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Abstract: Cyanobacteria are photosynthetic microorganisms that colonize diverse environments worldwide, 11 
ranging from ocean to freshwaters, soils, and extreme environments. Their adaptation capacities and the 12 
diversity of natural products (molecules, metabolites, or compounds) that they synthesize support the 13 
cyanobacterial success for the colonization of their respective ecological niches. Although cyanobacteria are 14 
well-known for their toxin production and their relative deleterious consequences, they also produce a large 15 
variety of molecules that exhibit beneficial properties with high potential for various fields of application (e.g., 16 
synthetic analog of the dolastatin 10 used against Hodgkin lymphoma). The present review specially focuses 17 
on the beneficial activities of cyanobacterial molecules described so far. Based on an analysis of 670 papers, 18 
it appears that more than 90 genera of cyanobacteria have been found to produce compounds with potential 19 
beneficial activities, most of them belonging to the orders Oscillatoriales, Nostocales Chroococcales, and 20 
Synechococcales. The rest of the cyanobacterial orders (i.e., Pleurocapsales, Chroococcidiopsales, and 21 
Gloeobacterales) remain poorly explored in terms of their molecular diversity and relative bioactivity. The 22 
diverse cyanobacterial molecules presenting beneficial bioactivities belong to 10 different chemical classes 23 
(alkaloids, depsipeptides, lipopeptides, macrolides/lactones, peptides, terpenes, polysaccharides, lipids, 24 
polyketides, and others) that exhibit 14 major kinds of bioactivity. However, no direct relation between the 25 
chemical class and the bioactivity of these molecules has been demonstrated. We further selected and 26 
specifically described 50 molecule families according to their specific bioactivities and their potential uses in 27 
pharmacology, cosmetology, agriculture, or other specific fields of interest. This up-to-date review takes 28 
advantage of the recent progresses in genome sequencing and biosynthetic pathway elucidation, and presents 29 
new perspectives for the rational discovery of new cyanobacterial metabolites with beneficial bioactivity. 30 

Keywords: cyanobacteria; natural products; metabolites; biological activities; producers; chemical 31 
classes 32 

 33 

1. Introduction 34 
Cyanobacteria belong to an ancient group of photosynthetic prokaryotes presenting a very wide 35 

range of cellular strategies, physiological capacities, and adaptations that support their colonization 36 
of very diverse microenvironments that are spread worldwide. As a consequence, cyanobacteria 37 
occur in varied and often even extreme habitats and are then able to settle in diverse biotopes (e.g., 38 
marine, terrestrial, freshwater, thermal springs) [1–3]. They are also well known for their production 39 
of a wide variety of natural bioactive products, including some potent toxins (e.g., microcystins, 40 
anatoxins, saxitoxins) [2,3]. Due to the remarkable capability of cyanobacteria to proliferate and form 41 
toxic blooms that induce potential human health consequences [4], numerous studies have been 42 
conducted to develop tools for the monitoring of cyanobacterial blooms [5,6] or effective strategies 43 
for the mitigation of their overgrowth [7]. On the contrary, cyanotoxins could also constitute a 44 
promising opportunity for drug development, notably for certain cancer therapies [8]. 45 

Two main aspects, the chemical diversity and the related bioactivity, have to be considered when 46 
considering the application potential of natural products (molecules, metabolites, or compounds) 47 
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produced by cyanobacteria. The chemical diversity of metabolites produced by cyanobacteria has 48 
been largely described and about fifteen reviews have been already published in the past twenty 49 
years dealing with their structural and chemical diversity [9–14] or their corresponding biosynthetic 50 
pathways [15,16]. Beyond the notorious harmful effects of cyanotoxins, other cyanobacterial natural 51 
products show a wide range of bioactivities that could be potentially useful for diverse application 52 
fields [17–21]. So far, among the existing reviews related to the diversity of cyanobacterial 53 
metabolites, only one has addressed the relative taxonomical positions of the producing strains [9]. 54 
Few taxa appear to be especially prolific producers of a large set of metabolites, while others still 55 
remain to be investigated. Recent genomics approaches and genome sequencing have been important 56 
steps in the elucidation of the pathways implicated in the biosynthesis of natural products. The wide 57 
structural diversity has been described as a consequence of the numerous biosynthetic pathway 58 
developed by cyanobacteria in order to produce these metabolites [15]. Most of the active 59 
cyanobacterial molecules are considered as being produced either through the non-ribosomal peptide 60 
(NRP) or the hybrid polyketide-NRP biosynthetic pathways [10], or by the ribosomal synthesis of 61 
pro-peptides that are post-translationally modified (RiPP). Previous genome analysis demonstrated 62 
that the diversity of the known metabolites is just a fraction of the true metabolic potential of 63 
cyanobacteria [15]. Concerning the bioactivity, cyanobacteria have long been a source of molecules 64 
with a potent nutritional virtue [18]. Indeed, Aztec civilizations consumed cyanobacteria (Spirulina) 65 
in their routine diet [22], and Chadian populations still use them as one of their substantial food 66 
sources [23]. Besides nutritional and probiotic purposes [13,21], they are well-known as a powerful 67 
source of metabolites with technological applications in the biotechnical or pharmaceutical fields, 68 
leading to an increase in interest in these research realms [10]. The most notorious bioactivities 69 
described to date are the antibacterial, antifungal, anticancerous, immunosuppressive, anti-70 
inflammatory, and antituberculosis activities that have the potential to be used in rising fields such 71 
as pharmacology, cosmetology, agriculture, the food industry, or as biofuels [17]. Cyanobacteria cells, 72 
such as microalgae, already represent a sustainable resource for biotechnology due to their 73 
photosynthetic, N-fixation, and autotrophic capacities [17,18,24]. Due to the current increase in their 74 
pharmaceutical value and in their application prospects for use in medicine or biotechnology, the 75 
exploration of uncovered cyanobacterial taxa constitutes a promising strategy to efficiently explore 76 
the chemical diversity of their bioactive compounds. 77 

The present review globally and systematically describes current knowledge on the biological 78 
activities described for cyanobacterial natural products, and thanks to the construction of a specific 79 
and freely available molecular database, regroups all information described so far concerning the 80 
chemical structures, the producing organisms, and the various bioactivities of all the different 81 
cyanobacterial metabolite families. This original material allows us to depict, from data based on 82 
exhaustive literature, which kinds of bioactive metabolite are potentially produced by the different 83 
cyanobacterial taxa. Here, the producer organisms were considered at different taxonomic levels 84 
(family, order, and genus) and are referenced according to their original habitats (freshwater, marine, 85 
and others). The chemical diversity is described with respect to the different kinds of bioactivity and 86 
the potential links between them are questioned, according to their potential or effective molecular 87 
mechanisms of action. A specific focus on 50 cyanobacterial compounds presenting beneficial 88 
bioactivities is detailed and discussed regarding their potential interest in pharmaceutical, cosmetical, 89 
biotechnical, and agricultural applications, opening new perspectives on the discovery of new potent 90 
bioactive cyanobacterial molecules. 91 

2. Methods for dataset construction 92 
A database was constructed using different search engines, notably PubMed and Google 93 

Scholar. The keywords used were “cyanobacteria”, “metabolite” or “natural product”, “beneficial” 94 
and “activity”, or “biological properties”. The database was first based on reviews and further 95 
completed with recent publications dealing with the isolation of new compounds from cyanobacteria.  96 

The main entries into the database were the names of the metabolites. To avoid bias in the 97 
counting of metabolites, we stored all the data of each molecule and its variants as a “family” 98 
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according to their structures, in accordance with the proposal of Boudreau et al., 2012 [25] for the 99 
kulolide-like family. For example, all the properties of microcystin variants are contained in one line 100 
of the database. 101 

The data collected were then classified depending on the chemical class of the compound, the 102 
chemical structure, and the strain producing the metabolites with all the taxonomic information 103 
(species, genus, family, and order), in accordance with Komarek et al. (2014) [26]. In addition, we 104 
collected the demonstrated activities for the purified compounds. Fourteen classes of activity were 105 
predominant: lethality (against brine shrimp, and other small invertebrates), neurotoxicity, 106 
hepatotoxicity, dermal toxicity, cytotoxicity, anti-inflammatory activity, antioxidant activity, 107 
antiviral, antibacterial, antifungal, antialgal, antiprotozoal, serine protease inhibition, and other types 108 
of enzyme inhibition.  109 

Six hundred and seventy publications were analyzed, dating from the 1970s until today, and 260 110 
families of metabolites were listed. To validate the knowledge depth of our work, a rarefaction curve 111 
of the number of molecule families was constructed using the number of analyzed publications 112 
(Figure 1).  113 

Figure 1. Evolution of the cumulative number of metabolite families according to the number of 114 
analyzed publications used for the construction of the database. The arrow indicates reclassification 115 
event of all the structural variants of one molecule in a unique entry of “family”, according to the 116 
work of Boudreau et al. 2012 [25] with the kulolide family. We observed a progressive stabilization of 117 
the number of compounds family in the database that supports the postulation of the exhaustiveness 118 
of the present database. 119 

3. Taxonomy of the producing strains 120 
The 260 families of molecules were attributed to cyanobacteria at their different taxonomic levels 121 

(order, family, and genus) (Figure 2). Some families of compounds can be produced by different 122 
strains and thus, occur at different taxonomical level. For example, microcystins are produced by 123 
various strains belonging to seven different genera, five families, and three orders. 124 
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The Oscillatoriales produces the largest number: 153 families of metabolites (46.5%). The strains 125 
belonging to the Nostocales are also considerable producers of metabolites with 98 families (29.7%). 126 
The other main producers are the strains belonging to Chroococcales and Synechococcales, which 127 
exhibit, respectively, 34 and 31 described molecules (10.3% and 9.4%). It is interesting that except for 128 
these four orders, the others (i.e., Pleurocapsales, Chroococcidiopsales, Gloeobacterales, and 129 
Spirulinales) are weakly represented in the database: less than five families of metabolite have been 130 
reported so far for all of them. Some metabolites have been isolated from cyanobacterial assemblage 131 
without accurate identification of the producer organisms. For these cases, the authors identified the 132 
genera of the two dominant cyanobacteria of the assemblage but could not accurately determine 133 
which one of them produces which molecule [27–39]. Tidgewell et al. (2010) [9] also identified the 134 
prevalence of the marine cyanobacterial products within Oscillatoriales and Nostocales with 58% and 135 
24% of the isolated molecules, respectively. Within Oscillatoriales, members of the genus Lyngbya, 136 
and notably, Lyngbya majuscula produce the highest number of metabolites. This benthic genus is 137 
widely spread through the marine tropical ecosystem and has been widely studied because of its 138 
toxicity and implication in many dermatitis cases around the world [40,41]. A number of studies have 139 
been conducted on this genus, and a high number of new metabolites have been described. 140 
Nevertheless, Lyngbya is, to date, the most productive genus of bioactive cyanobacteria compounds 141 
(Figure 2.B). Recent studies showed that Lyngbya is polyphyletic [26,42] and using polyphasic 142 
approaches, Lyngbya have been split in four new genera: Moorea [43], Okeania [44], Limnoraphis [45], 143 
and Microseira [46]. Some marine strains previously identified morphologically as Lyngbya majuscula 144 
and Lyngbya sordida were therefore renamed to Moorea producens, and some strains of Lyngbya 145 
bouillonii were renamed to Moorea bouillonii on the basis of molecular and phylogenetic analyses [43]. 146 
In the same way, some freshwater strains morphologically identified as Lyngbya wollei were separate 147 
from the Lyngbya genus and described as Microseira wollei after analysis of their phylogeny [46]. 148 

