

1 *Review*

2 ***Lactobacillus* strains as opportunistic pathogens. A review**

3 **Franca Rossi** ^{1,*}, **Carmela Amadoro** ² and **Giampaolo Colavita** ²

4 ¹ Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise "G. Caporale", Via Campo Boario 1,

5 64100 Teramo, Italy;

6 ² Medicine and Health Science Department "V. Tiberio", University of Molise, Via de Santis, 86100

7 Campobasso, Italy; carmela.amadoro@unimol.it; colavita@unimol.it;

8 * Correspondence: f.rossi@izs.it

9 Received: date; Accepted: date; Published: date

10 **Abstract:** Microorganisms belonging to the *Lactobacillus* genus are naturally associated or
11 deliberately added to fermented food products and are widely used in probiotic food additives
12 and supplements. Moreover these bacteria normally colonize mouth, gastrointestinal (GI) tract
13 and female genitourinary tract of humans. They exert multiple beneficial effects and are regarded
14 as safe microorganisms. However, infections caused by lactobacilli, mainly endocarditis,
15 bacteremia and pleuropneumonia occasionally occur.

16 The relevance of *Lactobacillus* spp. as opportunistic pathogens in humans and related risk factors
17 and predisposing conditions are illustrated in this review article with more emphasis on the
18 species *L. rhamnosus*, that has been more often involved in infection cases.

19 The methods used to identify this species in clinical samples, to distinguish strains and to evaluate
20 traits that can be associated to pathogenicity, as well as future perspectives for improving the
21 identification of potentially pathogenic strains are outlined.

22 **Keywords:** *Lactobacillus* species; opportunistic pathogens; infections; risk factors; predisposing
23 factors; virulence

24

251. Introduction

26 Bacteria currently classified in the genus *Lactobacillus* are a paraphyletic group of Gram-
27 positive, non-spore forming, mostly, non respiratory but aerotolerant, lactic acid bacteria (LAB)
28 comprising at this time more than 237 species and 29 subspecies
29 (<http://www.bacterio.net/lactobacillus.html>) [1]. Morphologically, they can be elongated or short
30 non-motile rods, frequently found in chains and sometimes bent. They produce lactic acid as a
31 major end-product of carbohydrate fermentation.

32 Lactobacilli are part of the normal human microbiota that colonizes mouth, gastrointestinal (GI)
33 tract and female genitourinary tract. Moreover, these bacteria have been used for centuries for food
34 and feed fermentation processes aimed at the transformation of perishable raw materials of animal
35 or plant origin into more preservable products. Their activities are relevant to the production of
36 dairy products, bread, sausages, fermented vegetables, wine and silage.

37 According to the type of sugar fermentation pathway, lactobacilli fall into the following three
38 groups, all including species that are industrially exploited: (i) obligately homofermentative, that
39 produce only lactic acid as end product of carbohydrate metabolism through the glycolysis
40 pathway, (ii) facultatively heterofermentative, that produce a mixture of lactic and acetic acid as
41 end products of carbohydrate metabolism through the glycolysis or the phosphoketolase pathway
42 and (iii) obligately heterofermentative, that produce lactic and acetic acid, or ethanol, and CO₂ as
43 end products of carbohydrate metabolism through the phosphoketolase pathway [2].

44 The genome size of *Lactobacillus* spp. is highly variable, ranging between about 1 and more
 45 than 4 Mb. Genome size varies also within a single species [3] as a result of genome decay in strains
 46 adapted to specialized niches where genes encoding for multiple substrate utilization are lost [4].

47 Based on whole genome-based phylogeny, genera *Fructobacillus*, *Leuconostoc*, *Oenococcus*,
 48 *Pediococcus* and *Weissella* constitute internal branches of the *Lactobacillus* genus that has been
 49 therefore designated as "Lactobacillus genus complex" (LGC) [5].

50 Zheng et al. 2015 [3], found a good correspondence between metabolic groups and
 51 phylogenomics based on 172 concatenated protein sequences encoded by single copy genes of core
 52 genomes and key enzymes of metabolic pathways.

53 *Lactobacillus* organisms and related species better characterized physiologically and
 54 technologically are those of highest relevance for natural or industrial food fermentation, probiotic
 55 properties and biotechnological applications.

56 In Table 1 the LGC species most frequently used in food technology and as probiotics are listed,
 57 together with type of metabolism, main ecological niche and technological applications.

58

59 **Table 1.** *Lactobacillus* species most frequently used in food technology and as probiotics, type of
 60 metabolism, technological applications and typical ecological niches.

