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 5 
Abstract: The Heisenberg Lie algebra (HA) plays an important role in mathematics with 6 
Fourier transforms, as well as for the foundations of quantum theory where it expresses the 7 
operators of space-time, X, and their commutation rules with the momentum operators, D, 8 
that execute infinitesimal translations in X. Yet it is known that space-time is curved and thus 9 
the D operators must interfere thus giving “structure constants” that vary with location which 10 
suggests a mathematical generalization of the concept of a Lie algebra to allow for “structure 11 
constants” that are functions of X. We here investigate the mathematics of such a 12 
“generalized Heisenberg algebra” (GHA) which has “structure constants” that are functions 13 
of X and thus are in the enveloping algebra rather than constants. As expected, the Jacobi 14 
identity no longer holds globally but only in small regions of space-time where the [D, X] 15 
commutator can be considered locally constant and thus where one has a true Lie algebra. 16 
We show that one is able to reframe Riemannian geometry in this GHA. As an example, it is 17 
then shown that one can express the Einstein equations of general relativity as commutation 18 
rules. If one requires that the GHA commutator reduces to the HA of quantum theory in the 19 
limit of no curvature, then there are observable effects for quantum theory in this curved 20 
space time.   21 

 22 

 23 
Keywords: Riemannian Geometry, Lie algebra, Quantum Theory, Metric, Heisenberg 24 
General Relativity  25 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 18 April 2019                   doi:10.20944/preprints201904.0204.v1

©  2019 by the author(s). Distributed under a Creative Commons CC BY license.

http://dx.doi.org/10.20944/preprints201904.0204.v1
http://creativecommons.org/licenses/by/4.0/


 2 of 11 

 

1.  Introduction    26 
 Lie algebras and the Lie groups which they generate have played a central role in 27 

both mathematics and theoretical physics since their introduction by Sophius Lie in 1888 [1]. 28 
Both relativistic quantum theory (QT) and the phenomenological standard model (SM) of 29 
particles and their interactions are framed in terms of observables which form Lie algebras 30 
and are firmly established [2,3,4,5]. A prime example is the Heisenberg Lie algebra (HA) 31 
among position operators, X, and operators, D, which translate one in the space of the X 32 
operators. The HA has applications also in mathematics in studies related to Fourier 33 
transforms and harmonic analysis [6,7,8,9].  But the theory of gravitation as expressed in 34 
Einstein’s general theory of relativity (GR), although also firmly established, is formulated 35 
in terms of a Riemannian geometry (RG) of a curved space-time where the metric is 36 
determined by nonlinear differential equations from the distribution of matter and energy 37 
[10,11]. Since the space-time has a curvature depending upon one’s position, it follows that 38 
the actions of the infinitesimal translation D operators will interfere with each other and the 39 
commutators may vary depending upon position. This suggests the generalization of a Lie 40 
algebra to allow for structure constants that are functions of the X operators in the algebra 41 
and thus are no longer constants except approximately in small neighborhoods.  42 

This paper reframes the mathematics of RG [13] in terms of such a generalized 43 
Heisenberg Lie algebra, (GHA). We show that the fundamental concepts in RG such as the 44 
coordinate transformations, contravariant and covariant tensors, Christoffel symbols, 45 
Riemann and Ricci tensors, and the covariant derivative can be expressed in terms of 46 
commutators in a GHA.  This framework is reminiscent of contractions of Lie algebras 47 
where the structure constants are modified to vary smoothly among different algebras based 48 
upon certain parameters [14, 15, 16, 17, 18, 19] which are non-spatial variables. In a similar 49 
way, our generalized Lie algebra allows the structure constants to be dependent upon the X 50 
operators in the algebra so that RG is retrieved as a representation of the algebra as one moves 51 
over the Riemann space. We then are able to frame the equations of general relativity as 52 
commutators in such a GHA.  53 
2.  Materials and Methods 54 

Consider a set of n independent linear self adjoint operators, X, which form an 55 
Abelian Lie algebra of order n, where  56 

[XXand where  = 0, 1, 2, … (n-1).         (1)57 
Consider a Hilbert space of square integrable complex functions |> as a representation 58 
space for this algebra where a scalar product is used to normalize the vectors to unity: 59 
.  The simultaneous eigenvectors of the Abelian Lie algebra, which is to serve as 60 
a complete basis for this space, can be written as the outer product of the Xeigenvectors 61 
with the Dirac notation 62 

|y0> |y1>|y2> …|yn-1> = | y0, y1, y2, …yn-1 > = |y>         (2)  63 
where the eigenvalues y label the associated eigenvectors |y> of the X operators.  64 
We use the notation 65 