According to this information, we decided to present the number of metabolite families 149 
produced by the Lyngbya and the Moorea genera together (reported as Lyngbya-Moorea in Figure 2.B), 150 
given that the majority of families isolated from Lyngbya species were reported to be from Lyngbya 151 
majuscula (46 of 78 described from all the Lyngbya) or from Lyngbya spp. strains sampled from tropical 152 
marine environments (22 of 78), as described for the Moorea genus and were possibly misidentified 153 
in regard to this newly described genus [43]. 154 

At the family level, the main producers of known bioactive compounds belong to 155 
Oscillatoriaceae (30.3%, representing 122 families of compounds), followed by Nostocaceae and 156 
Microcoleaceae (17.2% and 10.9% for 69 and 48 molecule families, respectively) (Figure 2.A). At the 157 
genus level (Figure 2.B), Lyngbya-Moorea exhibits the highest number of isolated compounds (85 158 
families of metabolites representing 20.6%), in accordance with the perceived richness production for 159 
the Lyngbya genus due to its polyphyletic status [47]. Nostoc is the second most prolific genus of 160 
bioactive compound families with 50 isolated families so far (12.1% of the families of metabolites). 161 
The other most important genera are Anabaena, Oscillatoria, and Microcystis (with 32, 31, and 27 162 
families of molecules, respectively, representing 7.8%, 7.5% and 6.6%) (Figure 2.B). 163 

When looking at the habitats of these Cyanobacteria, a large number of compounds were 164 
isolated from marine environments (148 families of metabolite in the database, meaning 53% of the 165 
families of metabolites) in comparison to the number of strains isolated from freshwater 166 
environments (77 families of metabolites, 27.6%) (Figure 2.B). However, this difference might be at 167 
least partly due to the high number of compounds isolated from the marine species Lyngbya 168 
majuscula-Moorea producens (49 families of molecules, 18.8% of the families in the database) and to the 169 
existence of various research programs focused on marine species (e.g., the Panama International 170 
Cooperative Biodiversity Group, ICBG).  171 
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Figure 2. Proportion of families of compound by taxonomical level. A/ The pie chart represents the 172 
percentage of compound families for each taxonomical family. Remark that some compound families can 173 
be produced by several cyanobacterial families. The “Other” category concerns other taxonomical families 174 
that produce less than 2 compound families. B/ The histogram shows the number of compound families 175 
for each genus. The “Other” category corresponds to genera producing less than 4 compound families. * 176 
indicates cyanobacterial assemblages whom the real metabolite producer is undetermined. The boxes 177 
indicate the environmental origins for the corresponding genera. For both charts, the colors correspond to 178 
the taxonomical order of each genus or family. 179 

180 
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Overall, we observed that diversity at the genus level is important, as illustrated by the 90 181 
different genera present in the database. Moreover, 65 different genera have been reported to produce 182 
less than four molecules (Figure 2.B). We also noticed that five molecules were isolated from 183 
Lyngbya/Schizothrix assemblages and five others from unidentified strains of cyanobacteria (Figure 184 
2.B). These two observations allowed us to conclude that, at the genus level, the diversity of producers 185 
is large with a high number of genera studied. Nevertheless, the covered diversity appears not to be 186 
exhaustive and can still be increased. For example, among the Pleurocapsales order, only four genera 187 
have been reported to produce metabolites. 188 

According to Shih et al. (2013) [48], the genomic potential of cyanobacteria to produce secondary 189 
metabolites is high with over above 70% of the studied strains presenting non-ribosomal peptide 190 
synthase (NRPS) or polyketide synthase (PKS) gene clusters in their genomes. In particular, they 191 
identified one strain belonging to the Fischerella genus (Fischerella sp. PCC 9339) that exhibits 22 192 
NRPS/PKS clusters in its genome. On the contrary, only five compound families have been isolated 193 
from the genus Fischerella so far and are listed on the present database. Moreover, it is interesting to 194 
note that among the 126 strains analyzed by Shih et al. (2013) [48], only 14 were formally reported to 195 
produce characterized metabolites.  196 

On the other side, the best producer genus, Lyngbya-Moorea, remains rarely studied at the 197 
genomic level: four genomes are available in Genbank database and another three are available on 198 
the Microscope platform [49]. Considering the number of compounds isolated from the Lyngbya-199 
Moorea genus (85 compound families), most of the links between the identified molecules and the 200 
responsible biosynthetic gene clusters remain to be characterized. We also compared our collected 201 
data with those reported by Dittman et al. (2015) [15] in order to determine when the isolated 202 
molecule families are linked with a specific gene cluster for biosynthesis. This review showed that 203 
less than 20% of the molecule families from the database are associated with specific identified 204 
production of gene clusters. Thus, the biosynthesis of a large majority of compounds is still unknown 205 
as well as the regulation mechanisms controlling their biosynthesis. Therefore, these observations 206 
highlight part of the remaining possibilities for the discovery of new molecules, gene production, and 207 
biosynthesis pathways. 208 
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4. Chemical diversity and bioactivity of natural products from cyanobacteria 210 

Each of the 260 families of compounds was classified by chemical classes and bioactivity (Figure 211 
3 & 4). The 260 families of compounds were classified by their chemical classes, and 10 classes were 212 
listed: alkaloids, depsipeptides, lipopeptides, macrolides/lactones, peptides, terpenes, 213 
polysaccharides, lipids, polyketides, and others (Figure 3). Of the 260 metabolite families, 66 belong 214 
to the peptide class. Together with the depsipeptide and lipopeptide classes, they represent 133 215 
families of compounds (51%) derived from peptides. This is not surprising, regarding the diversity 216 
of biosynthetic pathways described in cyanobacteria: NRPS (non-ribosomal peptide synthase), PKS 217 
(polyketide synthase) and RiPPs (ribosomally synthesized and post-translationally modified 218 
peptides) with the ability to produce a wide range of metabolites and notable peptides [15] (Figure 219 
3). Fourteen major activities have been listed from the literature (lethality, neuro-, hepato-, dermato- 220 
and cytotoxicity, anti-inflammatory, antioxidant, antiviral, antimicroalgal, antibacterial, antifungal 221 
and antiprotozoal activities as well as protease and enzyme inhibition activities). Cytotoxic activity 222 
against various cell lines is the most frequently detected type with up to 110 families of the 260 listed. 223 
On the other side, lethal and the antibacterial activities have been detected for 54 and 43 compound 224 
families, respectively (Figure 4). 225 

Figure 4. Number of metabolite families observed for each class of activity. The percentage represent 226 
the proportion of one activity compared to the whole occurrence of activities detected (n=362), some 227 
compounds presenting various activities and are considered several times. 228 

The number of compounds displaying each tested activity is shown in Figure 5. The activities of 229 
molecules have been tested against different targets ranging from specific cellular mechanism to 230 
whole organism. For example, the inhibitory activity of proteases and other enzymes was shown to 231 
target enzymatic processes when the lethality and antimicrobial activity were tested against whole 232 
“organisms”. The lethality tests were generally realized against small invertebrates such as the brine 233 
shrimp crustacean Artemia salina, the gastropod mollusk Biomphalaria glabrata, and the crustacean 234 
Thamnocephalus platyurus. This analysis confirms preceding observations (i.e., that cytotoxicity is the 235 
most commonly detected activity, followed by lethality and antibacterial activity). Some activities 236 
were detected only for a restricted number of compounds: dermatotoxicity concerned only two 237 
families of metabolites (aplysiatoxins and lyngbyatoxins) [50,51], hepatotoxicity was observed for 238 
three families (cylindrospermopsins, microcystins, and nodularins) [52–54], antioxidant and anti-239 
inflammatory activities were observed for four (carotenoids, chlorophylls, mycosporine-like amino 240 
acids, phycocyanins) [55–58] and seven metabolite families (coibacins, honaucins, aeruginosins, 241 
malyngamides, phycocyanin, scytonemin, tolypodiol) [59–65], respectively. Nevertheless, there are 242 
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only a few examples of these activities being tested by authors in comparison with cytotoxicity and 243 
lethality, which have been investigated far more regularly. In terms of anti-inflammatory activity, all 244 
seven tested molecules cited above were positive for this type of activity, and 53% of the studied 245 
molecule families have been tested for cytotoxic activity, while only 2.7% have been tested for anti-246 
inflammatory activity. In parallel, some of these metabolite families can exhibit more than one 247 
activity. In fact, a total of 362 activities have been detected for all metabolite families. 248 

Figure 5. Classification of the 260 metabolite families according to their respective activities and 249 
chemical classes. The number of metabolite families is symbolized by the disc diameters, for each 250 
activity and each chemical class. For example, the first circle represents the number of alkaloids who 251 
has a hepatotoxic activity (in this case, 1 family of metabolites). Colors corresponds to the different 252 
category of activity targets. For example, cytotoxicity and hepatotoxicity are tested in vitro against cell 253 
lines while neurotoxicity, antioxidant and anti-inflammatory activities are biochemically tested for 254 
specific cellular mechanisms (such as the sodium influx, the scavenging of ROS (reactive oxygen 255 
species) and the inhibition of cytokines). 256 