Species	Metabolism	Main ecological niches	Main technological applications
<i>L. acidophilus</i>	homofermentative	GIT, dairy products [6]	Probiotic [6]
<i>L. brevis</i>	heterofermentative	Fermented vegetables, GIT [7]	Sourdough fermentation [8]
<i>L. buchneri</i>	heterofermentative	Fermented vegetables, dairy products, GIT [9]	Silage fermentation [10]
<i>L. casei/paracasei</i>	facultatively heterofermentative	Dairy products, GIT [11]	Cheese production, probiotic [12]
<i>L. delbrueckii</i> subsp. <i>bulgaricus</i> and <i>lactis</i>	homofementative	Dairy products [13]	Fermented milk and cheese production [13]
<i>L. helveticus</i>	homofermentative	Dairy products [4]	Cheese production [4]
<i>L. plantarum</i>	facultatively heterofermentative	Fermented food and feed, GIT [14]	Cheese, sausage, fermentation of vegetables, silage production, probiotic [14]
<i>L. reuteri</i>	heterofermentative	GIT, skin and mucosae [15]	Probiotic [15]
<i>L. rhamnosus</i>	facultatively heterofermentative	Dairy products, GIT [11]	Probiotic [16]
<i>L. sakei</i>	facultatively heterofermentative	Meat, vegetables [17,18]	Sausage fermentation [18]

<i>L. sanfranciscensis</i>	heterofermentative	Sourdough [19]	Sourdough fermentation [19]
<i>L. salivarius</i>	homofermentative	Human and animal GIT [20]	Probiotic [20]
<i>Oenococcus oeni</i>	heterofermentative	Grape berries [21]	Wine malolactic fermentation [21]
<i>Pediococcus acidilactici</i>	homofermentative	Plant materials, cheese, fermented meat products, GIT [22]	Sausage fermentation, probiotic [22]
<i>P. pentosaceus</i>	homofermentative	Plant materials, cheese, fermented meat products, GIT [22,23]	Sausage fermentation, probiotic [22]

61

62 Culture-independent DNA-sequence analysis put in evidence that autochthonous *Lactobacillus*
 63 organisms represent at most 1% of the total bacterial population in the distal human gut. However,
 64 their number changes in some diseases such as Crohn disease, human immunodeficiency virus
 65 (HIV) infection, rheumatoid arthritis, multiple sclerosis, obesity, type 1 and 2 diabetes, irritable
 66 bowel syndrome and prenatal stress. However, the role of autochthonous intestinal lactobacilli in
 67 disease prevention and treatment must be still elucidated [24].

68 A metagenomic analysis on a human subject showed that over a period of two years, more
 69 than 50 *Lactobacillus* species, and individual *Lactobacillus* genotypes, were repeatedly detected in
 70 numbers of up to 10^8 cells/g in the stool [25] suggesting that a persistent population of lactobacilli
 71 could inhabit gastrointestinal tract (GIT) of individuals.

72 *Lactobacillus* species inhabiting human GIT and isolated from faeces comprise most of the
 73 microorganisms listed in Table 1 [23, 26]. The species *L. antri*, *L. gastricus*, *L. kalixensis*, *L. reuteri*, and
 74 *L. ultunensis* have been isolated from the stomach mucosa [27]. Lactobacilli also occur naturally in
 75 the human mouth [28]. Another site colonized by lactobacilli is the vagina, where *L. crispatus*, *L.*
 76 *gasseri*, *L. jensenii*, *L. vaginalis*, and *L. iners* are commonly found [29].

77 Efficacy of lactobacilli as probiotics derives from their ability to tolerate very low pH values,
 78 which allows them to survive transit through the stomach, and adhere to the mucus layer by
 79 surface structures such as pili and cell-wall anchored proteins [30]. Some of their beneficial
 80 activities are favouring GIT health by inhibiting the growth of pathogenic organisms with the
 81 production of lactic acid and other metabolites. Some *Lactobacillus* strains are able to
 82 immunomodulate human cells and elicit an anti-inflammatory response [31]. In addition, some
 83 strains produce antioxidants [32].

84 As other probiotics, they are sold as a constituents of food, food additives, or food
 85 supplements but control on their use to safeguard consumer's health needs to be improved [33].

86 *Lactobacillus* organisms are rarely associated with pathology in immunocompetent people, but
 87 in presence of risk factors and underlying conditions, they can cause infections such as endocarditis,
 88 bacteremia, neonatal meningitis, dental caries, intra-abdominal abscesses including liver abscess,
 89 pancreatic necrosis infection, pulmonary infections, pyelonephritis, meningitis, postpartum
 90 endometritis, and chorioamnionitis [34, 35].