X|y> = y|y> where eigenvalues yof the operators X are real numbers.   (3)66 
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These independent real variables y can be thought of as the coordinates of an n-dimensional 67 
space Rn since each set of values defines a point in Rn. Let the eigenvectors be normalized to 68 
be orthonormal with the Dirac function scalar product  69 

<ya|yb> = (y0
a-y0

b) (y1
a-y1

b)… (yn-1
a-yn-1

b).         (4) 70 
Let the decomposition of unity  71 

1 = dy|y><y|                 (5)  72 
project the entire space onto the basis vectors |y> where <y|, using Dirac notation, is the dual 73 
vector to |y>. A general vector in the representation (Hilbert) space of this Lie algebra can 74 
then be written as  75 

|> = dy|y><y|>  = dyy) |y>,            (6) 76 
where the functiony) gives the “components” of the abstract vector |> on the basis 77 
vectors |y>. Thus  78 

<|> = 1 = dy <|y><y|> =  dy y y       79 
Now consider another set of n linear operators, X’, which are independent analytic 80 

functions, X’X), of the Xoperators also forming an Abelian Lie algebra on the same 81 
representation space for this algebra where it follows that  82 

[X’X’               83 
Let the X’ have eigenvectors |y’> and eigenvalues y’ given by  84 

X’|y’> = y’|y’> where y’ are real numbers         (9)85 
The same orthonormality and decomposition of unity also obtain for the |y’> vectors which 86 
are also a complete basis for the space. Then we can let the X’X act to the left on the dual 87 
vector y’| and also act to the right on the vector |y> as               88 

<y’| X’X|y> = <y’| X’X|y> to give          (10) 89 
 y’y’|y> = y’y)y’|y>.             (11)90 

Thus the eigenvalues y’ = y’y)give the transformation from the y coordinates to the y’ 91 
coordinates if the Jacobian does not vanish i.e. | y’ y| ≠ 0 which we require to be the 92 
case. Thus the operators X’X) define a coordinate transformation in Rn between the 93 
eigenvalues (coordinates) y and the eigenvalues y’ (transformed coordinates) Rn’. Then the 94 
set of n real variables y and the alternative variables y’ both can be interpreted as specifying 95 
the coordinates of points in this n-dimensional real space Rn with coordinate transformations 96 
given by the functions  97 

y’y’ y                98 
It now follows that  99 
dy’ y’ y) dy             100 

and any set of n functions V(y) that transform as the coordinates,  101 
V’(y’) =   y’ y) V(y) is to be called a contravariant vector.     (14) 102 

We use the summation convention for repeated identical indices. The derivatives y 103 
transform as   104 

 y' =  y y’)  y              (15) 105 
and any such vector V(y) which transforms in this manner as    106 

V’(y’) =  y y’) V(y) is defined as a covariant vector.      (16) 107 
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Upper indices are defined as contravariant indices while lower indices are covariant indices.  108 
Functions with multiple upper and lower indices that transform as the contravariant and 109 
covariant indices just shown are defined as tensors of the rank of the associated indices.  110 

One would like to have transformations that translate one in the Rn space of the X 111 
operators (and thus their eigenvalues y). We now define a new additional set of n operators, 112 
D, that by definition are to translate an infinitesimal distance, ds, respectively in each 113 
corresponding directions y by using the group generated by the elements Dof the algebra 114 
via the exponential map with transformations:   115 

G(ds, ) = exp(ds (-i/ħ)D) .            (17) 116 
In this transformation  is to be a unit vector in the y space, ħ is a real constant, and ds is 117 
defined to be the distance moved in the direction  as defined below.  Then  118 

X’G XG               119 
By taking ds to be infinitesimal, then to one gets   120 

X’Xsds)exp( ds (-i/ħ) D
) Xsexp(- ds (-i/ħ) D

)      121 
     =  (1 + ds (-i/ħ) D


) Xs- ds(-i/ħ)  D)   122 

     = X s ds (-i/ħ)  D, Xhigher order in ds.,      (19) 123 
 Thus the commutator D, Xdefines the way in which the transformations commute 124 
(interact) with each other in executing the transformation in keeping with the theory of Lie 125 
algebras and Lie groups. If the space is flat then there is no dependence of the commutator 126 
upon location, and thus there is no interference among the D. Then D