Focusing on the chemical class, it appears that there is no specific indication that one chemical 257 
class exhibits specific activities with regard to other classes. The results from the review showed that 258 
the polysaccharide class has only two activities (enzyme inhibition and antiviral activity), but only 259 
three types of polysaccharide isolated from cyanobacteria have been observed so far (calcium 260 
spirulan, cyclodextrins, iminotetrasaccharide) [66–68]. Five chemical classes, the alkaloids, the 261 
depsipeptides, the lipopeptides, the macrolides, and the peptides, seem to present a very large set of 262 
activities. When comparing the number of detected activities with the number of molecules belonging 263 
to each chemical class, the most bioactive molecules were shown to be the alkaloids, the lipopeptides, 264 
and the polyketides. Indeed, molecules belonging to the alkaloid class actually exhibit an average of 265 
2.2 activities per molecule family, while the lipopeptides, the polyketides, and the peptides exhibit 266 
averages of 1.9, 1.8, and 1.2 bioactivities per molecule class, respectively. 267 
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These observations highlight a bias in the bioactivities searched from the isolated molecules. 268 
Only the tested activities are finally reported. This obvious ascertainment remains the main limitation 269 
for the description of the potential applications of the bioactive molecules. In addition, there is still 270 
no consensus concerning the dose and dilution threshold that should be considered for each 271 
individual bioactivity test. In some cases, the concentration difference, used to determine if two 272 
distinct molecules are active, is important. For example, odoamide [69], a cyclic depsipeptide member 273 
of the aurilides family, and scytoscalarol [70], a sesterterpene, have both described as being 274 
“cytotoxic”. However, their respective IC50 values appear to be very different: 26.3 nM against HeLa 275 
S3 human cervical cancer cells for odoamide and 135 µM against Vero cells for scytoscalarol, which 276 
represents a concentration difference of 500 times between their respective inhibition potentials. 277 
Furthermore, tests can be realized against several cell lines and strains with different responses, 278 
which limit comparison between results. 279 

With 10 chemical classes and 14 types of bioactivity, the cyanobacterial metabolites are diverse 280 
and highly active. However, half of the families of metabolites listed in the database are peptides or 281 
peptide derivatives. This could be due to the importance of the peptide biosynthetic pathway (NRPS, 282 
PKS, and RiPPs) or the extraction methods used, which can eventually favor peptide extraction. We 283 
did not observe a link between chemical classes and activities, but this observation must be 284 
considered carefully in regard to the weak number of molecules in some classes (i.e., polyketides, 285 
polysaccharides, terpenes). The most frequently detected activity for cyanobacterial metabolites is 286 
cytotoxicity (42% of the metabolite families), whereas antioxidant or anti-inflammatory activities 287 
were detected for only 1.5% and 2.7% of the families. This imbalance is due to the frequency at which 288 
tests were carried out. In fact, cytotoxicity was tested for 53% of the molecules, while anti-289 
inflammatory activity was only tested in 2.7%. This observation may reflect the research inclination 290 
to find new pharmaceutical compounds, notably cytotoxic compounds that are usable in cancer 291 
therapy, and suggests the potential for the discovery of new activities for application in other fields. 292 

5. Beneficial activities of natural products produced by cyanobacteria  293 
In this review, we further considered and developed examples of molecules that are considered 294 

as exhibiting potential beneficial activities for several purposes. The 260 families of compounds could 295 
have a large field of applications, e.g., agriculture, pharmacology, cosmetology, or in the food 296 
industry. For potential applications in agriculture, cyanobacterial compounds could be useful for 297 
alternative soil fertilization methods and as chemical pesticides [18]. The potential pharmaceutical 298 
applications of cyanobacterial metabolites include the development of new antibiotics or antibacterial 299 
or antiviral drugs [21]. 300 

5.1. Antimicrobial activity 301 
Antimicrobial compounds that do not also present toxic effects are particularly of interest for 302 

applications in the food industry in order to clean processing equipment or for food preservation 303 
[71,72]. Cyanobacteria produce 85 families of metabolites isolated from various strains which display 304 
potent antimicrobial activity (representing a third of the 260 listed in the database) [18]. Below, we 305 
summarize the different antimicrobial metabolites (ranging by type of antimicrobial activity) that 306 
have been isolated from cyanobacteria so far and the corresponding available information. We also 307 
detail some examples of specific molecules that exhibit interesting bioactivity profiles. 308 

5.1.1. Antibacterial activity 309 
Among the metabolite families listed, 43 molecules have antibacterial activity, representing 17% 310 

of the families. These components were, in general, tested against different types of bacteria: GRAM-311 
, GRAM+, mycobacterium, and cyanobacteria. 312 

Among the 43 molecules, 22 are also cytotoxic and 16 have lethal activity against small 313 
invertebrates. Only three of them—eucapsitrione, kulolide-like, abietic acid—may have specific 314 
antimicrobial activity and produce negative results against other microorganisms. 315 
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Table 1. Antibacterial molecules extracted from the database and discussed in this review 316 

More details about molecule activities are available in supplementary data 317 
Eucapsitrione and kulolide-like molecules (Table 1) show antibacterial activity (against 318 

Mycobacterium tuberculosis) without inhibitory activity against the yeast Candida albicans [73,78]. 319 
Eucapsitrione is a molecule isolated from the cyanobacteria Eucapsis sp. (UTEX 1519) [73] and seems 320 
to be a derivative of anthraquinones. This phenolic compound family is well-known in plants and 321 
some microorganisms, and has demonstrated a large range of bioactivities, including antimicrobial, 322 
antioxidant, anti-inflammatory, and potent anticancer properties [113–116]. This opens up other 323 
perspectives and applications for these anthraquinone derivatives isolated from cyanobacteria, such 324 
as eucapsitrione, but, so far, its other potential bioactivities have not been tested. 325 

The kulolide-like family includes 44 related molecules. The first discovered molecule of the 326 
family, kulolide, was isolated from a cephalaspidean mollusk Philinopsis speciosa [74]. Luesch and co-327 
workers (2001) discovered the first cyanobacterial analogues of this family, naming them the 328 
pitipeptolides, and proposed a cyanobacterial origin for kulolide, which had been isolated earlier 329 
from the mollusk [76]. All members of the kulolide-like family share chemical similarities and can be 330 
categorized into two subgroups: those containing 2,2-dimethyl-3-hydroxy-7-octynoic acid (Dhoya) 331 
and those containing 3-hydroxy-2-methyl-7-octynoid acid (Hmoya) [25]. The same activities were not 332 

Molecule family Chemical classes Activity Producing organisms References 
Eucapsitrione Anthraquinone 

derivative 
- Antibacterial 
- No 
antimicrobial  
- Cytotoxic 

Eucapsis sp. UTEX 1519 [73] 

Kulolide-like Depsipeptide - Antibacterial 
- No antifungal 
- Antiprotozoal 
- Lethal 
- Cytotoxic 
- VGSC (Voltage 
Gate Sodium 
Channel) 
activation 

Lyngbya majuscula; 
Rivularia sp.; 
Moorea producens; 
Okeania sp.; 
Symploca hydnoides; 
Oscillatoria margaritifera 

[25,74–85] 

Abietic acids  Terpene - Antibacterial 
- No lethality 
- No antialgal 

Plectonema radiosum LEGE 06105; 
Nostoc sp. LEGE 06077 and LEGE 07365; 
Chroococcidiopsis sp. LEGE 06174; 
Synechocystis sp. LEGE 06079; 
Synechocystis salina LEGE 06099; 
Leptolyngbya ectocarpi LEGE 11425; 
Nodosilinea sp. LEGE 13457; 
Nodosilinea nodulosa LEGE 07084 

[86] 

Hapalindole-like Alkaloid - Antibacterial   
- Antifungal 
- Antialgal 
- Cytotoxic 
- Insecticidal 
- Lethal activity 
- Reverse drug 
resistance (MDR) 
- VGSC 
modulator 

Hapalosiphon fontinalis; 
Westiellopsis sp.; 
Fischerella musicola; 
Hapalosiphon welwitschii; 
Westiella intricata; 
Fischerella ambigua; 
Hapalosiphon delicatulus; 
Hapalosiphon hibernicus; 
Westiellopsis prolifica; 
Fischerella sp.; 
Hapalosiphon laingii 

[87–112] 
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tested for all analogues, but some of them have shown antibacterial, antiprotozoal, cytotoxic, and 333 
even lethal activities (Table 1). 334 

The third example of a molecule family presenting a specific anti-bacterial activity is abietic acid 335 
(Table 1). This molecule is a terpene that is generally found in resin and used by conifers as a defense 336 
metabolite [86]. Abietic acid presents anticyanobacterial activity against Synechococcus nidulans, and 337 
it seems to be non-toxic for Chlorella vulgaris and the brine shrimp Artemia salina (Table 1). Authors 338 
have suggested that its activity and defense mechanisms could be equivalent to those of conifer 339 
plants, i.e., trapping microorganisms or acting like allelochemical compounds. These non-toxic 340 
properties are interesting for the development of specific anti-cyanobacterial products. 341 

The hapalindole-like group is a family of alkaloids, which contains around 80 related molecules 342 
([87–112]) (Table 1). These metabolites were only previously isolated from Hapalosiphon, Fischerella, 343 
Westiellopsis, and Westiella genera. They show a wide range of activity, most notably, antibacterial 344 
activity against 27 various bacterial strains, together with antifungal and antialgal activities. They are 345 
also cytotoxic and exhibit additional insecticidal activity. Some of them were even able to reverse 346 
drug resistance in cancer cell lines [104,108] (Table 1). They probably exhibit modulatory activity on 347 
the sodium channels [106], which could explain their large set of diverse bio-activities. 348 

5.1.2 Antialgal activity 349 

Table 2. Antialgal molecules extracted from the database 350 

Antialgal activity was tested generally against microalgae, and 10 families of metabolites were 351 
shown to present such activity. Among these 10 families, four also exhibited anticyanobacterial 352 
activity, and it can be supposed that these molecules may be acting against general photosynthesis 353 

Molecule family Chemical classes Activity Producing organisms References 
Cyanobacterin Lactone 

derivative 
-Antialgal 
-Anticyanobacterial  
-Growth inhibition  

Scytonema hofmanni UTEX 2349; 
Nostoc linckia CALU 892 

[117–119,128] 

Fischerellins Polyketide -Antialgal 
-Anticyanobacterial  
-Antifungal 
-Lethal 
-Growth inhibition 

Fischerella musicola; 
Fischerella sp.; 
Fischerella ambigua; 
Fischerella tesserantii 

[120,129–131] 

Westiellamide-
like 

Peptide -Antialgal 
-Anticyanobacterial  
-No antifungal 
-Lethal activity  
-Cytotoxic 

Westiellopsis prolifica EN-3-1; 
Nostoc sp. 31; 
Stigonema dendroideum IA-45-3; 
Oscillatoria raoi TAU IL-76-1-2; 
Nostoc spongiaeforme var. tenue str. 
Carmeli 

[122–127] 

Ambigols Alkaloid -Antialgal 
-Antibacterial 
-Antifungal 
-Antiprotozoal 
-Lethal activity 
-Cytotoxicity 
-Enzyme inhibition 

Fischerella ambigua 108b [132,133] 

Schizotrin-like Peptide -Antialgal 
-Antibacterial 
-Antifungal 
-Antiprotozoal 
-Lethal activity 
-Cytotoxicity 

Schizothrix sp. TAU IL-82-2; 
Lyngbya sp. 36.91; 
Phormidium sp. LEGE 05292; 
Tychonema sp. CCAP 1462/13 