91 In a retrospective analysis carried out in Argentina between January 2012 and July 2017
 92 *Lactobacillus* spp. were isolated from patients with bacteremia (67%), meningitis, empyema, urinary
 93 infection, vaginosis and hepatic abscess and underlying conditions such as cancer, surgery

94 interventions, diabetes and intestinal malformation. *L. rhamnosus* was most commonly isolated, 95 followed by *L. fermentum*, *L. paracasei*, *L. oris*, *L. gasseri*, *L. iners* and *L. salivarius* [36].

96 A recent systematic review of case reports and case series of infection complications after 97 probiotic treatments found that both *Lactobacillus* spp. and *Pediococcus* spp. were involved as 98 causative agents among other probiotic organisms of common use [37].

99

1002. *Lactobacilli* as opportunistic pathogens

101

102 The risk factors most commonly reported for *Lactobacillus* infections are diabetes mellitus, pre-103 existing structural heart disease (in infective endocarditis cases), cancer (especially leukemia), total 104 parenteral nutrition, broad spectrum antibiotic therapy, chronic kidney disease, inflammatory 105 bowel disease, pancreatitis, chemotherapy, neutropenia, organ transplantation (especially liver 106 transplantation), HIV infection and steroids use [35].

107 Moreover, perinatal infections caused by lactobacilli indicate preterm neonates as a population 108 category at risk. Though a meta-analysis indicated that probiotics reduce the incidence of 109 necrotising enterocolitis and all-cause mortality in preterm infants, excluding infants with a birth 110 weight of <1,000 g, cases of infections in premature infants have been reported. These include late-111 onset sepsis due to *L. rhamnosus* following a laparotomy, amnionitis and neonatal meningitis, cases 112 of bacteremia, lactobacillemia of amniotic fluid origin, *L. rhamnosus* GG bacteremia associated with 113 probiotic use in a child with short gut syndrome and *L. rhamnosus* infection in a child following 114 bone marrow transplantation [38, 39, 40].

115 Experiments with athymic mice have shown the potential for probiotics to cause sepsis in 116 immune deficient neonates. This possibility was supported by case reports of probiotic sepsis in 117 humans [41].

118 The most common predisposing events for *Lactobacillus* infections are dental manipulation, 119 poor dental hygiene, intravenous drug abuse, abdominal surgery, colonoscopy, probiotic use, and 120 heavy dairy product consumption [42].

121 Recent opinion articles invite to conduct safety assessment of *Lactobacillus* probiotics since they 122 represent a risk for individuals with underlying medical conditions [33, 43]. In particular Cohen 123 (2019) [33] stated that the ability of these strains to infect humans is not controversial and that live 124 bacteria sold as commercial probiotics are capable of infecting immunocompromised hosts and 125 have well established “inherent infective qualities”.

126 Theoretically, the potential pathogenicity of probiotics may be enhanced in strains selected on 127 the basis of the capacity to adhere to the intestinal mucosa, a trait that is considered important for 128 their mechanism of action. Indeed, adherence can favour translocation across the intestinal barrier 129 and ability to cause infections. The finding that *Lactobacillus* spp. isolated from blood adhere to 130 intestinal mucus in greater numbers than isolates from human feces or dairy products supports the 131 relationship between mucosal adhesion and pathogenicity [34].

132

133 2.1. *Infections caused by Lactobacillus spp.*

134

135 2.1.1. Endocarditis

136

137 Among infections caused by lactobacilli, endocarditis, with or without bacteremia, is the most 138 common. It occurred in patients who had dental extractions or gingival bleeding after 139 toothbrushing [44, 45], suggesting that these could be considered risk factors, especially in presence 140 of underlying immunosuppression and valvular heart disease [46].

141 An *L. rhamnosus* endocarditis case was reported in an 80 years old man who frequently 142 consumed yogurt containing the organism following upper endoscopy. This patient required aortic 143 and mitral valve replacement for cure. Cases of *Lactobacillus* endocarditis have been described also 144 following colonoscopy [47]. Patients with hereditary hemorrhagic telangiectasia (HHT) are also 145 exposed to this infection because of telangiectasias and arteriovenous malformations (AVMs). In a

146 habitual consumer of fermented dairy products with this pathological condition the portal of entry
147 was intestine following a colonoscopy [48].

148 In a middle-aged man *L. acidophilus* endocarditis led to an aneurysmal rupture of the sinus of
149 Valsalva into the right ventricular outflow tract with fistula formation from the right coronary sinus
150 to the right ventricular outflow tract that required surgical repair with aortic valve replacement [49].
151 A case of mitral valve endocarditis due to *Lactobacillus* was recently reported in an 81 year old
152 woman [50].

153 *P. pentosaceus* caused endocarditis in a 66 years old male in association with *Lactococcus lactis*
154 subsp. *lactis* [51].