Xcan be 127 
normalized to ±

(since D
 is defined to translate X ) thus  128 

D, X I±
                (20) 129 

where ± is the diagonal n x n matrix with ±1 on the diagonal with off-diagonal terms zero.  130 
This is the customary Heisenberg Lie algebra with structure constants ±

 and with D, 131 
D 0 for ≠. The operator I commutes with all elements, by definition has a single 132 
eigenvalue iħ, and is needed to close the basis of the Lie algebra which is now of dimension 133 
2n+1. Thus in the position representation  134 
 dy s ds (-i/ħ) (iħ)±

 ds  + higher order terms in ds.    (21) 135 
We now wish to allow for curvature in the space Rn of the X eigenvalues. Thus the 136 

[D, X] commutator is now allowed to be dependent upon the X operators and can vary from 137 
point to point in the space. We define the functions g(X) as generalized structure constants: 138 

D, X Ig(X)   (with the requirement that |g|≠ 0 )        (22) 139 
wherehas the single eigenvalue iħ with the commutators  140 

[D , ] = 0 = [X , ], and [X , X] = 0 .          (23) 141 
These (generalized structure constant) functions can also be written as  142 

g(X) = (-i/ħ) D, X             143 
where g(X) are assumed to be analytic with g(X) defined by  144 

g(X) g(X) = .                (25)  145 
Then using (19) one gets 146 

ysds) - ys) = dyds g(y)  = ds .         (26) 147 
Then  148 
 g(y) dydyds2 g(y) 

 = ds2 since  is a unit vector on this metric  (27) 149 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 18 April 2019                   doi:10.20944/preprints201904.0204.v1

http://dx.doi.org/10.20944/preprints201904.0204.v1


 5 of 11 

 

Thus it follows that                  150 
 ds2  g(y) dydy showing that g(y) is the metric for the space.    (28)  151 
One notes that g(X) can have an antisymmetric component as well as a symmetric. But only 152 
the symmetric portion of g(X) contributes to the metric for the space since it is contracted 153 
with the symmetric form dX

dX. The antisymmetric component of g(X) can however 154 
support a torsion (twisting) for the transformation although not contributing to the distance 155 
function ds. We thus obtain a 2n+1 dimensional “generalized Lie algebra” (GLA) with D, 156 
X, and I as the basis elements of the algebra. One notes that the commutator [D, D] has 157 
not yet been defined. D can be represented on the basis vectors of the Hilbert representation 158 
space where X is diagonal as    159 

<y|[D , X ] = <y| iħ g(X)    as              (29) 160 
<y| Diħg(y)/yA(y))<y| = iħ A(y))where ∂ =g(y) (∂/∂y)   (30) 161 

as the representation of Don the space of eigenvectors <y| and where A(y) is an arbitrary 162 
collection of vector functions of y. Note that this arbitrary vector function A(y) can include 163 
other terms such as iħ g(y) y/y . So one could write 164 
  D = DA(X)                 (31) 165 
in the commutators with X as this would not alter the commutation rules of D with X. This 166 
is the most general representation of the commutation rules with the operators available using 167 
the scalar, vector and second rank tensor representations. Both the vector function A(y) and 168 
a scalar function (y) could consist of multiple higher order tensor components including 169 
g(X), arbitrary scalar functions, arbitrary contravariant vector function A(X) and 170 
derivatives of such objects because any contravariant vector function of the X will commute 171 
with the X in the defining commutator of D and X.   172 

The A(y) can also support a Yang Mills gauge transformation group, acting 173 
simultaneously on the representation space  and on the A(y) vector functions. In that 174 
case the A(y) will have the commutation rules of that algebra with additional indices 175 
supporting Yang Mills gauge transformations. If that gauge algebra were to be extended to 176 
include g(X) then the commutators are more complex.  177 

Since [D, X] = I g(X), this is a generalization of the normal definition of a Lie 178 
algebra since g(X) is now a function of the position operators, X which, in the position 179 
representation |y>, become the eigenvalues which determine the position in the n dimensional 180 
space. Consequently, this “generalized Lie Algebra” has “structure constants”, g(y), which 181 
vary from point to point in the space. From now on we assume the general case where g = 182 
g (y) is to be understood in the position representation. 183 
  In the position representation one now has 184 