[134–141] 
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mechanisms. For example, cyanobacterins isolated from two strains, Scytonema hofmanni UTEX 2349 354 
and Nostoc linckia CALU 892 [117,118], were shown to present significant antimicrobial activity 355 
directed against a large panel of microalgal and cyanobacterial strains (Table 2). These compounds 356 
also inhibit the growth of eight angiosperm plants, such as duckweed (Lemna genus), pea, corn, sorrel, 357 
black bindweed, wild oat, and green foxtail [119] (Table 2). Gleason and Case (1986) showed that this 358 
activity is due to the inhibition of the Hill reaction in photosystem II without inhibition of 359 
photosystem I [119]. 360 

Another example is the fischerellins family. These compounds were observed in four strains 361 
belonging to the Fischerella genus. They show a large range of activities comprising growth inhibition 362 
of Lemna minor, antifungal and lethal activities, and antialgal and anticyanobacterial activities. 363 
Hagmann & Jüttner (1996) showed that the fischerellins A is an effective inhibitor of the photosystem 364 
II [120] (Table 2). 365 

The westiellamide-like family that gather 12 related cyclic peptides isolated from five strains 366 
belong to four different genera (Table 2). The related molecules, the bistratamides, were previously 367 
isolated from the ascidian Lissoclinum bistratum [121], and authors hypothesized a cyanobacterial 368 
symbiont origin for this molecules [122]. This family of compounds have been shown to have 369 
antialgal and anticyanobacterial activities (Table 2), but they did not show any antifungal activity 370 
against the yeast Saccharomyces cerevisiae ([122–127]). Moreover, one of them, dendroamide A, has 371 
shown the ability to reverse the multidrug resistance of a human breast carcinoma cell line (MCF-372 
7/ADR) [123]. Indeed, the MCF-7/ACR cell line overexpress the P-glycoprotein pump, which 373 
transport drugs outside of the cell providing higher resistance to chemical treatment. Dendroamide 374 
A is able to specifically inhibit the action of the P-glycoprotein pump, allowing the drug to penetrate 375 
and lyse the cells with interesting potential anticancer applications. 376 

Among the antialgal compounds, two have a remarkably broad spectrum of antimicrobial 377 
activities: the ambigols and the schizotrin-like families, both showing antialgal, antibacterial, 378 
antifungal, and antiprotozoal activities (Table 2). Three ambigol variants were isolated from 379 
Fischerella ambigua str. 108b, while the schizotrin-like family includes 13 structurally related molecules 380 
isolated from four different strains (Table 2). In addition to these antimicrobial activities, the ambigols 381 
also have enzyme inhibition activity against cyclooxygenases and HIV-1 reverse transcriptase. The 382 
members of the schizotrin-like family, the portoamides (isolated from Phormidium sp. LEGE 05292), 383 
have also shown mitochondrial metabolism inhibition activity, which induces a further decrease in 384 
the cellular ATP content in cells exposed to portoamides [140]. This property is also promising for 385 
the development of drugs acting against tumors and cancers [142]. 386 

Via their main antialgal action (i.e., photosynthesis inhibition), the molecules have been shown 387 
to present other potential uses and could be used as alternatives to chemical herbicides, for example, 388 
based on PSII inhibition (e.g., DCMU). These families of compounds could be used to develop new 389 
algaecides and herbicides and/or to develop new pharmaceutical drugs. 390 

5.1.3 Antifungal activity 391 
Twenty-eight families of compounds showed antifungal activities. Toxicity tests were carried 392 

out against diverse fungal species, mostly pathogenic ones, such as the well-known Candida albicans, 393 
Saccharomyces cerevisiae, Penicillium notatum, Aspergillus oryzae, and the less-known Trichophyton 394 
mentagrophytes and Ustilago violacea. Among these compounds, 11 showed several other types of 395 
antimicrobial activity in addition to antifungal activity. Only two metabolites, hassallidins and 396 
lyngbyabellins, demonstrated specific antifungal activity without presenting any antibacterial 397 
activity. The hassallidins are cyclic glycolipopeptides isolated from three strains belong to the 398 
Nostocales order (Table 3). Four variants have been characterized so far [143–147], and the non-399 
ribosomal peptide gene cluster responsible for hassallidins synthesis has been identified. Thus, the 400 
hassallidins cluster was detected by bioinformatics analysis of the genomes of four heterocytous 401 
cyanobacteria, Aphanizomenon gracile, Cylindrospermopsis raciborskii, Nostoc sp., and Tolypothrix sp., 402 
and hassallidins production was confirmed by LC/MS analysis (Table 3). Recently, Pancrace et al. 403 
(2017) identified the hassallidins gene cluster and characterized a new hassallidins variant from 404 
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Planktothrix serta (PCC 8927), a nitrogen-fixing, non-heterocytous forming strain [146]. They 405 
concluded that the strain gain of the cluster occurred by horizontal transfer and therefore questioned 406 
the natural product distribution and diversity among cyanobacteria. 407 

Table 3. Antifungal molecules extracted from the database 408 

 The lyngbyabellins are cyclic depsipeptides. They were isolated from Lyngbya and Moorea 409 
species (Table 3). Hectochlorin is the only member of the family who was tested for antibacterial and 410 
antifungal activity, showing no antibacterial activity but presenting antifungal activity against 411 
Candida albicans [151]. The distinctive feature of the lyngbyabellins is that they can also disrupt actin 412 
filaments. Luesch et al. (2000) [150] and Han et al. (2005) [149] showed that cells exposed to 413 
lyngbyabellin A and E lost their microfilament network and caused cell cycle arrest at the cytokinesis 414 
phase. Marquez et al. (2002) [151] showed that the same process appears with cells exposed to 415 
hectochlorin. They also demonstrated that the molecule stimulates actin polymerization and then 416 
induces cellular cycle disorders. 417 

 Microguanidines are guanidine derivatives isolated from two strains of Microcystis (Table 3). 418 
These molecules showed antifungal activity against Saccharomyces cerevisiae E4orf4 without cytotoxic 419 

Molecule family Chemical classes Activity Producing organisms References 
Hassallidins Glycolipopeptide -Antifungal 

-No antibacterial 
activity 

Hassalia sp. B02-07; 
Anabaena sp. (SYKE 748A, 90y1998, 
90M3, 299B, 258, SYKE763A, 
0TU33S16, 0TU43S8, 1TU33S8, 
1TU35S12, 1TU44S9, 1TU44S16, 
SYKE971/6, NIVA-CYA269/2, NIVA-
CYA269/6, XPORK5C, XSPORK7B, 
XSPORK36B, XSPORK14D, BECID19); 
Anabaena cylindrica Bio33 
Cylindrospermopsis raciborskii (ATC-
9502 & CS-505); 
Aphanizomenon gracile Heaney/Camb 
1986 140 1/1; 
Nostoc sp. (159 & 113.5); 
Tolypothrix sp. PCC 9009 
Planktothix serta PCC 8927 

[143–147] 

Lyngbyabellins Depsipeptide -Antifungal 
-No antibacterial 
activity 
-Lethal activity 
-Cytotoxic 

Lyngbya majuscula 
Lyngbya sp.; 
Lyngbya bouillonii 
Moorea bouillonii 

[148–155] 

Microguanidines Guanidine 
derivative 

-Antifungal 
-No cytotoxicity 
-No protease 
inhibition 

Microcystis sp. TAU IL-306; 
Microcystis aeruginosa TAU IL-374 

[156–158] 

Majusculamides Lipopeptide -Antifungal 
-Cytotoxic 
-Immunosuppressive 
activity 
-Actin filaments 
disrupting 
-Anti-settlement 
activity 

Lyngbya majuscula; 
Lyngbya polychroa 

[159–165] 
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activity. This specificity could be of interest for the development of new specific antifungal products 420 
[157]. 421 

Majusculamides are lipopeptides produced by Lyngbya majuscula and Lyngbya polychroa. These 422 
metabolites combine antifungal and cytotoxic activities with immunosuppressive and anti-settlement 423 
properties [159–165]. Simmons et al. (2009) [164] also demonstrated the ability of majusculamides to 424 
disrupt actin filaments that may explain these specific properties (Table 3). 425 

5.1.4 Antiviral activity 426 
Viral diseases are one of the main concerns around the world. According to the World Health 427 

Organization (WHO), HIV and AIDS caused around one million deaths in 2017 [166]. We noted that 428 
eight families of cyanobacterial compounds have shown antiviral activity. Antiviral activity was 429 
generally determined by testing against the human immunodeficiency virus (HIV-1 or HIV-2) or the 430 
herpes simplex virus (HSV-1 or HSV-2). One of them, the aplysiatoxins, showed activity against 431 
Chikungunya’s virus (CHIKV) [167] (Table 4). Nevertheless, the aplysiatoxins are a family of very 432 
active dermatotoxins [50,168]. They are also tumor-promoting molecules due to their capacity to 433 
activate protein kinase C (PKC), an enzyme that plays roles in cell proliferation, differentiation, and 434 
apoptosis [167] (Table 4). Recently, Han et al., 2018  demonstrated that two aplysiatoxin analogues 435 
showed the capability to inhibit the potassium channels [169], opening interesting perspectives for 436 
the study and use of these molecules for drug development. 437 

Table 4. Antiviral molecules extracted from the database 438 

Two other families of molecules have shown antiviral activity against a large panel of viruses. 439 
The first one, cyanovirin-N, has been isolated from Nostoc ellipsosporum [173] and Cyanothece sp. [175] 440 
(Table 4). These molecules are proteins belonging to the lectins class because of their ability to bind 441 
glycans. Cyanovirins show inhibitory activity against HIV-1, HIV-2, simian immunodeficiency virus 442 
(SIV), feline immunodeficiency virus, HHV-6, and measles virus [173,174]. Also, they inhibit Ebola 443 
and influenza viruses [175]. Nevertheless, cyanovirins are not active against some viruses, such as 444 
human herpesvirus A (HHV-1), cytomegalovirus, and adenovirus type 5 [174]. Cyanovirins are also 445 
non-cytotoxic for non-infected cells (at concentrations required for antiviral activity) [173,174] (Table 446 
4). In fact, cyanovirin-N binds gp120, a glycoprotein component of the HIV envelope. As a result, the 447 
molecule inhibits membrane fusion into target cells and stops virus transmission. Calcium spirulan 448 
has been isolated from Arthrospira platensis (anc. Spirulina platensis). Calcium spirulan belongs to the 449 
chemical class of sulphated polysaccharides. It shows antiviral activity against a wide range of 450 

Molecule family Chemical classes Activity Producing organisms References 
Aplysiatoxins Alkaloid -Antiviral 

-Dermatitis and 
swimmer itch 
agents 
-Cytotoxic 
 

Lyngbya majuscula; 
Schizothrix calcicola; 
Oscillatoria nigro-viridis; 
Trichodesmium erythaeum 

[50,167,169–172] 

