 *including moving or fitness games)?*', represents the gaming part of computer use [53]. Each ST-related
210 question was asked for weekdays and weekend days separately. For each ST-related question, the
211 same response options were provided 'None at all', 'About half an hour a day', 'About 1 hour a day',
212 'About 2 hours a day', 'About 3 hours a day', 'About 4 hours a day', 'About 5 hours a day', 'About 6 hours a
213 day', and 'About 7 or more hours a day'. The validity of self-reported ST-related questions for the past
214 seven days has been proved in comparison with 7-day 24-hour diaries both on weekdays ($r=0.39-0.46$,
215 $p<0.001$) and at weekends ($r=0.37-0.47$, $p<0.001$) [54,55]. At least 7-day test-retest stability of the ST-
216 related questions (computer use (PC) and television viewing (TV)) have been repeatedly verified
217 among adolescents aged 11-15 for weekdays ($ICC_{PC}=0.33-0.82$, $ICC_{TV}=0.54-0.72$) and weekends
218 ($ICC_{PC}=0.33-0.66$, $ICC_{TV}=0.58-0.68$) [49,50,54,56]. The daily ST outcome variable comprised the sum
219 of three (two in 2002) ST-related questions. In accordance with previous ST-related studies [57,58],
220 the cutoff point for the dichotomization of daily ST was set at '2 or more hours daily' vs. 'less than 2
221 hours daily'.

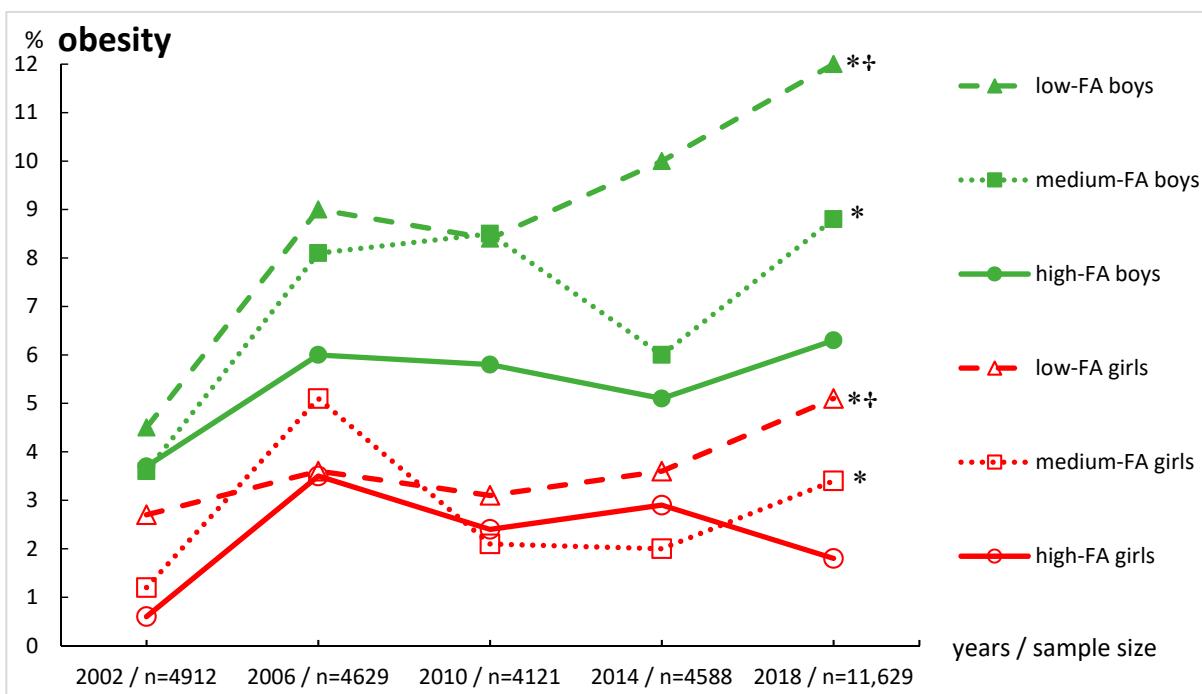
222 As part of the validated brief food frequency questionnaire, adolescents were asked: 'How many
223 times a week do you consume fruit/vegetables/sweetened soft drinks/sweets?', with seven response
224 categories: 'Never', 'Less than once a week', 'Once a week', 'Two to four times a week', 'Five to six times a
225 week', 'Once a day', and 'More than once a day' and 'How often do you usually have breakfast (more than a
226 glass of milk or fruit juice)?' with six response categories for weekdays ('Never', 'One day', 'Two days',
227 'Three days', 'Four days' and 'Five days'), and three for weekends ('Never', 'Only on one day', and 'On
228 both days') [19]. In line with previous trend-related studies [19,59] the response options were recorded
229 into dichotomous outcome variables, 'daily' vs. 'less than daily'. The last question investigated the
230 frequency of eating in fast food restaurants: 'How many times a month do you eat in fast food restaurants?',
231 with seven response categories: 'Never', 'Rarely', 'Once a month', 'Two to three times a month', 'Once a
232 week', 'Two to four days a week', and 'Five days a week or more'. The outcome variable for eating in fast
233 food restaurants was dichotomized as follows: 'at least twice a month' vs. 'less often'.

234 2.3.4. Sleep time

235 Sleep time was calculated from the participants' reports of bedtimes and wake-up times
236 separately for school days and weekends. Bedtimes were asked about by a single question, 'When do
237 you usually go to bed if the next morning is a school day (weekend day)?' Self-reported alternatives for
238 bedtimes ranged at half-hour intervals from 'at least 9 pm' to '2 am or later' for school days and 'at least
239 9 pm' to '4 am or later' for weekend days. Wake-up times were asked about as follows: 'When do you
240 usually wake up on school (weekend) mornings?' The response categories ranged at half-hour intervals
241 from '5 am at the latest' to '8 am or later' for school days and '7 am at the latest' to '2 pm or later' for
242 weekends [60]. Finally, sleep time was calculated as the difference between bedtime and wake-up
243 time, separately for weekdays and weekend days. The outcome variable for sleep time was
244 categorized in relation to the age-related recommendation for hours of sleep [61] as follows: 'enough
245 sleep' vs. 'not enough sleep' for school days and 'enough sleep', 'not enough sleep', and 'excessive sleep'
246 for weekends. The sleep-related items demonstrated at least substantial reliability, especially for the item
247 on when the participants wake up at weekends, for which the reliability is almost perfect (ICC=0.83)
248 [50].