155 The species *L. rhamnosus* and *L. casei* have been most frequently involved in endocarditis,
156 presumably for their ability to induce platelet aggregation and generate fibrin by producing a factor
157 Xa-like enzyme that catalyzes steps of the coagulation process favouring clot formation. It is
158 supposed that these bacteria colonize thrombotic vegetations where they grow evading host
159 defenses [52].

160

161 2.1.2. Bacteremia

162

163 *Lactobacillus* bacteremia has been associated to the consumption of probiotics in special medical
164 conditions including hematopoietic stem cell transplantation [53] and HIV-infection [54].

165 Bacteremia caused by *Veillonella* and *Lactobacillus* spp., secondary to occult dentoalveolar
166 abscess was reported in a pediatric patient [55].

167 In a patient with chronic lymphocytic leukemia and recurrent bacteremia caused by *L.*
168 *casei/paracasei* and *L. rhamnosus* the source of infection was unknown since probiotics had not been
169 assumed and entry from dental infections or the gastrointestinal and urinary tract was excluded
170 [56].

171 Bacteremia caused by isolates indistinguishable from the *L. rhamnosus* probiotic strain GG
172 based on PFGE typing was associated with a higher mortality rate than bacteremia caused by other
173 *Lactobacillus* species [57].

174 *Lactobacillus* sepsis was normally resolved with antimicrobial therapy, but in some cases
175 patients developed septic shock. In other cases the outcome has been fatal, but due mostly to
176 underlying diseases rather than probiotic sepsis. On the basis of the characteristics of the cases
177 reported, a list of major and minor risk factors for probiotic sepsis was proposed and caution in
178 using probiotics in the presence of a single major risk factor or more than one minor risk factor was
179 suggested. Major risk factors are immune compromise and preterm birth, while minor risk
180 factors are presence of central venous catheters (CVCs), impaired intestinal epithelial barrier caused
181 by intestinal infections or inflammation, administration of probiotic by jejunostomy, concomitant
182 administration of antibiotics to which the probiotic is resistant, probiotics with properties of high
183 mucosal adhesion or known pathogenicity, cardiac valvular disease (*Lactobacillus* probiotics only)
184 [34].

185

186 2.1.3. Pleuropneumonia

187

188 *Lactobacillus* species were a primary cause of pleuropneumonia without bacteraemia, especially
189 in immunocompromised patients. Since 1982 to 2016 15 cases of pleuropneumonia caused by
190 *Lactobacillus* spp. were reported and involved *L. rhamnosus*, *L. fermentum*, *L. acidophilus*, *L. paracasei*
191 and *L. coryneformis*. All the patients had severe associated co-morbidities comprising
192 immunosuppression caused in most cases by AIDS, carcinoma, chronic diseases and neutropenia.
193 One patient had *Lactobacillus* pneumonia linked to consumption of a probiotic supplement. The
194 route of entry was probably GIT in some patients, the transplanted lung in one patient, ventilator in
195 an immunocompetent patient with thoracic trauma. In one patient, diagnosed of trachea-
196 oesophageal fistula, the route of *Lactobacillus* pneumonia was aspiration of a probiotic strain. Only
197 one patient had concurrent lactobacillemia [58].

198 2.1.4. Meningitis

199

200 The first reported case of meningitis, in which *Lactobacillus* was isolated from blood and
201 cerebrospinal fluid, was in an early-term neonate (38 weeks' gestation) within the first day of life.
202 Transmission from mother's genital tract to the neonate's oral mucosa at the time delivery was
203 identified as the probable route of infection, since no immunological abnormalities, structural
204 defects or peripartum complications were observed. Another case involved a 10 year old
205 neutropenic child affected by acute leukemia with four successive episodes of *L. rhamnosus*
206 bacteremia and unknown origin of infection.

207 A lethal case of meningitis due to *L. rhamnosus* was reported in an 80-year-old woman not
208 immunocompromised but with a fistula between the esophagus and the meningeal space, caused
209 by dislodged and eroded plates and screws used several years earlier for cervical spine surgery,
210 that facilitated bacterial translocation.

211 Meningoencephalitis caused by *L. plantarum* was reported in a 63-year-old man with metastatic
212 plomoepithelial lung cancer.

213 Bacteremia and endocarditis, that are the two main manifestations of *Lactobacillus* infection, can
214 lead to the onset of neurological sequelae through mechanisms mediated by embolic material.

215 This was not the case of the latter patient who had not signs of endocarditis. Therefore direct
216 bacterial dissemination from the gastrointestinal tract was hypothesized [59].