<y| D|> =(iħ g(y) (∂/∂y) + A (y) ) (y) = ( iħ ∂ + A (y) ) (y)   (32) 185 
where (y) = <y|>    and             (33) 186 
∂ = g(y) (∂/∂y)               (34) 187 

and A(y) is a yet undetermined vector function of X. In the position representation, one can 188 
write  189 

g (∂ /∂y) (y) <y|   = ∂  (y) <y| = <y| ( -i/ ħ) [D, (X)]     (35) 190 
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for any function  (X) allowing one to convert differential operators into commutators with 191 
D. It follows that [D, [D, X]] ≠ 0 so that this Heisenberg algebra is no longer nilpotent. 192 
But instead one gets  193 

<y| [D, [D, X]] = (iħ)2 g (∂g/∂y) <y| since        (36) 194 
[A, g] = 0                 (37) 195 

as they both are only functions of X. We have not specified the commutators [D, D ] yet 196 
as they are no longer zero but which in the position representation give   197 

<y| [D, D] = [(iħ g(y)(∂/∂y)+A (y)), (iħ g(y) (∂/∂y)+ A (y))] <y|  (38) 198 
= (-ħ2 ( g(y) (∂g(y) /∂y) (∂/∂y) – g(y) (∂g(y) /∂y) (∂/∂y) + g(y) g(y) 199 
(∂/∂y) (∂/∂y) –g(y) g(y) (∂/∂y) (∂/∂y) )+ [D,A] + [A,A ])<y|.   (39) 200 

The third and fourth terms cancel and the last term vanishes allowing one to re-express the 201 
D commutator as 202 

<y|[D, D]=(-ħ2(g(y)(∂g(y)/∂y)–g(y)(∂g(y)/∂y))(∂/∂y)+[D,A])<y| (40) 203 
One can write (∂/∂y) = -(i/ ħ) Dto get            () 204 

[D, D]<y| = ( iħ B D+ [D, A ] )<y|         205 
iħ B

 D+ [D, A]) <y|           ()  206 
But since this is true on all states <y|, it follows that    207 

[ D, D] = iħ B
 D + [D, A] where we define        (44) 208 

B
(g(y) (∂g(y) /∂y)– g(y) (∂g(y) /∂y)) g(y)      (45)  209 

and where these “structure constants” depend upon the both the metric and its derivatives.  210 
The term [A, A] is zero unless A contains additional operators such as with a Yang Mills 211 
gauge transformation. One also notes in the following, that since [A, g(X)] = 0, the A 212 
terms will no longer be present.  213 
3. Results 214 

The Christoffel symbols are given by  215 
 = (½) (∂, g + ∂, g- ∂, g)           (46) 216 

and can be written in the position diagonal representation, in terms of the commutators of D 217 
with the metric as   218 

   = (½) (-i/ħ) ([D, g] + [D, g] - [ D, g] ).        (47)  219 
Then using  220 

g (X)   = (-i/ ħ) [D, X] one obtains          (48) 221 
 = (-½) (1/ħ2) ( [D, [D, X]] + [D, [D, X]] - [ D, [D, X] ] ).   (49)  222 

The Riemann tensor then becomes  223 
R = (-i/ħ) ([D,  ] - [D,  ] ) + ( 

 - 
 )     (50) 224 

where  is to be inserted for the Christoffel symbols using (49) giving only commutators. 225 
One then defines the Ricci tensor using (50) for the Riemann tensor as  226 

R   = g R = (-i/ ħ) [D, X] R and also defines      (51) 227 
R    = g R = (-i/ ħ) [D, X] R.          (52) 228 

where the D is not to act on the Riemann or Ricci tensor.   229 
It is well known that the ordinary derivative of a scalar function,  V = /y , in 230 

Riemann geometry will transform under arbitrary coordinate transformations as a covariant 231 
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vector. But such a derivative of a vector function of the coordinates will not transform as a 232 
tensor.  The covariant derivative with respect y of a contravariant vector  is  233 


 /y

            234 
and the covariant derivative of a covariant vector  is given by  235 

 /y
            236 

where both 
 and  transform as tensors with respect to the metric g.   237 

One recalls for Riemannian geometry that there is a Christoffel symbol on the right 238 
hand side for each index of the tensor being differentiated. In our algebraic framework one 239 
can write the covariant differentiation of a contravariant vector  as: 240 