249 2.4. Data analysis

250 All data processing and statistical analyses were performed in the Statistical Package for the
251 Social Sciences (SPSS) for Windows v.22 software (IBM Corp. Released 2013. Armonk, NY, USA).
252 Descriptive data are presented as percentages, including 95% confidence intervals (CI) in the case of
253 weight status, for each survey cycle and gender separately. Chi-square (χ^2) tests were performed to
254 assess trend-related differences in the prevalence of overweight/obesity in each gender and SES
255 categories of adolescents between 2002 and 2018, and SES category-related differences in the
256 prevalence of overweight/obesity in 2018 separately for boys and girls. The chi-square (χ^2) tests were
257 also used to analyse the differences in the proportion of participants involved in organized sports
258 and engaging in VPA in relation to SES categories of adolescents and to test the statistical significance
259 of differences in the prevalence of obesity by adolescents' VPA level, participation in organized sport,
260 and frequency of consumption of sweets. Multiple logistic regression analysis was used for
261 examining the correlates of adolescents' obesity in the 2018 data collection. Given the larger sample,
262 which was supposed to be representative of the whole country and individual administrative regions,
263 strata-specific weights were used for the 2018 data. The regression parameters were based on the
264 odds ratio (OR) with a 95% CI. A minimum alpha level of 5% was set for all the statistical procedures.


265 3. Results

266 3.1. Trends of excessive body weight

267 There is an evident increasing trend in the prevalence of excessive body weight (overweight –
268 Figure 1 and obesity – Figure 2) in adolescents of both genders from low-SES backgrounds between
269 2002 and 2018.

270
271 **Figure 1.** The trend-related prevalence of overweight in a randomized sample of Czech adolescents
272 aged 11-15 years between 2002 and 2018. n – Number; FA – Family affluence; *chi-square tests –
273 differences ($p<0.05$) in the prevalence of overweight between 2002 and 2018 in each gender and FA
274 category; †chi-square tests – differences ($p<0.05$) in the prevalence of overweight between low- and
275 high-FA categories of boys and girls separately in 2018.

276
277 **Figure 2.** The trend-related prevalence of obesity in a randomized sample of Czech adolescents aged
278 11-15 years between 2002 and 2018. n – Number; FA – Family affluence; *chi-square tests – differences
279 ($p<0.05$) in the prevalence of obesity between 2002 and 2018 in each gender and FA category;
280 †chi-square tests – differences ($p<0.05$) in the prevalence of obesity between low- and high-FA categories
281 of boys and girls separately in 2018.

282 A significant increase in overweight between 2002 and 2018 was also registered in girls in the
 283 medium-/high-SES category (Figure 1). A significant increase in obesity between 2002 and 2018 was
 284 also uncovered in adolescents in the medium-SES category (Figure 2). The 'up-stairs' effect in the
 285 prevalence of obesity (i.e. the sharp increase between 2002 and 2006 was replaced by
 286 stagnation/decline between 2006 and 2014, with a subsequent increase between 2014 and 2018) in the
 287 2002-2018 period was typical for all SES categories of adolescents except for girls from the high-SES
 288 category. In addition, between 2014 and 2018, there was apparently not only an increase in the
 289 prevalence of obesity but also a widening of the difference in the prevalence of obesity between the
 290 low and high adolescent SES categories (Figure 2).

291 **Table 2.** This is a table. Tables should be placed in the main text near to the first time they are cited.

	Obesity							
	Low FA			Medium FA			High FA	
	% ^a	OR	95% CI lower-upper	% ^a	OR	95% CI lower-upper	% ^a	OR
Gender								
Girls	5.1	Ref.		3.4	Ref.		1.8	Ref.
Boys	12.0	2.11 [‡]	1.70-2.61	8.8	2.29 [‡]	1.93-2.72	6.3	2.39 [‡] 1.89-3.03
Age Category								
15 years	8.7	Ref.		5.5	Ref.		3.3	Ref.
13 years	7.2	1.38*	1.07-1.76	6.7	1.35 [‡]	1.11-1.63	3.8	1.20 0.93-1.55
11 years	9.0	1.39*	1.06-1.81	6.2	1.17	0.95-1.46	5.4	1.18 0.88-1.58
60 min of MVPA								
0-6 days	8.8	Ref.		6.2	Ref.		4.7	Ref.
7 days	5.5	0.67*	0.47-0.96	5.8	0.98	0.77-1.24	2.1	0.63 [‡] 0.46-0.86
Vigorous PA								
<4 times a week	9.1	Ref.		6.7	Ref.		4.6	Ref.
≥4 times a week	6.7	0.73*	0.57-0.93	5.3	0.76 [‡]	0.63-0.91	3.6	0.78* 0.62-0.99
Participation in sport								
Inactive (no participation)	9.9	Ref.		7.4	Ref.		5.6	Ref.
Team and/or individual	7.0	0.66 [‡]	0.53-0.81	4.8	0.69 [‡]	0.58-0.82	3.5	0.75* 0.58-0.96
Screen time on weekdays								
≥2 h per weekday	8.6	Ref.		6.5	Ref.		4.3	Ref.
<2 h per weekday	4.9	0.91	0.59-1.39	2.9	0.47 [‡]	0.32-0.68	2.0	0.70 0.43-1.12
Breakfast on weekdays								
less than daily	8.8	Ref.		7.4	Ref.		4.3	Ref.
daily	7.6	0.84	0.68-1.05	5.1	0.81*	0.68-0.96	3.9	1.07 0.85-1.35
Consumption of sweets								
less than daily	8.9	Ref.		6.5	Ref.		4.6	Ref.
daily	5.4	0.58 [‡]	0.44-0.78	4.1	0.53 [‡]	0.42-0.67	2.0	0.58 [‡] 0.42-0.79
Eating fast food								
less often	8.4	Ref.		6.3	Ref.		4.3	Ref.
at least twice a month	8.0	0.81	0.60-1.09	5.3	0.77*	0.61-0.97	3.3	0.57 [‡] 0.43-0.77
Sleep time at weekends								
enough sleep	7.9	Ref.		5.9	Ref.		4.4	Ref.
not enough sleep	14.0	1.15	0.87-1.53	8.9	1.33*	1.05-1.69	5.5	1.48* 1.09-2.00
too much sleep	6.0	0.79	0.61-1.03	4.8	0.82	0.67-1.01	3.0	0.89 0.67-1.17

292 *significant in at least one of the adolescent FA categories; FA – family affluence; CI – 95% confidence interval;
 293 %^a – proportion of obese; OR – odds ratio (logistic regression Enter method); Ref. – Reference group; PA –
 294 physical activity; MVPA – moderate-to-vigorous PA; *p<0.05, [‡]p<0.005, [†]p<0.001.