Cyanovirin-N Protein -Antiviral 
-No cytotoxicity 
-Stop fusion and 
transmission of 
HIV-1 virus 
 

Nostoc ellipsosporum [173–175] 

Calcium spirulan Polysaccharide -Antiviral 
-No cytotoxicity 
-Low anticoagulant 
activity 
 

Arthrospira platensis [66,176,177] 
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viruses including HIV-1, HSV-1, the human cytomegalovirus (HCMV), measles virus, mumps virus, 451 
and influenza virus in addition to a low cytotoxicity against several cell lines (Table 4) [66,177]. 452 
Interestingly, calcium spirulan seems inactive against poliovirus and coxsackievirus, two non-453 
enveloped viruses, meaning that it probably has selective activity for enveloped viruses. Hayashi et 454 
al. (1996) [66] also showed that this molecule inhibits virus penetration in targeted cells. Other 455 
sulphated polysaccharides are known for their anticoagulant and antiviral activity, such as heparin 456 
or dextran sulphate [178,179]. In comparison to these molecules, calcium spirulan showed a lower 457 
anticoagulant activity and a longer half-life in blood [176], confirming its promising potential for the 458 
development of new specific antiviral drugs. 459 

5.1.5 Antiprotozoal activity (against malaria, leishmaniosis, Chagas disease) 460 
The last kind of antimicrobial properties listed is related to the antiprotozoal activity. Protozoans 461 

are eukaryotic microorganisms. Some of them have parasitic lifestyles and are well-known for their 462 
involvement in human diseases such as malaria, leishmaniosis, Chagas disease, and trypanosomiasis. 463 
These diseases represent a huge problem in tropical countries where the parasite is transmitted by 464 
mosquitoes. The World Health Organization identified more than 210 million malaria cases in 2016 465 
[180]. Therein, molecules with antiprotozoal activity are actively being sought in order to develop 466 
new drugs against these diseases. 467 

Table 5. Antiprotozoal molecules extracted from the database 468 

From the review, 28 cyanobacterial metabolites showed antiprotozoal activities. Tests have been 469 
conducted against several strains of Plasmodium falciparum (causative agent of malaria), Leishamania 470 
donovani (leishmaniosis), Trypanosoma cruzi (Chagas disease), and Trypanosoma brucei (sleeping 471 
sickness). Among the 28 concerned families of molecules, 19 showed antiprotozoal activity against 472 
drug-resistant strains, particularly against chloroquine-resistant strains of Plasmodium falciparum (see 473 
Table 5). Nevertheless, most of them are less active than the antibiotics currently used. For example, 474 
companeramides are cyclic depsipeptides produced by a cyanobacterium previously identified as 475 
Leptolyngbya sp. (now Hyalidium) [28] (Table 5). Companeramides showed antimalarial activity 476 
against three strains of chloroquine-resistant Plasmodium falciparum. They also showed no significant 477 
cytotoxicity against the cell lines used in the test, which constitutes an interesting property for the 478 
development of specific but non-toxic antimalarial drugs. Unfortunately, the activity of 479 
companeramides against the parasite is 100-fold lower than that of chloroquine (a commonly used 480 
drug), reducing their potential utilization. 481 

However, some molecules show promise as substitutes for antibiotic treatment because of their 482 
strong activity against the parasite. This is the case for hoshinolactam and dolastatins. Hoshinolactam 483 
is an aromatic molecule belonging to the lactam chemical class [181]. It was isolated from an 484 
environmental sample rich in Oscillatoria sp. and has shown antiprotozoal activity against 485 
Trypanosoma brucei (IC50 = 3.9 nM) with no cytotoxicity against MDR-5 (the host cell, IC50 > 25 µM) 486 
(Table 5). Interestingly, the IC50 of pentamidine (another commonly used drug) against Trypanosoma 487 
species is 4.7 nM. Thus, the activity of hoshinolactam is equivalent to that of the antibiotics, and 488 

Molecule family Chemical classes Activity Producing organisms References 
Companeramides Depsipeptide -Antiprotozoal 

-No significant 
cytotoxicity 

Leptolyngbya sp. or « Hyalidium » [28] 

Hoshinolactam Lactam -Antiprotozoal 
-No cytotoxicity 

Oscillatoria sp. [181] 

Dolastatins Peptide -Antiprotozoal 
-Lethal 
-Cytotoxic 

Lyngbya majuscula; 
Symploca hydnoides; 
Lyngbya sp.; 
Symploca sp. VP642; 
Lyngbya-Schizothrix assemblage 

[32,34,78,182–
188] 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 17 April 2019                   doi:10.20944/preprints201904.0192.v1

http://dx.doi.org/10.20944/preprints201904.0192.v1


 17 of 54 

 

hoshinolactam represents a promising alternative to pentamidine for trypanosomiasis treatment 489 
[181]. 490 

Dolastatins are a well-studied family of peptides. The first members of this family were isolated 491 
in 1977 from the sea hare Dolabella auricularia [189]. In 1998, other molecules belonging to the 492 
dolastatins family were isolated from the cyanobacteria Lyngbya majuscula and Symploca hydnoides, 493 
leading to the hypothesis that dolastatins isolated from the mollusk have a cyanobacterial dietary 494 
origin [190]. Dolastin 10, one of the dolastatin-related molecules, is the most potent antiprotozoal 495 
metabolite discovered so far from cyanobacteria, exhibiting an IC50 of 0.1 nM (the IC50 of chloroquine 496 
is, on average, 5 nM for the chloroquine-sensitive strain of P. falciparum) [183]. Dolastatins are also 497 
strong cytotoxic molecules (Table 5). They are able to inhibit tubulin polymerization, which induces 498 
cellular cycle arrest and apoptosis [191]. Antiprotozoal and cytotoxic activities are both the result of 499 
this property. Therefore, there is no apparent specificity for this molecule to act directly against the 500 
parasite itself, the cellular host being probably the most potent target of dolastatins. For this reason, 501 
Fennel et al. (2003) [183] concluded that dolastatins do not constitute a promising antiprotozoal drug 502 
despite their strong activity. 503 

5.2. Potential anticancer 504 
Nowadays, tumors and cancers constitute the most important problems concerning non-505 

transmittable diseases worldwide. According to the WHO, cancer was the cause of one in six deaths 506 
(9.6 million) in 2018 [192]. The annual cost of cancer in 2010 was estimated to be US$ 1.16 trillion 507 
[193]. That is why, numerous studies have been conducted to understand the physiology of the 508 
different cancers and to find new efficient anticancer drugs. For this purpose, researchers are looking 509 
for molecules, and notably, natural products, that are able to kill cells or inhibit cell proliferation. 510 

5.2.1 Cytotoxic activity 511 
The first type of activity test was performed to determine the potential of molecules as anticancer 512 

agents due to cytotoxic activity. Tests have been made against different cell lines derived from tumor 513 
cells, like the HeLa cell line (derived from cervical cancer), KB (HeLa derivative), LoVo (human colon 514 
tumor), H-460 (human lung cancer) and MCF-7 (human breast cancer). Most of the time, the 515 
investigated molecules were tested against two or more cell lines to detect a potent specificity and to 516 
evaluate their potential for drug development. According to this review, 110 families of metabolites 517 
isolated from cyanobacteria showed cytotoxicity, representing 43% of the molecule families listed in 518 
the database. 519 

The best example of potent anticancer molecules derived from cyanobacteria is the dolastatins 520 
family [190]. One synthetic analogue of dolastatin 10, monomethyl auristatin E, is actually used to 521 
treat Hodgkin lymphoma in the drug Brentuximab vedotin [190]. Luesch et al. (2001) [186] showed 522 
that dolastatin 10 and symplostatin 1 are 100-fold more efficient than vinblastine (anticancer drug 523 
extracted originally from the Madagascar periwinkle) against the same cell line due to their ability to 524 
depolymerize microtubules. Unfortunately, dolastatins also have strong cytotoxicity [186,194]. 525 
Researchers found a way to reduce this toxicity by coupling monomethyl auristatin E with a chimeric 526 
antibody against CD30 (tumor necrosis factor receptor, highly expressed in Hodgkin lymphoma) in 527 
order to target only tumor cells [195]. Since then, other antibody drugs linked (ADC) with 528 
monomethyl auristatin E have been developed. For example, glembatumumab vedotin is currently 529 
under clinical trial. This drug targets GPNMB (glyprotein non-metastatic melanoma protein B), a 530 
glycoprotein expressed in melanoma and breast tumors, [196]. In addition to the dolastatins, other 531 
cyanobacterial metabolites destabilize the microtubule network. Notably, one such metabolite is 532 
tubercidin, a nucleoside produced by Tolypothrix byssoidea, Tolypothrix distorta, Plectonema radiosum, 533 
and Scytonema saleyeriense var. indica [197,198]. This molecule was previously isolated from the 534 
bacterium Streptomyces tubercidicus. Tubercidin has shown inhibition of cell proliferation with an IC50 535 
of 248 nM (Table 6). Interestingly, tubercidin acts against dolastatins showing a microtubule 536 
stabilizing activity comparable to taxol bioactivity [199]. Its cytotoxicity is due to its stabilizing 537 
property, causing mitotic arrest at G2/M transition and stopping growth [200]. 538 
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 Table 6. Cytotoxic metabolites extracted from the database 539 

Another mechanism of cytotoxicity noted from cyanobacterial metabolites is the destabilization 540 
of actin microfilaments. As tubulin microtubules, actin microfilaments are key cytoskeleton 541 
components of cells. Microfilaments are involved in several mechanisms: cell division (cytokinesis), 542 
cell motility, cell adhesion, exocytosis, and endocytosis [210]. Thus, molecules with actin-modulating 543 
activity are sought in order to develop anticancer drugs because of their ability to induce apoptosis 544 
[210]. Four cyanobacterial metabolite families have shown disrupting activity of the actin 545 
microfilament network: the lyngbyabellins, the majusculamides, the aurilides, and the swinholide-546 
type molecules (Table 6).  547 

Lyngbyabellins and majusculamides, as mentioned above, have shown antifungal activity that 548 
probably corresponds to their ability to modulate actin polymerization [149–151,164]. Aurilides are 549 
cyclic depsipeptides, and the first member of this family was isolated from the sea hare Dolabella 550 
auricularia [211]. Since then, seven other related molecules have been isolated from two cyanobacterial 551 
genera: Lyngbya and Okeania [69,201–204], and one from Philinopsis speciosa (cephalaspidean mollusk) 552 
[212]. Aurilides showed nanomolar cytotoxic activity associated with a moderate toxicity to Artemia 553 
salina. Two analogues, lagunamides A and B, have also shown antimalarial activity and antiswarming 554 
activity against Pseudomonas aeruginosa [202] (Table 6). Han et al. (2006) [201] showed that aurilides 555 
induce microfilament disruption at the micromolar level; they concluded that this disrupting activity 556 
is probably related to their toxic and antimicrobial activities.  557 

Swinholide-type molecules were macrolides, originally isolated from sponge Theonella swinhoei 558 
[213]. In 2005, Andrianasolo et al. (2005) [205] succeeded in isolating swinholide A and two new 559 
related molecules (ankaraholides A and B) from two cyanobacteria (Symploca sp. and Geitlerinema sp., 560 
respectively) leading to the hypothesis of a symbiotic origin of the compounds isolated from sponge 561 
[205] (Table 6). More recently, Humisto et al. (2018) identified the swinholide biosynthetic cluster in 562 
Nostoc sp. (Table 6) [206], and Tao et al. (2018) isolated nine swinholide-related metabolites from a 563 
marine Phormidium sp. [207]. Swinholide A, isolated from the marine sponge, showed microfilament-564 
disrupting activity by stabilizing actin dimers [214]. In addition to their cytotoxic activity, 565 

Molecule family Chemical classes Activity Producing organisms References 
Tubercidin Nucleoside -Cytotoxic 

-Microtubule 
stabilizer 

Tolypothrix byssoidea H-6-2; 
Scytonema saleyeriense var. indica CV-
14-1; 
Plectonema radiosum DF-6-1; 
Tolypothrix distorta BL-11-2 

[197–199] 

Aurilides Depsipeptide - Cytotoxic 
-Lethal activity 
-Anti-swarming  
-Antiprotozoal 
-Induce loss of 
microfilament 
network 

Lyngbya majuscula; 
Okeania sp.; 
Lyngbya sp. 