i [D](-½) ([D,[D,X]] + [D,[D,X]] - [D,[D,X] ])  (55) 241 

assuming that A is at most a function of the X operators. Thus we are able to write both the 242 
regular derivative (first term) and complete it with the index contraction with the Christoffel 243 
symbol (second term).  It is important to distinguish this covariant differentiation from the 244 
regular differentiation that occurs as a representation of the operator D in the position 245 
representation. It follows that we can write the covariant derivative of any tensor in the same 246 
way but with a contraction of the Christoffel symbol with each of the tensor indices as is well 247 
known in Riemannian geometry.  248 
 Finally, the generalization of the Fourier transform follows from <y|D|k> = <y|D|k> 249 
where the D acts first to the left on the bra vector and then to the right on the ket vector 250 
which is to be an eigenstate of D with eigenvalue k giving the differential equation:  251 
 (iħ g(y) (∂/∂y) + A(y) )<y|k>  = (k + A(y)) <y|k>.        (56) 252 
When there is no vector field  present and when g is constant (no y dependence & 253 
Minkowski metric), then this can be solved (with normalization for a four dimensional space-254 
time) with:    255 
 <y|k>  = (2  )-2 exp (g yk ).              (57) 256 
But in the general case with g(y) as a function of y this is no longer a solution and in the 257 
general case one cannot solve this equation except formally. In fact, since the D do not 258 
commute among themselves, one does not generally have a complete set of simultaneous 259 
Deigenvectors. However, one can consider very small regions of space where the metric is 260 
effectively a constant and giving the traditional Fourier transform.  Then the general solution 261 
would be approximately the smoothing of these local traditional solutions into a global 262 
solution maintaining functional and derivative continuity.   263 
4. Discussion of Applications to General Relativity 264 

In general relativity the Einstein equations          265 
R  - ½ g R  + g = (8 π G/c4) T  become        (58) 266 
R + ((i/ ħ) [D, X]) ( ½ R  -  ) = (8 π G/c4) T      267 

where R and R are now given in terms of commutators as shown above in (51) and (52) 268 
while Tis the energy-momentum tensor.  Thus all terms on the LHS consist only of 269 
commutators of operators, and (59) is an exact reproduction of the Einstein equations in GR 270 
expressed totally as GLA commutators thus framing GR as a generalized Lie algebra making 271 
it more mathematically compatible with quantum theory and standard model. In a strong 272 
gravitational field near a star, such as a non-rotating white dwarf, one can treat the metric as 273 
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constant using the Schwarzschild solution over a very small region such as atomic 274 
dimensions. The radial direction can be taken as the y1 direction as the distance to the center 275 
of the star, with  276 

g00 = (1 – rs/y1 )  and g11 = -1/(1 – rs/y1)           (60) 277 
where rs = 2GM/c2 with g22 = g33 = -1           (61) 278 

and where G is the gravitational constant, M is the mass of the star, c is the speed of light, 279 
and y1 is the distance to the center of the star.  280 
 One would now use traditional quantum field theory with the standard model intact, with 281 
all fields quantized as creation and annihilation operators as representations of the Poincare 282 
algebra.  Then the gravitational field g now included in D, would be quantized as the spin 283 
2, (b0 = 0, b1 = 3 symmetric tensor Poincare representation) massless field determined by 284 
equation (59) with other spin and helicity components gauged away. Then the RHS would 285 
be expressed in terms of the symmetrized operator TD operator where D not only 286 
contains the vector fields of the standard model but now also contains the gravitational tensor 287 
field g in parallel with the mediating forces of the vector fields.  288 

The Twould be taken in the traditional way between the spin ½ quark and lepton 289 
fields to give the energy-momentum tensor in the Lagrangian as the source of the 290 
gravitational field with the standard additional Lagrangian terms for the vector fields. The  291 
term would approximate dark energy. It is known that dark matter has gravitational 292 
interactions and could possibly be expressed as a non-zero mass (spin 2 g representation) 293 
particle if it turns out not to have weak interactions. This might be reasonable since the other 294 
vector particles have both massive and massless representations which might also exist for 295 
the tensor (spin 2) field. This approach reduces to exactly the current QT and SM if 296 
gravitation is negligible and reduces to exactly the current Einstein GR theory if quantum 297 
effects are negligible. When both theories contribute, the theory is far more complex.   298 

A specific prediction of this approach is that with the Schwarzschild metric, one gets 299 
an altered uncertainty principle  300 

X1 P1 ≥ (ћ/2)(1/(1-rs/r)) and              (62) 301 
X0 P0 ≥ (ћ/2) (1-rs/r)               (63) 302 

where rs = 2GM/c2 and where r = the distance to the center of the spherical mass. This is 303 
because the generalized Lie algebra effectively alters the value of Planks constant as a result 304 
of the curvature of space-time. This would in turn alter the creation rate of virtual pairs in the 305 
vacuum in a gravitational field, certainly around a black hole and near singular conditions. It 306 
could also have other implications which we are now investigating. What is maintained is a 307 
more general form of the Heisenberg uncertainty principle obtained by multiplying (62) and 308 
(63) together to obtain  309 