295 *3.2. Correlates of obesity*

296 Given the significant differences in the prevalence of obesity between the low- and high-SES
297 categories of adolescents in 2018, obesity correlates are presented separately for all SES categories
298 (Table 2). In all the cycles of data collection, girls in all SES categories reported having a lower
299 prevalence of obesity than boys. Regardless of the adolescent SES category, the lower odds of obesity
300 were significantly ($p<0.05$) associated with regular VPA, participation in organized sport, and daily
301 consumption of sweets (Table 2). However, the lowest proportion of participants involved in
302 organized sports ($p<0.001$) and regularly engaging in VPA is among the low-SES adolescents
303 ($p<0.001$). Additional analysis confirms a significantly lower prevalence of obesity in adolescents with
304 regular participation in VPA compared with those with less frequent participation (5.0% vs. 6.8%,
305 $p<0.001$), active participants in sports compared with non-participating adolescents (5.0% vs. 8.1%,
306 $p<0.001$), and daily consumers of sweets compared with those who consume sweets less often (3.8%
307 vs. 6.6, $p<0.001$). At least 60 minutes of MVPA daily generally reduce the odds of obesity in
308 adolescents, but the finding was only significant in adolescents from low-SES and high-SES
309 categories. Paradoxically, eating in fast food restaurants more frequently is associated with lower
310 odds of obesity in adolescents (significantly in adolescents from the medium- and high-SES
311 categories) (Table 2).

312 In the cohort of 11-year-old adolescents, we found the highest prevalence of obesity compared
313 to 13- and 15-year-old adolescents (11 yrs. – 6.8%, 13 yrs. – 5.9%, and 15 yrs. – 5.6%), with the
314 difference being significant between the cohorts of 11- and 15-year-old adolescents ($p<0.05$). In
315 adolescents with at least two hours of ST daily on school/weekend days we revealed a significantly
316 higher prevalence of obesity than in adolescents with less than two hours of ST per day (6.4%/6.3%
317 vs. 3.4%/3.5% $p<0.001$). However, in the case of the SES categorization of adolescents, non-excessive
318 ST at weekends is significantly associated with lower odds of the occurrence of obesity only in
319 adolescents from the medium-SES category (Table 2). In adolescents who reported not getting
320 enough sleep on school/weekend days, we found a significantly higher prevalence of obesity than
321 among adolescents meeting the sleep recommendation (5.5%/5.9% vs. 6.9%/9.5% $p<0.01$). A lack of
322 sleep at weekends was significantly associated with higher odds of obesity in adolescents from the
323 medium- and high-SES categories.

324 **4. Discussion**

325 The key findings of the trend analysis between 2002 and 2018 include the revelation of an 'up-
326 stairs' effect in the prevalence of obesity in all adolescents except for girls from the high-SES category
327 and increasing differences in the prevalence of obesity between gender-separated low- and high-SES
328 categories of adolescents.

329 It turns out that the Czech Republic is repeating a similar development in child and adolescent
330 obesity to economically more advanced countries (e.g. Australia, England, France, Germany,
331 Netherlands, and the USA) 10-15 years ago, where the increase in obesity reached a plateau, with a
332 subsequent increase in obesity among low-SES adolescents [7,62]. After a sharp increase in obesity
333 among Czech adolescents between 2002 and 2006, a number of national health-related and sports
334 programmes (such as "The Olympic Flag of Versatility", "Fruit and Vegetables in Schools", and "Milk
335 to Schools") were introduced for children and adolescents with support from the Ministry of
336 Education, Youth, and Sports [27]. A new compulsory subject called "Health Education" was also
337 established at primary schools. This course focuses on healthy eating habits, non-risky behaviour
338 (avoidance of drug use and smoking) and nature and environmental friendliness. These health-
339 promoting activities may have contributed to the stabilization (plateau) of the prevalence of
340 overweight/obesity among adolescents between 2006 and 2014. However, after the restriction of some
341 national programmes between 2013 and 2015, a rebound of overweight/obesity among adolescents
342 was registered in the 2018 national data collection. The subsequent increase in overweight/obesity is
343 most pronounced in adolescents with a low-SES background. The possible subsequent effect of
344 national health and sport programmes is most noticeable in adolescents from high-SES families. In
345 addition, significantly higher odds of obesity in the age categories of 11 and 13 years from low-SES

346 families than among 15-year-olds indicated an expected rise in obesity in older low-SES adolescents
347 in the near future. The trend patterns of excessive body weight, especially obesity in adolescents with
348 a low-SES background and in the youngest age category examined between 2002 and 2018, indicate
349 an urgent need for improvement.

350 Special attention is therefore paid to the subsequent analyses of obesity correlates in adolescents
351 from various SES backgrounds. Despite the differences in SES, three correlates of energy balance-
352 related behaviours were identified as being associated with significantly lower rates of obesity in all
353 SES groups of adolescents: i) regular VPA (≥ 4 times a week), ii) active participation in sport, and iii)
354 daily consumption of sweets. Moreover, in adolescents from low- and high-FA families, engagement
355 in MVPA for at least 60 minutes a day also significantly reduces the risk of obesity. In adolescence,
356 behaviour associated with more pronounced energy expenditure (PA of at least moderate intensity,
357 participation in sport) appears to have a stronger anti-obesity effect than the absence of unhealthy
358 eating habits. However, the energy expenditure required for adolescents must also include the energy
359 required for bodily growth and development. Unlike other studies [63–65], more frequent eating (at
360 least twice a month) in fast food restaurants in Czech adolescents with medium and high SES was
361 associated with a significantly lower risk of obesity than in adolescents with lower rates of eating in
362 fast food restaurants. On the other hand, regular breakfast is, in line with Marlatt et al. [65], associated
363 with lower rates of obesity. These eating patterns are "more typical" for adolescents who regularly
364 participate in sports than for non-participating adolescents. The participation of 11-15-year-old
365 adolescents in sport was related to more frequent eating at fast food restaurants but less frequent
366 snacking in front of the computer and intake of crisps than in non-sporting participants [66]. In
367 addition, in the context of TV, it has been found that adolescents who watched TV for a longer time
368 were more likely to consume sweets and soft drinks daily and less likely to consume fruit and
369 vegetables [55]. However, a more significant obesity-related problem can occur when an adolescent
370 ceases to participate in sports or is not regularly involved in MVPA and does not change his or her
371 eating habits, because unhealthy eating habits adopted in adolescence tend to persist into adulthood
372 and represent a crucial factor in the development of obesity [67–69].