[69,201–204] 

Swinholide-type Macrolide -Cytotoxic 
-Actin 
microfilament 
disruption 

Symploca sp.; 
Geitlerinema sp.; 
Nostoc sp. UHCC0451; 
Phormidium sp. 

[205–207] 

Anabaenolysins Lipopeptide -Cytotoxic 
-Antifungal 
-Hemolytic activity 
-Ability to 
permeabilize cell 
membranes 

Anabaena sp. XPORK 15F; 
Anabaena sp. XSPORK 27C 

[208,209] 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 17 April 2019                   doi:10.20944/preprints201904.0192.v1

http://dx.doi.org/10.20944/preprints201904.0192.v1


 19 of 54 

 

cyanobacterial swinholides showed also the same actin disrupting activity, which is of interest for 566 
the development of related anticancer drugs [205].  567 

Other metabolites with noticeable cytotoxicity are anabaenolysins, which are lipopeptides 568 
isolated from two strains of the Anabaena genus [209] (Table 6). Anabaenolysins showed cytotoxicity 569 
against all of the ten cell lines tested, with LC50 between 4 and 20 µM depending on the cell lines and 570 
the anabaenolysin variants [209]. In addition, using a trypan dye exclusion assay, these authors 571 
showed that anabaenolysins have an interesting profile. Instead of excluding the dye, cells showed 572 
an influx of trypan dye meaning that anabaenolysins permeabilize cell membranes until necrotic 573 
death [209]. Anabaenolysins are able to solubilize the lipid component of the cell membrane, probably 574 
acting with same mechanisms as the detergent digitonin. Anabaenolysins particularly target 575 
cholesterol-containing membranes and do not induce permeabilization of mitochondria membranes. 576 
As detergents, anabaenolysins also show hemolytic activity but at lower concentrations than 577 
digitonin and surfactin [208]. In addition, Oftedal et al. (2012) showed that the permeabilization 578 
ability of anabaenolysins also allows the internalization of nodularin [208]. This property is of interest 579 
for the development of a drug administration strategy involving anabaenolysins as a synergistic 580 
compound and other bioactive molecules that cannot be passed through the membrane within the 581 
targeted cells alone. 582 

Six cyanobacterial families of compounds showed the ability to reverse multidrug resistance 583 
(MDR) in addition to their cytotoxicity properties. These include the cryptophycins [215], the 584 
hapalindole-like metabolites [104], hapalosin [216], the patellamides [217,218], the tolyporphins 585 
[219,220], and the westiellamide-like [123] molecules. Among them, five families carried out reverse 586 
MDR by acting on the P-glycoprotein pumps (except for cryptophycins and patellamides for which 587 
the reverse MDR mechanisms have still not been described). P-glycoprotein is a glycosylated 588 
transmembrane protein that transports drugs and toxins out of the cell. This protein is often 589 
overexpressed in cancer cells and leads to resistance against standard chemotherapeutics, because of 590 
its lower accumulation in targeted cells [221]. Thus, metabolites with the ability to inhibit this efflux 591 
pump are of interest for the development of anticancer drug or to supplement current 592 
chemotherapeutic strategies in order to increase their efficiency on resistant cancer cells. 593 

5.2.2 Protease inhibitory activity 594 
Proteases are a widespread family of enzymes found in most, if not all, organisms. They are 595 

involved in a large number of pathways including coagulation, inflammation, digestion, haemostasis, 596 
and blood pressure regulation [222,223]. There are several types of proteases that are classified by 597 
their specific hydrolysis mechanisms. The major groups are the metalloproteinases, the serine 598 
proteases, the cysteine proteases, the threonine proteases, and the aspartic acid proteases [223]. 599 
Because of their ubiquity, these enzymes are attractive targets for the development of new drugs 600 
against diverse diseases [222]. Some proteases have also shown the potential to act against thrombotic 601 
diseases [222], hypertension [223], pulmonary diseases [224], asthma [225], pathogenic 602 
microorganisms [226,227], and even cancers [223,228]. According to our investigation, 24 family of 603 
metabolites presenting diverse protease inhibitor activities have been isolated from cyanobacteria so 604 
far. These compounds have shown inhibitory activity against a wide range of proteases, including 605 
enzymes belonging to the cathepsin family or the well-known serine proteases trypsin, 606 
chymotrypsin, and thrombin. Only three metabolite families have shown inhibitory activity against 607 
cathepsins. Cathepsins are frequently overexpressed in cancer cells and are involved in 608 
tumorigenesis, cell invasion, and metastasis [229–234]. One of them, the spumigins, isolated from 609 
Nodularia spumigena and Anabaena compacta [235–237], is a set of linear peptides that are structurally 610 
similar to the aeruginosins family (Table 7). They showed protease inhibitory activity against several 611 
proteases including trypsin, thrombin, plasmin, and cathepsin B to a better extent [236]. All of these 612 
proteases are potentially involved in cancer cell processes, and notably, cathepsin B, has been 613 
proposed to be a promising target for anticancer drug development [230,238]. 614 

Table 7. Serine protease inhibitor metabolites extracted from the database 615 
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Another example of interesting metabolites is the cyanopeptolin-like family. This family is the 616 
second in terms of the number of structural analogues isolated, after the microcystins (respectively 617 
140 and 246 molecular variants described so far). Currently, more than 50 papers have reported on 618 
the isolation and activities of these metabolites. They are cyclic depsipeptides isolated from 12 619 
different cyanobacterial genera (Table 7). Among the large number of analogs, a wide range of 620 
activity has been reported for these cyanobacterial metabolites including protease activity and other 621 
types of enzyme inhibition, cytotoxicity, lethal activity, and antimicrobial activity, opening various 622 
possibilities for the development of therapies targeting cancer cells or microorganisms or those that 623 
fight some disease like emphysema [269], pancreatitis [291] or thrombosis [292]. Nevertheless, this 624 
large number of activities can also represent a problem, namely, how to develop therapeutic drug 625 
exhibiting a specific activity. It would be interesting to study some analogs more in-depth or to 626 
conduct a structure–activity relationship study in order to increase the specificity of synthetic 627 
variants. 628 

Finally, another class of inhibitors that would be of interests for the development of new 629 
therapeutics against tumors is the proteasome inhibitors. Proteasome or ubiquitin-proteasome is a 630 
multi-enzymatic complex of eukaryotes. It is involved in protein degradation in a different way than 631 
the lysosomes [292]. Because proteasome catalysis is involved in a wide variety of essential pathways, 632 
including cell-cycle progression and the regulation of the apoptosis, it is a potent target for cancer 633 
therapy. Moreover, malignant cells have been shown to be more affected by proteasome inhibitors 634 
than normal cells, reducing the potential deleterious side effects of these molecules [228]. Four 635 
cyanobacterial families of metabolites were described to inhibit the 20S core of proteasome: the 636 
carmaphycins, the cylindrocyclophanes, the nostocyclopeptides, and nostodione. Among them, the 637 

Molecule family Chemical classes Activity Producing organisms References 
Spumigins Peptide -Proteases 

inhibitory activity 
Nodularia spumigena AV1 & CCY 
9414; 
Anabaena compacta NIES-835 

[235–237] 

Cyanopeptolin-
like 

Depsipeptide -Protease 
inhibitory activity 
-Other enzyme 
inhibition 
-Cytotoxic 
-Lethal 
-Antibacterial 
-Antifungal 
-Antiprotozoal 

Microcystis sp.; 
Microcystis aeruginosa; 
Aphanocapsa sp.; Microchaete 
loktahensis; 
Planktothrix agardhii; 
Scytonema hofmanni; 
Lyngbya sp.; 
Lyngbya confervoides; 
Lyngbya spp.; 
Lyngbya semiplena; 
Microcystis viridis; 
Dichothrix utahensis; 
Nostoc sp.; 
Nostoc minutum; 
Planktothrix rubescens;  
Lyngbya majuscula-Schizothrix sp. 
(Assemblage); 
Stigonema sp.; 
Symploca sp.; 
Symploca hydnoides; 
Nostoc insulare 

[32,33,158,184,185,187,239–
288] 

Carmaphycins Peptide -Protease 
inhibition 
-Cytotoxic 
-Antiprotozoal 

Symploca sp. WHG 
NAC15/Dec/08–5 

[289,290] 
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most efficient 20S proteasome inhibitors are the carmaphycins, which exhibit a IC50 of around 2.5 nM 638 
[289], whereas the other compounds present a micromolar range of action [168,293,294] (Table 7). 639 
Only two carmaphycin variants (A and B) have been isolated from Symploca sp., so far. These 640 
molecules are linear peptides with cytotoxic and antiprotozoal activities. They show the additional 641 
ability to inhibit the 20S proteasome activity in yeast and Plasmodium through interaction with the β5 642 
subunit [289,290]. These bioactivities are interesting for the use of carmaphycins as anticancer or 643 
antimalarial therapeutics. Two studies were conducted to enhance the specificity of carmaphycins 644 
for either applications. To develop a specific antimalarial drug, LaMonte et al. (2017) synthesized 645 
synthetic analogues of carmaphycin B and identified one analog with a selectivity index of 380 for 646 
antiprotozoal activity against cytotoxic activity [290]. On the other hand, Almaliti et al. (2018) studied 647 
the potential of carmaphycins as anticancer drugs and as an antibody–drug conjugate (ADC) in order 648 
to enhance the selectivity of the molecules for cancer cells and to reduce the potential side effects 649 
[295].  650 