 X0 P0 X1 P1 ≥ (ћ/2)2             (64) 310 
while the other two uncertainty relations remain the same. Because the metric is quantized, 311 
it follows that distance and angle in space-time are now “granular” or “quantized”. The 312 
Lorentz algebra is now defined by  313 

L = X D - X D                314 
determining their generalized commutation rules.   315 
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5. Conclusions 316 
It is not necessary to reexpress the numerous theorems that already exist in 317 

Riemannian geometry because the essential foundation is established above. If the metric 318 
g(X) is a well behaved function of the operators Xthen the same results again will be 319 
obtained. One notes that the commutators [D, D] are not arbitrary and are fixed by the 320 
metric and their commutators with the XLikewise while the commutators among the 321 
rotation generators in this space L = XD -  XD and other commutators are complex in 322 
structure, they are still determined from derivatives of the metric and can be used to generate 323 
other groups of transformations such as rotations and Lorentz transformations thus 324 
generalizing this extended Poincare algebra. Naturally, the truly different aspect is that the 325 
metric function is defined in the enveloping algebra of the underlying algebra and the algebra 326 
does not have the same kind of closure that one normally has for a Lie algebra. If the metric 327 
functions are sufficiently smooth, then in a sufficiently small neighborhood of a gravitational 328 
field, one gets a standard Heisenberg Lie algebra with constant (but different) numerical 329 
values for the structure constants as with the Schwarzschild or Kerr metric. Even among the 330 
[D, D] commutators, the derivatives of the metric result in fixed values in that small 331 
neighborhood as well as for the rotation group. The system is reminiscent of the group 332 
contraction concepts introduced by E. Inonu and E. P. Wigner and subsequent work where 333 
the structure constants are dependent upon other parameters as referenced above. Since the 334 
D operators generate infinitesimal translations in the Riemann space defined by the metric 335 
of the [D, X] commutator, then it follows that this approach gives the framework of all groups 336 
of motions in all Riemann spaces via the exponential map. The linking of two domains of 337 
mathematics such as Lie algebras & groups with Riemannian geometry, may allow each to 338 
inform the other. This is especially true when one of the domains is generalized as we have 339 
done here with the structure constants of the basic Heisenberg Lie algebra. One can now ask 340 
if the framework of Lie algebras and groups tells us something new about allowable metrics 341 
of the associated Riemann spaces.  Likewise does the generalization of Lie algebras give 342 
one new tools and challenges.   343 

From the physics point of view, there are extensive implications because the metric 344 
(and thus the commutation rules) is determined by the distribution of matter and energy as 345 
expressed in the energy momentum tensor operators with Einstein’s equations. The basic 346 
generalized Heisenberg algebra equation introduced here, D, Xg(X), could tell us 347 
something specific about the fundamental nature of the universe, namely that the interference 348 
among four-momentum and four-position (space time) observations is given by the Einstein 349 
metric along with all other resulting commutation relations. As the primary equations of 350 
motion in quantum theory are built upon the D

operators with the SM, it follows that 351 
observable effects will follow this assumption which offers an alternate framework for 352 
beginning to unify general relativity with quantum theory. With this framework one can now 353 
extend the Poincare algebra from its Heisenberg algebra component. [12, 20, 21]. It is also 354 
of interest to observe that the representation of the D

operator, (iħ g(y) (∂/∂y) + A(y) ), 355 
contains arbitrary vector fields A(y) in a natural manner that are necessary for the SM to 356 
support Yang Mills gauge transformations. It is also of interest to note that the functions 357 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 18 April 2019                   doi:10.20944/preprints201904.0204.v1

http://dx.doi.org/10.20944/preprints201904.0204.v1


 10 of 11 

 

g(y) can contain an antisymmetric component related to torsion although this component 358 
does not contribute to the metric for distance [22, 23, 24]. This framework has several 359 
freedoms as it can allow for an antisymmetric component to g which, as discussed above, 360 
does not contribute to the metric distance but does allow more freedom in the  connection 361 
as explored by Einstein and Cartan.  And finally, this framework can be extended to higher 362 
dimensions as with string theory as there is no restriction of the space-time to four 363 
dimensions.  364 
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