373 Another explanation for the results that the daily consumption of sweets and eating more
374 frequently in fast food restaurants are related to a lower likelihood of the prevalence of obesity is that
375 non-obese adolescents do not have to care about unhealthy eating habits as much as their obese
376 classmates, as evidenced by previous findings [70,71]. Better eating habits in the obese category may
377 have been influenced by the "social desirability" factor in addressing dietary habits in the HBSC
378 questionnaire [72]. Undervaluation of responses to unhealthy and socially undesirable foods has
379 proved to be commonplace in questionnaire surveys of overweight and obese participants [73]. The
380 results could also be influenced by the current tendency among overweight or obese adolescents to
381 reduce weight [74].

382 Excessive body weight is not only associated with long-term cardiovascular and metabolic
383 health complications [10], but also with social complications [75]. Overweight/obese 11-to-15-year-
384 old girls spend less time with friends after school, and overweight/obese boys report less frequent e-
385 communication compared to normal-weight adolescents. In addition, the overweight/obese weight
386 status of adolescents is associated with not perceiving a best friend as a confidant [75]. This finding
387 is perhaps also one of the reasons why there are more individuals with normal body weight among
388 the participants in organized team or individual sports. In addition, adolescents from low-SES
389 backgrounds have been significantly more likely to fall behind their peers in terms of life satisfaction
390 [70]. In addition to the financial and logistical demands of adolescents' participation in organized
391 leisure-time sport, this finding may contribute to explaining why the lowest proportion of
392 participants in organized sport and regularly engaging in VPA is among adolescents with low SES.
393

394 Short sleep duration is generally associated with increased obesity in European adolescents [76]
395 as well as in adolescents from Canada and the United States [77,78]. In addition, a positive
396 relationship between shorter sleep duration and obesity appears to be related to both sides of energy
397 balance-related behaviours as a result of a combination of increased food intake and more sedentary
habits [76]. However, in our study, short sleep duration at weekends is associated with a significantly

398 higher risk of obesity only in adolescents with medium and high SES, although differences in obesity
399 among adolescents with sufficient sleep and lack of sleep are also significant in the low-SES category.

400 A higher prevalence of obesity also appears to be related to the environments that children and
401 adolescents reside in and in the neighbourhood of the schools they attend [64]. Fast food restaurants
402 are more frequently present in low-quality neighbourhoods. The availability of fast food restaurants
403 near the place of residence or schools is associated with lower consumption of fruits and vegetables,
404 higher consumption of soft drinks, and increased odds of childhood obesity being diagnosed [64].
405 However, improving public open spaces in low-SES areas by installing play spaces for recreational
406 PA [79] or expanding school-related PA [80] has an impact on increasing day-to-day PA [79] and
407 reducing children's obesity [80,81].

408 *Strengths and limitations*

409 The large sample size, with high response rates in all the survey cycles, strict adherence to the
410 international standardized questionnaire and research protocol, and the same well-trained research
411 team responsible for data collection are major strengths of this study.

412 The primary limitation of this study is that the data is based on self-reported assessment.
413 However, the self-reported measures of body weight and height have been validated, and other
414 studies have revealed high correlations between self-reported and laboratory measurements of BMI,
415 making it suitable for epidemiological studies to identify excessive body weight in children and
416 adolescents [36]. Although every attempt was made to minimize bias, the self-reported measures
417 applied in this study are subject to recall and social desirability bias, which may have affected the
418 responses. The cross-sectional design of this study does not allow us to interpret the results on the
419 relationship between responses and explanatory variables causally. However, previous longitudinal
420 studies point to the beneficial effects of additional school physical activity on reducing obesity in
421 school-age children [80,81].

422 **5. Conclusions**

423 The results of this study pointed out the rising trends of excessive body weight (obesity and
424 overweight), especially in adolescents from low-SES families. Additionally, significantly higher odds
425 of obesity in 11- and 13-year-old adolescents from low-SES families, compared with their peers aged
426 15, indicated an expectable rise in obesity in older low-SES adolescents in the near future. It seems
427 that association energy expenditure behaviours (participation in individual or team sports, regular
428 vigorous PA, and daily moderate-to-vigorous PA) with weight status in adolescents are stronger than
429 is the case for unhealthy eating habits (daily consumption of sweets or occasional meals at fast food
430 restaurants). We highlight the importance of prevention and the need for more effective
431 strategies/programmes to prevent excessive body weight in children and adolescents with a low-SES
432 background.

433 **Author Contributions:** E.S. conceptualized and designed the study, drafted the initial manuscript, and
434 coordinated the writing of the manuscript. P.B., V.Jr.H., M.K., Z.P., J.P., E.S., D.S., J.V., J.Z., and Z.H. prepared
435 the national research protocol survey and participated in the data collection. D.S., P.B., V.Jr.H., Z.P., and E.S.
436 carried out the data analysis and interpreted the results. All the authors critically read the initial manuscript,
437 commented on all parts of the text, and approved the final version of the manuscript.

438 **Funding:** This research was funded by research grants from the Czech Science Foundation (reg. No. 17-12579S),
439 the European Regional Development Fund-Project (reg. No. CZ.02.1.01/0.0/0.0/16_025/0007294), and the
440 Ministry of Education, Youth, and Sports (reg. No. LTT18020).

441 **Acknowledgments:** The authors greatly thank all the adolescents for participating in each data collection cycle.
442 Special thanks go to the school management members who helped facilitate the research.

443 **Conflicts of Interest:** The authors declare no conflict of interest. The funders had no role in the design of the
444 study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to
445 publish the results.

446 **References**

447 1. Ford, N.D.; Patel, S.A.; Narayan, K.M.V. Obesity in low- and middle-income countries: Burden, drivers,
448 and emerging challenges. *Annu. Rev. Public Health* 2017, **38**, 145–164.

449 2. Hruby, A.; Hu, F.B. The epidemiology of obesity: A big picture. *Pharmacoconomic* 2015, **33**, 673–689.

450 3. Mitchell, N.; Catenacci, V.; Wyatt, H.R.; Hill, J.O. Obesity: Overview and epidemic. *Psychiatr. Clin. North*
451 *Am.* 2012, **34**, 717–732.