Then, cyanobacterial metabolites with protease inhibition activities were shown to be not 651 
enough specific for further use, but the synthesis of synthetic analogs increased the selectivity of some 652 
of these molecules. 653 

5.2.3 Histone deacetylase inhibitors 654 
Histone deacetylases (HDACs) are enzymes involved in remodeling the chromatin and the 655 

acetylation/deacetylation of histone and non-histone proteins. Furthermore, histone deacetylases 656 
play a key role in histone–DNA interactions and in the binding to transcription factors. HDACs have 657 
also been identified as potent regulators of gene expression [296,297]. Because cancer generally 658 
emerges from genetic mutations inducing hyperactivation of oncogenes or loss of tumor-suppressor 659 
genes, targeting mechanisms that are involved in the epigenetic regulation of genes is a promising 660 
strategy for the development of antitumor drugs [297]. 661 

Table 8. HDACs inhibitor metabolites extracted from the database 662 

Two molecules showing histone deacetylase inhibitory activity have been isolated from 663 
cyanobacteria so far, largazole and santacruzamate A, both from Symploca sp. strains (Table 8). 664 
Largazole has shown inhibition activity against 12 class I HDACs in addition to inhibition of the 665 
ubiquitin-activating enzyme (E1). It has also shown cytotoxic activity against several cell lines (Table 666 
8). Largazole acts as a pro-drug—the molecule needed to be activated by hydrolysis to release its 667 
active form, the largazole thiol [296]. Santacruzamate A has also shown histone deacetylase inhibition 668 
and cytotoxic activity. It shares some structural features with suberoylanilide hydroxamic acid 669 
(SAHA), a clinically approved HDAC inhibitor that is used to treat refractory cutaneous T-cell 670 
lymphoma [304]. Salvador-Reyes and Luesch (2015) performed an in-depth review of the activities 671 
and mechanisms of action of these two metabolites [296]. They highlighted the high potency of 672 
largazole in anticancer drug development, while the potency of santacruzamate seems to remain 673 
more limited. 674 

Molecule family Chemical classes Activity Producing organisms References 
Largazole Depsipeptide -Histone 

deacetylases 
inhibitor 
-Cytotoxic 
-Other enzyme 
inhibition 
-Pro-drug 

Symploca sp. [298–303] 

Santacruzamate 
A 

Carboxylic acid 
derived 

-Histone 
deacetylases 
inhibitor 
- Cytotoxic 

Symploca sp. PAC-19-FEB-10-1 [304] 
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5.3. Anti-inflammatory and antioxidant activity 675 

5.3.1 Anti-inflammatory activity 676 
According to our review, seven metabolite families isolated from cyanobacteria were found to 677 

have anti-inflammatory activity (aeruginosins, coibacins, honaucins, malyngamides, phycocyanin, 678 
scytonemin, and tolypodiol). Nowadays, anti-inflammatory molecules have been widely studied in 679 
order to develop new therapeutics directed against chronic inflammatory diseases, such as 680 
rheumatoid arthritis, psoriasis, chronic obstructive pulmonary disease, multiple sclerosis, and 681 
inflammatory bowel disease [305]. Anti-inflammatory compounds can also be useful against 682 
cardiovascular diseases, notably arthrosclerosis [306], and neurodegenerative diseases such as 683 
Parkinson’s disease [307]. 684 

Table 9. Anti-inflammatory metabolites extracted from the database 685 

Anti-inflammatory tests have been performed in vitro or in vivo in mice. For example, 686 
malyngamides have been shown to inhibit superoxide production generated by inflammation-687 
promoting agents [308], and honaucins inhibit pro-inflammatory cytokine expression [60] in the 688 
murine macrophage cell line RAW264.7. The mouse ear edema assay has been performed in vivo by 689 
observing the resorption of ear edema in the presence of anti-inflammatory compounds, such as 690 
phycocyanin [63], scytonemin [309] and tolypodiol [65], which have shown noteworthy activities 691 
using this assay. 692 

Molecule family Chemical classes Activity Producing organisms References 
Aeruginosins Peptide -Anti-inflammatory 

activity 
-Protease inhibitor 
-No cytotoxicity 

Microcystis aeruginosa NIES-98, NIES-
298, NIES-101, NIES-89; Microcystis 
viridis NIES-102  Planktothrix agardhii 
CYA 126/8; 
Nodularia spumigena CCY9414; Nostoc 
sp. Lukesova 30/93 

[61,310,311,315] 

Phycocyanin Peptide -Anti-inflammatory 
-Antioxidant 
-Specific inhibitor 
of COX-2 
-No lethality 

All [58,63,316–318] 

Scytonemin Alkaloid -Anti-inflammatory 
-Enzyme inhibition 
-No cytotoxicity 

Stigonema sp.; Nostoc punctiforme; 
Anabaena variabilis; Anabaena ambigua; 
Aphanocapsa/Synechocystis sp. 
(assembly); Aulosira fertilissima; 
Calothrix sp.; Calothrix parietina; 
Calothrix crustacea; Chlorogloeopsis sp.; 
Chroococcidiopsis sp.; Chroococcus sp.; 
Cylindrospermum sp.; Diplocolon sp.; 
Entophysalis granulos; Gloeocapsa sp.; 
Hapalosiphon sp.; Hapalosiphon 
fontinalis; Lyngbya sp.; 
Lyngbya aestuarii; Nostoc parmelioides; 
Nostoc commune; Nostoc microscopium; 
Nostoc pruniforme; Phormidium sp.; 
Pleurocapsa sp.; Rivularia atra; Rivularia 
sp.; Schizothrix sp.; Scytonema sp.; 
Tolyothrix sp.; Tolypothrix tenni; 
Westiellopsis prolifica; Scytonema 
hoffmani 

[64,309,319–322] 
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Three metabolites seem to be particularly interesting according to their specific bioactivity 693 
profiles: the aeruginosins, phycocyanin, and scytonemin, which additionally, have not shown any 694 
toxicity when tested in vitro or in vivo. Aeruginosins have shown anti-inflammatory properties using 695 
the AlphaLISA assay; they are able to down-regulate the level of pro-inflammatory mediators (IL-8 696 
and ICAM-1) in stimulated endothelial cells [61] without affecting the viability of two different cell 697 
lines [61] (Table 9). Aeruginosins have also shown serine protease inhibitory activity against trypsin, 698 
thrombin, and plasmin [310], and their corresponding biosynthetic gene cluster was first identified 699 
in Planktothrix agardhii and Nodularia spumigena (Table 9) [237,311]. Nowadays, the obtained data 700 
do not seem to support the correlation between serine protease inhibition and the anti-inflammatory 701 
activity of aeruginosins. However, on neutrophils, it has been shown that some serine proteases 702 
(elastase, cathepsin G, and proteinase 3) are responsible for the conversion and activation of 703 
proinflammatory chemokines (and notably, interleukine-8 (IL-8)) and are able to conserve or enhance 704 
the inflammation response [312–314]. In this regard, it will be interesting to further test whether 705 
aeruginosins are capable of inhibiting other serine proteases, notably elastase, cathepsin G, and 706 
proteinase 3, in order to determine whether the down-regulation of IL-8 induced by the aeruginosins 707 
is mediated through serine protease inhibition processes. 708 

Phycocyanin is a phycobiliprotein, constituting one of the major cyanobacterial pigments, 709 
together with the chlorophylls and phycoerythrin. It is involved in light-harvesting and the energy 710 
transfer of phycobilisomes within the outer membrane of thylakoids. In addition, phycocyanin has 711 
shown a wide variety of beneficial properties including antioxidant, anti-inflammatory, 712 
neuroprotective, and hepatoprotective activities [63] (Table 9). Authors of phycocyanin studies have 713 
reviewed the main features of phycocyanin anti-inflammatory mechanisms. Phycocyanin is able to 714 
scavenge ROS, has anti-lipoperoxydative effects, and inhibits cyclooxygenases (specifically COX-2) 715 
as well as TNF-α release. All of these properties are interesting from the perspective of new 716 
therapeutics development targeting neurodegenerative diseases such as Alzheimer’s, Parkinson’s or 717 
Huntington’s disorders, or as an anti-inflammatory agent [63]. 718 

Scytonemin is an alkaloid pigment found in the sheath of some cyanobacteria and particularly 719 
on some organisms living in extreme environments [64]. Scytonemin synthesis is mainly induced by 720 
UV-A exposure in order to reduce heating and the oxidative stress [64]. Scytonemin is mainly 721 
involved in photoprotection by UV-absorption [64]. It has also been shown to have anti-inflammatory 722 
activity with no cytotoxicity against non-proliferating cells [64,309,322]. In addition, scytonemin has 723 
been shown to inhibit polo-like kinase 1 (PLK1), an enzyme involved in the phosphorylation and 724 
activation of proteins, notably, of cdc25C, which is involved in cell cycle progression and the G2/M 725 
transition in the cell cycle (Table 9). As a consequence, scytonemin can repressed cell proliferation 726 
[64,309,322]. Therefore, scytonemin could be a promising compound for use in the development of 727 
anticancer therapeutics, sunscreen agents, or anti-inflammatory drugs. 728 

Last but not least, as mentioned above, ambigol have been shown to inhibit cyclooxygenases. 729 
Cyclooxygenases are enzymes belonging to the oxydoreductase enzymatic class; two related 730 
isoforms, COX-1 and COX-2 [323], have been discovered so far and are involved in inflammation 731 
processes through the synthesis of prostaglandins from arachidonic acid. Some classical anti-732 
inflammatory molecules are known to target COX. For example, aspirin, the most famous COX 733 
inhibitor discovered so far, is a nonsteroidal anti-inflammatory drug (NSAID) [324]. For these 734 
reasons, ambigol is a promising cyanobacterial anti-inflammatory compound. Nevertheless, further 735 
studies are still needed in order to describe its activities and potential unexpected side effects in-736 
depth [325]. 737 

5.3.1 Antioxidant activity 738 
Oxidative stress is widely recognized to be implicated in neurodegenerative diseases [326,327], 739 

metabolic disorders [328], hypertension [329], liver diseases [330], and cardiovascular diseases [331]. 740 
Thus, antioxidant molecules are required to develop or supplement therapy for reducing the harmful 741 
effects of oxidative stress. 742 
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According to our review, only four compounds isolated from cyanobacteria show antioxidant 743 
properties. As mentioned above, this weak number in comparison to cytotoxic or antimicrobial 744 
compounds might be due to the fact this activity has been poorly tested in secondary metabolites and 745 
its testing has generally been limited to pigments or molecules implicated in light-harvesting or UV 746 
protection. Indeed, antioxidant activity has been characterized for the carotenoids, chlorophyll, the 747 
mycosporine-like amino acids (MAAs), and the phycobiliproteins such as phycocyanin (Table 10). 748 