217

218 2.1.4. Urinary tract infections

219

220 Cases of urinary tract infections caused by lactobacilli in women have been reported, with
221 symptoms such as chronic pyuria and pyelonephritis with bacteremia, in which *L. delbrueckii* was
222 the causative microorganism [60, 61]. A case of urinary tract infection caused by *Lactobacillus* spp.
223 was reported in a newborn [62].

224

225 3. *Lactobacillus* virulence factors

226

227 Studies on *Lactobacillus* virulence have regarded mainly the species *L. rhamnosus* and *L.*
228 *paracasei*, that comprise the most widely used *Lactobacillus* probiotics. These possess potential
229 virulence factors such as production of enzymes which break down human glycoproteins and
230 proteins that bind extracellular proteins such as fibronectin, fibrinogen and collagen which may be
231 important in early stage colonization and adherence. Moreover, some strains have the ability to
232 aggregate human platelets, that has a role in the pathogenesis of various infections [63, 64]. The
233 ability to bind fibrinogen is known to help Gram-positive pathogens in escaping the immune
234 system, and can be sufficient to induce platelet aggregation and lead to infections such as
235 endocarditis [65]. Recently a *L. salivarius* isolate from a case of sepsis, was found to aggregate
236 human platelets by binding human fibrinogen through a newly described fibrinogen-binding
237 protein [66].

238 Virulence aspects were better studied in the species *L. rhamnosus*, that comprises highly
239 effective probiotic strains of wide use.

240

241 3.1. Focus on *L. rhamnosus* pathogenic potential

242

243 3.1.1. Relevance of *L. rhamnosus* as a probiotic

244

245 The species *L. rhamnosus* comprises strains able to exert many proven beneficial effects on
246 health, with *L. rhamnosus* GG as the best studied and most recommended probiotic for the
247 prevention and treatment of conditions like antibiotic associated diarrhea (AAD) caused by
248 *Clostridium difficile*, Crohn disease and atopic dermatitis [67, 68] and pathological states of the
249 respiratory tract and the vaginal tract [69]. Its use in pediatric patients is justified by its ability to

250survive to amoxicillin-clavulanate treatment, with relevance for the frequent use of this antibiotic
251treatment in children [70].

252 *L. rhamnosus* strain GG has been applied successfully to treat infections caused by vancomycin-
253resistant *Enterococcus faecium* (VRE). A mechanism explaining the efficacy of this probiotic against
254VRE intestinal colonization is the prevention of their binding to mucus by competition exerted by
255the SpaC pilus protein of *L. rhamnosus*, very similar to its counterpart in the clinical *E. faecium* strain
256E1165 [71].

257 *L. rhamnosus* GG inhibits biofilm formation by various pathogens, including *Salmonella* spp.
258and uropathogenic *E. coli*, by the production of lectin-like proteins Llp1 and Llp2. These proteins
259are also involved in the adhesion capacity of *L. rhamnosus* GG to gastrointestinal and vaginal
260epithelial cells and could improve the prophylaxis of urogenital and gastrointestinal infections [72].

261 *L. rhamnosus* strains endowed with a catalase gene, and therefore more resistant to oxidative
262stress, with possible anti-oxidant applications were recently described [73].

263 Beneficial effects of *L. rhamnosus* strains proven *in vivo* in human trials are synthetized in Table
2642.

265 **Table 2.** Beneficial effects exerted *in vivo* by *L. rhamnosus* strains in human trials.

<i>L. rhamnosus</i> strain	<i>In vivo effect</i>
GG	Decrease of total and LDL cholesterol and increase in natural killer activity in elderly persons [74]
	prevention and relief of various types of diarrhoea, and treatment of relapsing <i>Clostridium difficile</i> colitis [75, 76]
	Anti-inflammatory effect by interleukin-10 generation in atopic children and alleviation of atopic eczema-dermatitis symptoms [77, 78]
	reduced duration of respiratory tract infections in children [79]
SD11	Decrease of oral mutans streptococci [80]
PL60	Production of c9,t11- and t10,c12-conjugated linoleic acids with anticarcinogenic and antiartherogenic activities, reduction of the catabolic effects of immune stimulation, and reduction of body fat [81]
Not specified	modulation of dendritic cells function to induce a novel form of T cell hyporesponsiveness; this mechanism might be an explanation for the observed beneficial effects of probiotic treatment in clinical disease [82]
HN001	increased tumoricidal activity of circulating natural killer (NK) cells significantly correlated with age [83]

266

267 3.1.2. Implication of *L. rhamnosus* in infection cases

268

269 *L. rhamnosus* has caused infections more frequently than other *Lactobacillus* species. It was
270implicated in 68 among 85 cases examined, among which 22 were attributable to *L. rhamnosus* GG