452 4. Ng, M.; Fleming, T.; Robinson, M.; Thomson, B.; Graetz, N.; Margono, C.; Mullany, E.C.; Biryukov, S.;
453 Abbafati, C.; Abera, S.F.; Abraham, J.P.; Abu-Rmeileh, N.M.; Achoki, T.; AlBuhairan, F.S.; Alemu, Z.A.;
454 Alfonso, R.; Ali, M.K.; Ali, R.; Guzman, N.A.; Ammar, W.; Anwari, P.; Banerjee, A.; Barquera, S.; Basu, S.;
455 Bennett, D.A.; Bhutta, Z.; Blore, J.; Cabral, N.; Nonato, I.C.; Chang, J.C.; Chowdhury, R.; Courville, K.J.;
456 Criqui, M.H.; Cundiff, D.K.; Dabhadkar, K.C.; Dandona, L.; Davis, A.; Dayama, A.; Dharmaratne, S.D.;
457 Ding, E.L.; Durrani, A.M.; Esteghamati, A.; Farzadfar, F.; Fay, D.F.; Feigin, V.L.; Flaxman, A.; *et al.* Global,
458 regional, and national prevalence of overweight and obesity in children and adults during 1980–2013: A
459 systematic analysis for the Global Burden of Disease Study 2013. *Lancet*, 2014, **384**, 766–781.

460 5. Seidel, J.C.; Halberstadt, J. The global burden of obesity and the challenges of prevention. *Ann. Nutr. Metab.*
461 2015, **66**, S7–S12.

462 6. Inchley, J.; Currie, D.; Jewell, J.; Breda, J.; Barnekow, V. *Adolescent obesity and related behaviours: Trends and*
463 *inequalities in the WHO European Region, 2002–2014*, 1st ed.; WHO Regional Office for Europe: Copenhagen,
464 Denmark, 2017; pp. 1–98.

465 7. Frederick, C.B.; Snellman, K.; Putnam, R.D. Increasing socioeconomic disparities in adolescent obesity.
466 *Proc. Nation. Acad. Sci. Unit. Stat. Am.* 2014, **111**, 1338–1342.

467 8. Hamřík, Z.; Sigmundová, D.; Pavelka, J.; Kalman, M.; Sigmund, E. Trends in overweight and obesity in
468 Czech schoolchildren from 1998 to 2014. *Cent. Eur. J. Public Health* 2014, **25**, S10–S14.

469 9. Hardy, L.L.; Mihirshahi, S.; Gale, J.; Drayton, B.A.; Bauman, A.; Mitchell, J. 30-year trends in overweight,
470 obesity and waist-to-height ratio by socioeconomic status in Australian children, 1985 to 2015. *Int. J. Obes.*
471 *(Lond.)* 2017, **41**, 76–82.

472 10. Kelly, A.; Barlow, S.E.; Rao, G.; Inge, T.H.; Hayman, L.L.; Steinberger, J.; Urbina, E.M.; Ewing, L.J.; Daniels,
473 S.R. Severe obesity in children and adolescents: Identification, associated health risks, and treatment
474 approaches: A scientific statement from the American Heart Association. *Circulation* 2013, **128**, 1689–1712.

475 11. Cawley, J.; Meyerhoefer, C. The medical care costs of obesity: An instrumental variables approach. *J. Health*
476 *Econ.* 2012, **31**, 219–230.

477 12. Tremmel, M.; Gerdthem, U.G.; Nilsson, P.M.; Saha, S. Economic burden of obesity: A systematic literature
478 review. *Int. J. Environ. Res. Public Health* 2017, **14**, E435.

479 13. Dumuid, D.; Olds, T.; Lewis, L.K.; Martin-Fernández, J.A.; Barreirea, T.; Broyles, S.; Chaput, J.P.; Fogelholm,
480 M.; Hu, G.; Kuriyan, R.; Kurpad, A.; Lambert, E.V.; Maia, J.; Matsudo, V.; Onywera, V.O.; Sarmiento, O.L.;
481 Standage, M.; Tremblay, M.S.; Tudor-Locke, C.; Zhao, P.; Katzmarzyk, P.; Gillison, F.; Maher, C.; ISCOLE
482 research group. The adiposity of children is associated with their lifestyle behaviours: A cluster analysis of
483 school-aged children from 12 nations. *Pediatr. Obes.* 2016, **13**, 111–119.

484 14. Huang, T.T.; Drewnowski, A.; Kumanyika, S.K.; Glass, T.A. A systems-oriented multilevel framework for
485 addressing obesity in the 21st century. *Prev. Chronic Dis.* 2009, **6**, A82.

486 15. Ren, H.; Zhou, Z.; Liu, W.; Wang, X.; Yin, Z. Excessive homework, inadequate sleep, physical inactivity
487 and screen time are major contributors to high paediatric obesity. *Acta Paediatr.* 2016, **106**, 120–127.

488 16. Wilkie, H.J.; Standage, M.; Gillison, F.B.; Cumming, S.P.; Katzmarzyk, P.T. Multiple lifestyle behaviours
489 and overweight and obesity among children aged 9–11 years: Result from the UK site of the International
490 Study of Childhood Obesity, Lifestyle and the Environment. *BMJ Open* 2016, **6**, e010677.

491 17. Bleich, S.N.; Vercammen, K.A. The negative impact of sugar-sweetened beverages on children's health: An
492 update of the literature. *BMC Obes.* 2018, **5**, 6.

493 18. Sigmund, E.; Badura, P.; Sigmundová, D.; Voráčová, J.; Zácpal, J.; Kalman, M.; Pavelka, J.; Vokacová, J.;
494 Hobza, Jr.V.; Hamrik, Z. Trends and correlates of overweight/obesity in Czech adolescents in relation to
495 family socioeconomic status over a 12-year study period (2002–2014). *BMC Public Health* 2018, **18**, 122.

496 19. Voráčová, J.; Sigmund, E.; Sigmundová, D.; Kalman, M. Family affluence and the eating habits of 11- to 15-
497 year-old Czech adolescents: HBSC 2002 and 2014. *Int. J. Environ. Res. Public Health* 2016, **13**, 1034.

498 20. Nobari, T.Z.; Whaley, S.E.; Prelip, M.L.; Crespi, C.M.; Wang, M.C. Trends in socioeconomic disparities in
499 obesity prevalence among low-income children aged 2-4 years in Los Angeles county, 2003-2014. *Child.*
500 *Obes.* 2018, *14*, 248-258.