Table 10. Antioxidant metabolites extracted from the database  749 

Carotenoids are orange pigments that are localized in the thylakoid membrane. They absorb 750 
light between 400 and 500 nm and are involved in photosynthesis by transferring energy to 751 
chlorophyll through a single-singlet energy transfer mechanism [333,336]. Five carotenoids are found 752 
in the majority of cyanobacteria: β-carotene, zeaxanthin, nostoxanthin, echinenone, and 753 
canthaxanthin [332]. In addition to their role in light harvesting, carotenoids act as potent 754 
photoprotectant molecules and show antioxidant activity through ROS scavenging [332,336] (Table 755 
10). 756 

Chlorophylls are the ubiquitous pigments of photosynthetic organisms. Chlorophyll a is the 757 
major isoform used by cyanobacteria with most absorbing light at 660 nm [332]. Chlorophylls are 758 
mainly involved in photosynthesis, but they have also shown antioxidant activity in vitro via radical 759 

Molecule family Chemical classes Activity Producing organisms References 
Carotenoids Terpenoid -Antioxidant 

-Sunscreens All [55,332,333] 

Chlorophylls Chlorin -Photosynthesis 
-Antioxidant 
-Pro-oxidant 
(sensitizer for 
singlet oxygen 
production) 

All 

[56,332] 

MAAs Cyclohexenone 
linked with an 

amino acid 

-Antioxidant 
-Sunscreens 

Synechocystis sp. PCC 6803; Gloeocapsa 
sp. CU-2556; Aphanothece halophytica; 
Gloeocapsa sp.; Euhalothece sp.; 
Microcystis aeruginosa; Arthrospira sp. 
CU2556; Lyngbya sp. CU2555; 
Leptolyngbya sp.; Phormidium sp.; 
Lyngbya cf. aestuarii; Microcoleus 
chthonoplastes; Microcoleus sp.; 
Oscillatoria spongelidae; Trichodesmium 
spp.; Anabaena sp.; Anabaena doliolum; 
Anabaena variabilis PCC 7937; Nostoc 
sp.; Nostoc commune var. Vaucher; 
Nostoc commune; Scytonema sp.; Nostoc 
punctiforme ATCC 29133; Nostoc sp. 
HKAR-2 and HKAR-6; Nodularia 
baltica; Nodularia harveyana; Nodularia 
spumigena; Aphanizomenon flos-aquae; 
Chlorogloeopsis PCC 6912 

[57,332,334,335] 

Phycocyanin Peptide - Anti-
inflammatory 
- Antioxidant 
- Specific inhibitor 
of COX-2 
- No lethality 

All 

[58,63,316–318] 
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scavenging and, on the contrary, singlet oxygen production under high light conditions, mitigating 760 
their potential use as antioxidant therapeutics [332] (Table 10). 761 

Mycosporine-like amino acids (MAAs) are pigments that are widely produced by cyanobacteria 762 
(Table 10) and other algae [57,332]. They absorb light in the UV-A and UV-B ranges with a maximum 763 
absorbance between 310 and 360 nm [57]. The primary function of MAAs is to protect cells from 764 
damage by absorbing UV and to dissipate energy without generating ROS [332,335]. In addition, 765 
MAAs show other interesting properties. They have been demonstrated to have antioxidant activity 766 
through ROS scavenging, are able to protect skin from UV damage, and are involved in osmotic 767 
regulation, desiccation, and defense against oxidative and thermal stresses. They are also able to 768 
protect fibroblasts against UV-induced cell death [57,335]. Jain et al. (2017) stated that two products 769 
containing MAAs have been commercialized as sunscreen agents for cosmetics and for use in plastics, 770 
paints, and varnishes as a photostabilizer [57]. 771 

Finally, as mentioned above, phycocyanins are antioxidant molecules with the ability to 772 
scavenge ROS. In addition to their anti-inflammatory activity, this antioxidant property increases the 773 
potential of phycocyanins to be used for pharmaceutical applications [317]. 774 

5.4. Other metabolites with potential beneficial properties 775 
To close this review on the beneficial activities demonstrated for cyanobacterial metabolites, we 776 

highlight a few other compounds that are of potential interest for various fields of application. 777 
For instance, grassystatins-tasiamides constitutes a depsipeptide group of related compounds 778 

isolated from Lyngbya and Symploca tropical species [337–343]. These metabolites have shown 779 
protease inhibitory activity against cathepsin D, cathepsin E, and the β-amyloid precursor protein-780 
cleaving enzyme A (BACE1) for tasiamides B and F [337,338] (Table 11). In addition, these 781 
compounds have shown moderate or no cytotoxicity at concentrations higher than that of protease 782 
inhibitory activity [340,341,343]. Cathepsin D is an aspartic protease that is localized in the lysosome. 783 
This enzyme is considered a biomarker of some forms of metastatic breast cancer because of its 784 
related overexpression [232]. Cathepsin D has also been shown to promote proliferation and 785 
metastasis [232]. Cathepsin E, being also an aspartic protease, is mainly localized in immune system 786 
cells and notably in antigen-presenting cells [344]. Grassystatin A induces the reduction of antigen 787 
presentation in dendritic cells [339], which is correlated with the involvement of cathepsin E in this 788 
process and has led to the hypothesis that grassystatin could modulate the immune response. 789 
Alzheimer’s disease pathogenesis is mediated by the accumulation of amyloid β peptide (Aβ) in the 790 
brain. BACE1 is responsible for Aβ formation by cleaving the amyloid precursor protein (APP). As a 791 
result, BACE1 inhibitors could be promising targets for the development of new therapeutics against 792 
Alzheimer’s disease [338,345]. Considering these activities, we assume that members of the 793 
grassystatins-tasiamides family constitute promising components for the development of 794 
antiproliferative agents, immune response modulatory compounds, and therapeutics for Alzheimer’s 795 
disease treatment. 796 

During the process of database construction, we noticed that five metabolite families showed a 797 
remarkable ability to bind to cannabinoid receptors (CB1 and CB2). These metabolites were 798 
grenadamide [346], the semiplenamides [347], serinolamide A [348], mooreamide A [349], and the 799 
columbamides [350]. CB1 and CB2 are cell membrane receptors that belong to the endocannabinoid 800 
system (ECS), an important part of the human physiological system. It is involved in a wide range of 801 
different processes, such as brain plasticity, memory, nociception, appetite regulation, the sleep–802 
wake cycle, the regulation of emotions and stress, addiction, etc. This ubiquity for the regulation of 803 
various vital processes makes exogenous CB1 and CB2 ligands attractive as modulators of this system 804 
for the management of the pain, diabetes, obesity, cancer, epilepsy, or Alzheimer’s disease, or to 805 
develop new anxiolytics [351,352]. Columbamides are the most potent CB1/CB2 ligands from 806 
cyanobacteria discovered so far (table 11) [350]. They are linear acyl amides that have been isolated 807 
from Moorea bouillonii PNG05-198 using a genome mining approach [350]. To date, only the CB1- and 808 
CB2-binding activity of columbamides has been tested, and other investigations are required in order 809 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 17 April 2019                   doi:10.20944/preprints201904.0192.v1

http://dx.doi.org/10.20944/preprints201904.0192.v1


 26 of 54 

 

to look deeper into the activity profiles of these molecules, as they still remain promising compounds 810 
for therapeutic developments. 811 

Table 11. Other interesting metabolites extracted from our database 812 

6. Conclusion 813 

In this review, all available information concerning the beneficial activities of natural products 814 
of cyanobacteria was gathered. To write this review, a molecular database of the various families of 815 
metabolites isolated from cyanobacteria was constructed from the systematic analysis of 670 articles. 816 
The derived database represents 260 families of metabolites. It groups various types of information 817 
concerning the taxonomy of producing strains, the respective chemical classes, the origin strain 818 
habitats, and the tested/demonstrated activities for each member of the family, together with the 819 
related full references. 820 

According to this review, from the above 300 different genera of cyanobacteria (referenced by 821 
the taxonomy published by Komarek et al. in 2014) [26], 90 have so far been reported to produce 822 
bioactive metabolites. Some of them have been shown to produce a high number of compounds, such 823 
as those from the genus Lyngbya-Moorea, which includes 85 families of metabolites isolated so far. 824 
However, the Lyngbya genus is a polyphyletic group and its taxonomy position is under revision; this 825 
number might be re-evaluated and distributed within distinctive new genera. The genomes of the 826 
producing strains are not available in the majority of cases, whereas Shih et al. (2013) demonstrated 827 
the large genomic potential of numerous cyanobacteria thanks to the biosynthetic pathways of 828 
metabolites highlighted by genome mining analyses [48]. Therefore, the potential for the discovery 829 
of new natural molecules and new biosynthetic pathways from cyanobacteria still remains very 830 
important and needs to be systematically explored.  831 

Cyanobacterial metabolites belong to 10 chemical classes (including peptides, alkaloids, 832 
terpenes, and lipids), most of the families of metabolites being peptide derivatives (above 50% of the 833 
families). Fourteen different types of activities can be distinguished for cyanobacterial metabolites 834 
(e.g., antimicrobial, lethality, cytotoxicity, antioxidant). The large majority of the components are 835 
cytotoxic (110 families), whereas some activities have only been tested rarely, and their occurrence 836 
appears to be weakly demonstrated. Globally, no clear correlation has been observed between 837 
chemical classes and the specificity of the respective types of bioactivity, and further studies are 838 
needed in order to precisely understand the mechanisms of action of cyanobacterial metabolites, 839 
potentially linking bioactivity with structural features in order to support the new hypothesis on the 840 
biological function of the production of these components for organisms. 841 

Finally, 50 metabolites isolated from cyanobacteria, presenting remarkable interest for diverse 842 
fields of application, were investigated further in the present literature review. For example, 843 
hassallidins, which show specific antifungal activity without antibacterial activity, and scytonemin, 844 
which has anti-inflammatory properties with no cytotoxicity, were detailed. These metabolites are 845 
potentially useful for the development of new concrete applications for cyanobacterial natural 846 
products and illustrate the interest in cyanobacteria as a prolific source of bioactive molecules. 847 

 848 

Molecule family Chemical classes Activity Producing organisms References 
Grassystatins-

Tasiamides 
Depsipeptide -Protease inhibitory 

activity 
-Cytotoxic 
-Reduce antigen 
presentation in 
dendritic cells 

Lyngbya confervoides, 
Symploca sp., 
Symploca sp. NHI304, 
Lyngbya sp. NIH399 

[337–343] 

Columbamides Acyl amide -CB1 and CB2 
ligands 

Moorea bouillonii PNG05-198 [350] 
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Supplementary Materials: The following are available online at www.mdpi.com/xxx/s1, Table S1: Activities of 849 
metabolites described.  850 
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