271[84]. Among 60 strains of *Lactobacillus* spp. from blood cultures identified in a retrospective study, *L. 272rhamnosus* was the most commonly isolated species and was found in blood cultures from 16 273patients. Of patients with *L. rhamnosus* bacteremia 66 % were immunosuppressed and 83 % had 274catheters [42]. A case of bacteremia caused by *L. rhamnosus* GG in an adult patient affected by 275severe active ulcerative colitis under treatment with corticosteroids and mesalazine. was associated 276with candidemia and occurred while the patient was receiving a probiotic formulation containing 277the same strain (as determined by PFGE typing), and was concomitantly treated with i.v. 278vancomycin, to which the *Lactobacillus* strain was intrinsically resistant [85]. *L. rhamnosus* GG 279bacteremia was apparently a consequence of the translocation of bacteria from the intestinal lumen 280to the blood in an immunocompetent 58 years old male suffering from ischemic colitis. The authors 281of the study underlined that the *Lactobacillus* infection can represent a clue for a serious underlying 282pathological state [86].

283 Probiotics are commonly administered to infants to prevent adverse effects of antibiotic 284treatment and necrotizing enterocolitis. However, the supplementation with *L. rhamnosus* GG has 285been associated with the development of sepsis with a cause-effect relationship in eight newborns 286and children. Therefore, physicians must be made aware that supplementation with *L. rhamnosus* 287GG can cause sepsis in high-risk patients on rare occasions [87].

288 Other infections caused by *L. rhamnosus* GG were empiema in a human HIV-infected lung 289transplant recipient receiving a probiotic containing this strain [88], aspiration pneumonia in an 290eleven month old child with trisomy 21 affected by respiratory syncytial virus (RSV) bronchiolitis 291who had assumed a probiotic culture containing *L. rhamnosus* GG for 3 months prior to her illness 292[89], disseminated infection in a 6 day-old newborn with intrauterine growth restriction to whom *L. 293rhamnosus* GG was administered to prevent gastrointestinal complications [90], septic shock caused 294by yogurt derived *L. rhamnosus* GG in a 54-year-old male patient with acute promyelocytic 295leukemia, in second complete remission, and who received high dose chemotherapy and 296autologous peripheral blood stem cell transplantation [91], endocarditis in a patient who regularly 297ate a yogurt brand labeled as containing *Lactobacillus bulgaricus*, *Lactobacillus acidophilus*, and *L. casei*. 298In the latter case, though not declared in label, a *L. rhamnosus* strain identical to blood *L. rhamnosus* 299isolates based on pulsed-field gel electrophoresis and with 2-band difference with the valve isolate 300was isolated from the product [47].

301

302 3.1.2. Methodologies used for *L. rhamnosus* identification and strain discrimination

303

304 Correct species identification and strain discrimination is of utmost importance for the 305recognition of infection etiological agents. In the case of *L. rhamnosus* species identification can be 306carried out by species-specific PCR as described by Alander et al. 1999 [92 Alander] or MALDI-TOF 307MS [89].

308 Identification by gene sequencing can be accomplished 16S rRNA or *tuf* gene sequencing [42, 30990].

310 Pulsed Field Gel Electrophoresis profiles (PFGE) with four restriction enzymes, NotI, SfiI, AscI, 311and FseI, used separately, is the gold standard typing technique applied for the comparison of 312clinical and probiotic *L. rhamnosus* strains [93].

313 Another typing method adopted for *L. rhamnosus* strain distinction is Repetitive-Sequence 314PCR (rep-PCR) with the primer RW3A. PCR products can be resolved on the Agilent 2100 315Bioanalyzer (Agilent, Santa Clara, CA), and the relatedness of the strains can be evaluated using the 316Diversilab software (bioMérieux, Durham, NC). Identical strains have a similarity index of >99% 317[89].

318 Moreover, Amplified fragment length polymorphism (AFLP) can be applied as genetic 319fingerprinting method for *L. rhamnosus* strain distinction [94].

320 Finally, methods of whole genome comparison have been applied in different occasions for 321this bacterial species [64, 73, 95].

322

323 3.1.3. Recent advances in the study of *L. rhamnosus* capacity to behave as opportunistic
324 pathogen

325

326 Recent developments in the study of *L. rhamnosus* pathogenic potential consist in the analysis
327 of virulence characters at phenotypic and genotypic level.