501 21. Bann, D.; Johnson, W.; Li, L.; Kun, D.; Hardy, R. Socioeconomic inequalities in childhood and adolescent
502 body-mass index, weight, and height from 1953 to 2015: an analysis of four longitudinal, observational,
503 British birth cohort studies. *Lancet Public Health* 2018, *3*, e194-e203.

504 22. Newton, S.; Braithwaite, D.; Akinyemiju, T.F. Socio-economic status over the life course and obesity.
505 Systematic review and meta-analysis. *PLoS One* 2017, *12*, e0177151.

506 23. Bucksch, J.; Sigmundova, D.; Hamrik, Z.; Troped, P.J.; Melkevik, O.; Ahluwalia, N.; Borraccino, A.; Tynjälä,
507 J.A.; Kalman, M.; Inchley, J. International trends in adolescent screen-time behaviors from 2002 to 2010. *J.*
508 *Adolesc. Health* 2016, *58*, 417-425.

509 24. Kalman, M.; Inchley, J.; Sigmundova, D.; Iannotti, R.J.; Tynjälä, J.A.; Hamrik, Z.; Haug, E.; Bucksch, J.
510 Secular trends in moderate-to-vigorous physical activity in 32 countries from 2002 to 2010: A cross-national
511 perspective. *Eur. J. Public Health* 2015, *25*, S37-S40.

512 25. Iannotti, R.J.; Wang, J. Trends in physical activity, sedentary behavior, diet, and BMI among US adolescents,
513 2001-2009. *Pediatrics* 2013, *132*, 606-614.

514 26. OECD Data. Available online: <https://data.oecd.org/czech-republic.htm> (accessed on 17. 4. 2019).

515 27. MSMT. Available online: <http://www.msmt.cz/?lang=2> (accessed on 17. 4. 2019).

516 28. Currie, C.; Nic Gabhainn, S.; Godeau, E.; International HBSC Network Coordinating Committee. The health
517 behaviour in school-aged children: WHO collaborative cross-national (HBSC) study: Origins, concept,
518 history and development 1982-2008. *Int. J. Public Health* 2009, *54*, S131-S139.

519 29. Roberts, C.; Freeman, J.; Samdal, O.; Schnohr, C.W.; Looze, M.; Nic Gabhainn, S.; Iannotti, R.; Rasmussen,
520 M.; International HBSC Study Group. The Health Behaviour in School-aged Children (HBSC) study:
521 Methodological developments and current tensions. *Int. J. Public Health* 2009, *54*, 140-150.

522 30. Bilík, J. *Demographic yearbook of districts of the Czech Republic – 2008-2017*, 1st ed.; Code: 130056-18; Czech
523 Statistical Office: Prague: Czech Republic, 2018; pp. 1-145.

524 31. de Onis, M.; Lobstein, T. Defining obesity risk status in the general childhood population: Which cut-offs
525 should we use? *Int. J. Pediatr. Obes.* 2010, *5*, 458-460.

526 32. de Onis, M.; Onyango, A.W.; Borghi, E.; Siyam, A.; Nishida, C.; Siekmann, J. Development of a WHO
527 growth reference for school-aged children and adolescents. *Bull. World Health Organ.* 2007, *85*, 660-667.

528 33. <http://www.hbsc.org/methods/index.html> (accessed on 17. 4. 2019).

529 34. Chan, N.P.T.; Choi, K.C.; Nelson, E.A.S.; Sung, R.Y.T.; Chan, J.C.N.; Kong, A.P. S. Self-reported body weight
530 and height: An assessment tool for identifying children with overweight/obesity status and
531 cardiometabolic risk factors clustering. *Matern. Child Health J.* 2013, *17*, 282-291.

532 35. Fonseca, H.; Silva, A.M.; Matos, M.G.; Esteves, I.; Costa, P.; Guerra, A.; Gomes-Pedro, J. Validity of BMI
533 based on self-reported weight and height in adolescents. *Acta Paediatr.* 2010, *99*, 282-291.

534 36. Aasvee, K.; Rasmussen, M.; Kelly, C.; Kurvinen, E.; Giacchi, M.V.; Ahluwalia, N. Validity of self-reported
535 height and weight for estimating prevalence of overweight among Estonian adolescents: The Health
536 Behaviour in School-aged Children study. *BMC Res. Notes* 2015, *8*, 606.

537 37. Ahluwalia, N.; Dalmasso, P.; Rasmussen, M.; Lipsky, L.; Currie, C.; Haug, E.; Kelly, C.; Damsgaard, M.T.;
538 Due, P.; Tabak, I.; Ercan, O.; Maes, L.; Aasvee, K.; Cavallo, F. Trends in overweight prevalence among 11-,
539 13- and 15-years-olds in 25 countries in Europe, Canada and USA from 2002 to 2010. *Eur. J. Public Health*
540 2015, *25*, S28-S32.

541 38. Currie, C.; Molcho, M.; Boyce, W.; Holstein, B.; Torsheim, T.; Richter, M. Researching health inequalities in
542 adolescents: The development of the health behaviour in school-aged children (hbsc) family affluence scale.
543 *Soc. Sci. Med.* 2008, *66*, 1429-1436.

544 39. Currie, C.; Inchley, J.; Molcho, M.; Lenzi, M.; Veselak, Z.; Wild, F. *Health Behaviour in School-Aged Children*
545 (*HBSC*) *Study Protocol: Background, Methodology and Mandatory Items for the 2013/2014 Survey*, 1st ed.;
546 CAHRU: St. Andrews, United Kingdom, 2014; pp. 1-48.

547 40. Andersen, A.; Krølner, R.; Currie, C.; Dallago, L.; Due, P.; Richter, M.; Örkényi, Á.; Holstein, B.E. High
548 agreement on family affluence between children's and parents' reports: International study of 11-year-old
549 children. *J. Epidemiol. Community Health* 2008, *62*, 1092-1094.

550 41. Boyce, W.; Torsheim, T.; Currie, C.; Zambon, A. The family affluence scale as a measure of national wealth:
551 Validation of an adolescent self-reported measure. *Soc. Indic. Res.* 2006, *78*, 473-487.

552 42. Hartley, J.E.K.; Levin, K.; Currie, C. A new version of the HBSC family affluence scale – FAS III: Scottish
553 qualitative findings from the international FAS development study. *Child Indic. Res.* 2016, 9, 233–245.

554 43. Liu, Y.; Wang, M.; Villberg, J.; Torsheim, T.; Tynjälä, J.; Lv, Y.; Kannas, L. Reliability and validity of family
555 affluence scale (FAS II) among adolescents in Beijing, China. *Child Indicat. Res.* 2012, 5, 235–251.

556 44. Molcho, M.; Gabhainn, S.N.; Kelleher, C.C. Assessing the use of the family affluence scale (fas) among Irish
557 schoolchildren. *Ir. Med. J.* 2007, 100, S37–S39.

558 45. Jansen, I.; LeBlanc, A.G. Systematic review of the health benefits of physical activity and fitness in school-
559 aged children and youth. *Int. J. Behav. Nutr. Phys. Act.* 2010, 7, 40.

560 46. Inchley, J.; Currie, D.; Young, T.; Samdal, O.; Torsheim, T.; Augustson, L.; Mathison, F.; Aleman-Diaz, A.;
561 Molcho, M.; Weber, M.; Barnekow, V. *Growing up unequal: gender and socioeconomic differences in young
562 people's health and well-being. Health Behaviour in School-Aged children (HBSC) Study: International report from
563 the 2013/2014 survey. Health Policy for children and adolescents*, No. 7., 1st ed.; WHO Regional Office for
564 Europe: Copenhagen, Denmark, 2016; pp. 1–292.

565 47. Prochaska, J.J.; Sallis, J.F.; Long, B. A physical activity screening measure for use with adolescents in
566 primary care. *Arch. Pediatr. Adolesc. Med.* 2001, 155, 554–559.

567 48. Ridgers, N.D.; Timperio, A.; Crawford, D.; Salmon, J. Validity of a brief self-report instrument for assessing
568 compliance with physical activity guidelines amongst adolescents. *J. Sci. Med. Sport* 2012, 15, 136–141.

569 49. Bobakova, D.; Hamrik, Z.; Badura, P.; Sigmundova, D.; Nalecz, H.; Kalman, M. Test-retest reliability of
570 selected physical activity and sedentary behavior HBSC items in the Czech Republic, Slovakia and Poland. *Int.
571 J. Public Health* 2015, 60, 59–67.

572 50. Liu, Y.; Wang, M.; Tynjälä, J.; Lv, Y.; Villberg, J.; Zhang, Z.; Kannas, L. Test–retest reliability of selected
573 items of Health Behaviour in School-aged Children (HBSC) survey questionnaire in Beijing, China. *BMC
574 Med. Res. Methodol.* 2010, 10, 73.

575 51. Badura, P.; Sigmund, E.; Geckova, A.M.; Sigmundova, D.; Sirucek, J.; van Dijk, J.P.; Reijneveld, S.A. Is
576 participation in organized leisure-time activity associated with school performance in adolescence? *PLoS
577 One* 2016, 11, e0153276.

578 52. Bosakova, L.; Kolarcik, P.; Bobakova, D.; Sulcova, M.; Van Dijk, J.P.; Reijneveld, S.A.; Geckova, A.M. Test-
579 retest reliability of the scale of participation in organized activities among adolescents in the Czech
580 Republic and Slovakia. *Int. J. Public Health* 2016, 61, 329–336.

581 53. Sigmundová, D.; Sigmund, E.; Bucksch, J.; Badura, P.; Kalman, M.; Hamřík, Z. Trends in screen time
582 behaviours in Czech schoolchildren between 2002 and 2014: HBSC Study. *Cent. Eur. J. Public Health* 2017,
583 25, S15–S20.

584 54. Schmitz, K.H.; Harnack, L.; Fulton, J.E.; Jacobs, D.R.Jr.; Gao, S.; Lytle, A.L.; Coevering, P.V. Reliability and
585 validity of a brief questionnaire to assess television viewing and computer use by middle school children.
586 *J. Sch. Health* 2004, 74, 370–377.

587 55. Vereecken, C.A.; Todd, J.; Roberts, C.; Mulvihill, C.; Maes, L. Television viewing behaviour and
588 associations with food habits in different countries. *Public Health Nutr.* 2006, 9, 244–250.

589 56. Rey-López, J.P.; Vicente-Rodriguez, G.; Ortega, F.B.; Ruiz, J.R.; Martínez-Gómez, D.; De Henauw, S.;
590 Manios, Y.; Molnar, D.; Polito, A.; Verloigne, M.; Castillo, M.J.; Sjöström, M.; De Bourdeaudhuij, I.; Moreno,
591 L.A.; HELENA Study Group. Sedentary patterns and media availability in European adolescents: the
592 HELENA study. *Prev. Med.* 2010, 51, 50–55.

593 57. Salmon, J.; Campbell, K.J.; Crawford, D.A. Television viewing habits associated with obesity risk factors: a
594 survey of Melbourne schoolchildren. *Med. J. Aust.* 2006, 184, 64–67.

595 58. Tremblay, M.S.; LeBlanc, A.G.; Janssen, I.; Kho, M.E.; Hicks, A.; Murumets, K.; Colley, R.C.; Duggan, M.
596 Canadian sedentary behavior guidelines for children and youth. *Appl. Physiol. Nutr. Metab.* 2011, 36, 59–64.

597 59. Vereecken, C.; Pedersen, T.P.; Ojala, K.; Krølner, R.; Dzielska, A.; Ahluwalia, N.; Giacchi, M.; Kelly, C. Fruit
598 and vegetable consumption trends among adolescents from 2002 to 2010 in 33 countries. *Eur. J. Public Health*
599 2015, 25, S16–S19.

600 60. Leger, D.; Beck, F.; Richard, J.B.; Godeau, E. Total sleep time severely drops during adolescence. *PLoS One*
601 2012, 7, e45204.

602 61. Paruthi, S.; Brooks, L.J.; D'Ambrosio, C.; Hall, W.A.; Kotagal, S.; Lloyd, R.M.; Malow, B.A.; Maski, K.;
603 Nichols, C.; Quan, S.F.; Rosen, C.L.; Troester, M.M.; Wise, M.S. Recommended amount of sleep for pediatric
604 populations: a consensus statement of the American Academy of Sleep Medicine. *J. Clin. Sleep Med.* 2016,
605 12, 785–786.

606 62. Wabitsch, M.; Moss, A.; Kromeyer-Hauschild, K. Unexpected plateauing of child obesity rates in
607 developed countries. *BMC Med.* 2014, *12*, 17.