328 Comparison of isolates from dental pulp infection with *L. rhamnosus* GG indicated as possible
329 biomarkers for pathogenicity the presence of a modified exopolysaccharide cluster, altered
330 transcriptional regulators of families RpoN, NtrC, MutR, ArsR and zinc-binding Cro/CI, and
331 changes in the two-component sensor kinase response regulator and ABC transporters for ferric
332 iron. Clinical strains appeared to be segregated on the basis of genomic distance analysis and SNP
333 divergence from *L. rhamnosus* GG and to possess only the SpaFED pilus gene cluster instead of
334 SpaCBA and SpaFED as in the latter strain [95].

335 Nissilä et al. (2017) [64] studied virulence related characters, i.e. surface exposed structures,
336 complement evasion, platelet aggregation and biofilm formation, in 4 newly sequenced and 12
337 already described *L. rhamnosus* strains from blood cultures collected from bacteremic patients
338 between years 2005 and 2011.

339 *L. rhamnosus* isolates were clearly different from *L. rhamnosus* GG and from each other at
340 sequence level. The blood isolates showed no common phenotypic trait possibly involved in the
341 persistence in the host, like biofilm formation, platelet aggregation and pilus production.

342 Two strain clusters were defined: cluster A, with sequence similarity at nucleic acid level to *L.*
343 *rhamnosus* GG between 99.942 and 99.984%, and cluster B, with a similarity to *L. rhamnosus* GG
344 between 97.0 and 98.5%. All strains that were found to contain plasmids fell in the genome cluster B.
345 All strains possessed a unique set of LPXTG proteins, that are recognized by sortases and are
346 involved in interactions with the environment and *in vivo*.

347 All the *L. rhamnosus* strains were able to activate the complement system, measured as C3a and
348 terminal pathway complement complex (TCC) formation in serum. However, the strains expressing
349 pili showed a borderline increase in TCC formation compared to the group without pili.

350 None of the strains bound complement inhibitors C4bp or FH, indicating that *L. rhamnosus*,
351 differently from some pathogens, have not the ability to escape the complement system. Four of the
352 sixteen strains induced platelet aggregation and four strains in cluster B formed stronger biofilm.
353 One strain had both characteristics. Most of these strains belonged to cluster B. There was a
354 significant association between biofilm formation and the presence of the SpaCBA pilus. Similar
355 features are not found in *L. rhamnosus* GG and were observed in pathogenic strains, as reported in
356 earlier studies with strains isolated from infectious endocarditis (5/5 tested strains), laboratory
357 strains (8/16 strains) and strains from infection of aortic aneurysm graft and carcinoma with liver
358 metastasis [63].

359 Distinctive characters of cluster B compared to strains in cluster A, similar to *L. rhamnosus* GG
360 also in exopolysaccharide (EPS) gene cluster composition, were the presence of only some of the
361 genes in one EPS gene cluster and a different type EPS/CPS cluster comprising 19 genes. This could
362 influence tissue adherence capacity, biofilm formation and evasion of host defence.

363 It was concluded that *L. rhamnosus* strains isolated from blood cultures are distinct from *L.*
364 *rhamnosus* GG, suggesting that use of this probiotic is safe in healthy subjects with a functional
365 immune system.

366

367 4. Conclusions

368

369 The capacity of *L. rhamnosus* and lactobacilli in general to behave as opportunistic pathogens
370 has been linked to characters such as platelet aggregation capacity and biofilm formation. Still little
371 is known on the cell wall structures involved in these activities, so that this aspect should be
372 investigated by correlating the cell surface protein profile, including the sortase-recognized LPXTG
373 proteins, with the virulence phenotype.

374 Moreover, the expression of structures and proteins involved in adherence in different growth
375 conditions should be investigated, since *in silico* analysis of regulatory motifs in *L. rhamnosus* GG
376 has indicated that some sortases, as well as a fibronectin binding protein, could be upregulated
377 during exposure to stress factors that induce the heat shock response (HSR) [96].

378 EPS production, which influences biofilm structure and strength, is highly variable among
379 strains and even genetically unstable, being determined by genome regions prone to
380 rearrangements and loss. The implication of type of EPS and production conditions in virulence
381 needs to be better defined by elucidating the link between presence and expression of specific genes
382 and biofilm formation and tenacity on materials used for CVCs or prosthetic heart valve
383 manufacturing.

384 A better definition of the relationships between expression of specific characters and virulence
385 could lead to the selection of *Lactobacillus* probiotic strains with no intrinsic capacity to pose health
386 risks.

387 On the other hand, Nissilä et al. (2017) [64] have shown that belonging to a specific intra-
388 species cluster of plasmid endowed strains from bacteremic patients is *per se* an indication of
389 potential pathogenicity, so that genome regions specific for those strains could be used to design
390 PCR tests that enable to exclude the membership of probiotic candidates to those clusters.