608 63. Braithwaite, I.; Stewart, A.W.; Hancox, R.J.; Beasley, R.; Murphy, R.; Mitchel, E.A.; ISAAC Phase Three
609 Study Group. Fast-food consumption and body mass index in children and adolescents: An international
610 cross-sectional study. *BMJ Open* 2014, *4*, e005813.

611 64. Hamano, T.; Li, X.; Sundquist, J.; Sundquist, K. Association between childhood obesity and neighbourhood
612 accessibility to fast-food outlets: A nationwide 6-year follow-up study of 944,487 children. *Obes. Facts* 2017,
613 *10*, 559–568.

614 65. Marlatt, K.L.; Farbakhsh, K.; Dengel, D.R.; Lytle, L.A. Breakfast and fast food consumption are associated
615 with selected biomarkers in adolescents. *Prev. Med. Rep.* 2016, *3*, 49–52.

616 66. Voračová, J.; Badura, P.; Hamrik, Z.; Holubčíková, J.; Sigmund, E. Unhealthy eating habits and
617 participation in organized leisure-time activities in Czech adolescents. *Eur. J. Pediatr.* 2018, *177*, 1505–1513.

618 67. Emmett, P.M.; Jones, L.R. Diet, growth, and obesity development throughout childhood in the Avon
619 Longitudinal Study of Parents and Children. *Nutr. Rev.* 2015, *73*, S175–S206.

620 68. León-Muñoz, L.M.; García-Esquinas, E.; Soler-Vila, H.; Guallar-Castillón, P.; Banegas, J.R.; Rodríguez-
621 Artalejo, F. Unhealthy eating behaviors and weight gain: A prospective study in young and middle-age
622 adults. *Obesity (Silver Spring)* 2016, *24*, 1178–1184.

623 69. Mikkilä, V.; Räsänen, L.; Raitakari, O.T.; Pietinen, P.; Viikari, J. Longitudinal changes in diet from childhood
624 into adulthood with respect to risk of cardiovascular diseases. The Cardiovascular Risk in Young Finns
625 Study. *Eur. J. Clin. Nutr.* 2004, *58*, 1038–1045.

626 70. Chzhen, Y.; Moor, I.; Pickett, W.; Toczydlowska, E.; Stevens, G. Family affluence and inequality in
627 adolescent health and life satisfaction: Evidence from the HBSC study 2002–2014. *Innocenti Working Paper*
628 2016, No.2016-10, 1–26.

629 71. Sigmundová, D.; Sigmund, E.; Hamrik, Z.; Kalman, M. Trends of overweight and obesity, physical activity
630 and sedentary behaviour in Czech schoolchildren: HBSC study. *Eur. J. Public Health* 2014, *24*, 210–215.

631 72. Bel-Serrat, S.; Julian-Almarcegui, C.; Gonzalez-Gross, M.; Mouratidou, T.; Bornhorst, C.; Grammatikaki, E.;
632 Kersting, M.; Cuenca-García, M.; Gottrand, F.; Molnár, D.; Hallström, L.; Dallongeville, J.; Plada, M.;
633 Roccaldo, R.; Widhalm, K.; Moreno, L.A.; Manios, Y.; De Henauw, S.; Leclercq, C.; Vandevijvere, S.; Lioret,
634 S.; Gutin, B.; Huybrechts, I. Correlates of dietary energy misreporting among European adolescents: the
635 Healthy Lifestyle in Europe by Nutrition in Adolescence (HELENA) study. *Br. J. Nutr.* 2016, *115*, 1439–
636 1452.

637 73. Hebert, J.R.; Hurley, T.G.; Peterson, K.E.; Resnicow, K.; Thompson, F.E.; Yaroch, A.L.; Ehlers, M.; Midthune,
638 D.; Williams, G.C.; Greene, G.W.; Nebeling, L. Social desirability trait influences on self-reported dietary
639 measures among diverse participants in a multicenter multiple risk factor trial. *J. Nutr.* 2008, *138*, S226–
640 S234.

641 74. Ojala, K.; Vereecken, C.; Välimäa, R.; Currie, C.; Vilberg, J.; Tynjälä, J.; Kannas, L. Attempts to lose weight
642 among overweight and non-overweight adolescents: A cross-national survey. *Int. J. Behav. Nutr. Phys. Act.*
643 2007, *4*, 50.

644 75. Kjelgaard, H.H.; Holstein, B.E.; Due, P.; Brixval, C.S.; Rasmussen, M. Adolescent weight status: association
645 with structural and functional dimensions of social relations. *J. Adolesc. Health* 2017, *60*, 460–468.

646 76. Garaulet, M.; Ortega F.B.; Ruiz, J.R.; Rey-López, J.P.; Béghin, L.; Manios, Y.; Cuenca-García, M.; Plada, M.;
647 Diethelm, K.; Kafatos, A.; Molnár, D.; Al-Tahan, J.; Moreno, L.A. Short sleep duration is associated with
648 increased obesity markers in European adolescents: Effect of physical activity and dietary habits. The
649 HELENA study. *Int. J. Obes. (Lond.)* 2011, *35*, 1308–1317.

650 77. Miller, M.A.; Kruisbrink, M.; Wallace, J.; Ji, C.; Cappuccio, F.P. Sleep duration and incidence of obesity in
651 infants, children, and adolescents: A systematic review and meta-analysis of prospective studies. *Sleep* 2018,
652 *41*, 1–19.

653 78. Sluggett, L.; Wagner, S.L.; Harris, R.L. Sleep duration and obesity in children and adolescents. *Can. J.
654 Diabetes* 2019, *43*, 146–152.

655 79. Lal, A.; Moodie, M.; Abbott, G.; Carver, A.; Salmon, J.; Giles-Corti, B.; Timperio, A.; Veitch, J. The impact
656 of a park refurbishment in a low socioeconomic area on physical activity: a cost-effectiveness study. *Int. J.
657 Behav. Nutr. Phys. Act.* 2019, *16*, 26.

658 80. Sigmund, E.; El Ansari, W.; Sigmundová, D. Does school-based physical activity decrease overweight and
659 obesity in children 6-9 years? A two-year non-randomized longitudinal intervention study in the Czech
660 Republic. *BMC Public Health* 2012, *12*, 570.

661 81. Sigmund, E.; Sigmundová, D. Longitudinal 2-year follow-up on the effect of a non-randomised school-
662 based physical activity intervention on reducing overweight and obesity of Czech children aged 10-12
663 years. *Int. J. Environ. Res. Public Health* 2013, *10*, 3667-3683.