391 Since it is suspected that infections due to *Lactobacillus* species are under-reported because
392 appropriate growth conditions, such as microaerophily or anaerobiosis, are not applied in clinical
393 microbiology laboratories for their isolation [58], improved isolation methods should be
394 implemented to correctly estimate the involvement of lactobacilli in infection cases.

395

396 **Author Contributions:** FR, CA and GC equally contributed to writing, review and editing of the article.

397 **Funding:** This research received no external funding.

398 **Conflicts of Interest:** The authors declare no conflict of interest.

399 **References**

- 400 1. LPSN List of prokaryotic names with standing in nomenclature. Available online:
401 <http://www.bacterio.net/lactobacillus.html> (accessed on 18 March 2019).
- 402 2. Kandler, O. Carbohydrate metabolism in lactic acid bacteria. *Antonie Van Leeuwenhoek* **1983**, *49*, 209–224.
- 403 3. Zheng, J.; Ruan, L.; Sun, M.; Gänzle, M.A genomic view of lactobacilli and pediococci demonstrates that
404 phylogeny matches ecology and physiology. *Appl Environ Microbiol* **2015**, *81*, 7233–7243. doi:
405 10.1128/AEM.02116-15.
- 406 4. Papizadeh, M.; Rohani, M.; Nahrevanian, H.; Javadi A.; Pourshafie, M.R. Probiotic characters of
407 *Bifidobacterium* and *Lactobacillus* are a result of the ongoing gene acquisition and genome minimization
408 evolutionary trends. *Microb Pathog* **2017**, *111*, 118–131. doi: 10.1016/j.micpath.2017.08.021.
- 409 5. Wittouck, S.; Wuyts, S.; Meehan, C.J.; van Noort, V.; Lebeer, S. A genome-based species taxonomy of
410 the *Lactobacillus* Genus Complex. *BioRxiv The Preprint Service for Biology* **2019**, doi: 10.1101/537084.
- 411 6. Bull, M.J.; Jolley, K.A.; Bray, J.E.; Aerts, M.; Vandamme, P.; Maiden, M.C.; Marchesi, J.R.;
412 Mahenthiralingam, E. The domestication of the probiotic bacterium *Lactobacillus acidophilus*. *Sci Rep* **2014**,
413 *4*:7202. doi: 10.1038/srep07202.
- 414 7. Fraunhofer, M.E.; Geißler, A.J.; Behr, J.; Vogel, R.F. Comparative genomics of *Lactobacillus brevis* reveals a
415 significant plasmidome overlap of brewery and insect isolates. *Curr Microbiol* **2019**, *76*, 37–47. doi:
416 10.1007/s00284-018-1581-2.
- 417 8. Koistinen, V.M.; Mattila, O.; Katina, K.; Poutanen, K.; Aura, A.-M.; Hanhineva, K. Metabolic profiling of
418 sourdough fermented wheat and rye bread. *Sci Rep* **2018**, *8*, 5684. doi: 10.1038/s41598-018-24149-w.
- 419 9. Heinl, S.; Grabherr, R. Systems biology of robustness and flexibility: *Lactobacillus buchneri*-a show case. *J
420 Biotechnol* **2017**, *257*, 61–69. doi: 10.1016/j.jbiotec.2017.01.007.
- 421 10. Guo, X.S.; Ke, W.C.; Ding, W.R.; Ding, L.M.; Xu, D.M.; Wang, W.W.; Zhang, P.; Yang, F.Y. Profiling of
422 metabolome and bacterial community dynamics in ensiled *Medicago sativa* inoculated without or with
423 *Lactobacillus plantarum* or *Lactobacillus buchneri*. *Sci Rep* **2018**, *8*, 357. doi:10.1038/s41598-017-18348-0.

42411. Reale, A.; Di Renzo, T.; Rossi, F.; Zotta, T.; Iacumin, L.; Preziuso, M.; Parente E.; Sorrentino, E.; Coppola, R.
425 Tolerance of *Lactobacillus casei*, *L. paracasei* and *L. rhamnosus* strains to stress factors encountered in food
426 processing and in the gastro-intestinal tract. *LWT Food Sci Technol* **2015**, *60*, 721–728. doi:
427 10.1016/j.lwt.2014.10.022.

42812. Stefanovic, E.; Fitzgerald, G.; McAuliffe, O. Advances in the genomics and metabolomics of dairy
429 lactobacilli: A review. *Food Microbiol* **2017**, *61*, 33–49. doi: 10.1016/j.fm.2016.08.009.

43013. El Kafsi, H.; Binesse, J.; Loux, V.; Buratti, J.; Boudebbouze, S.; Dervyn, R.; Kennedy, S.; Galleron, N.;
431 Quinquis, B.; Battot, J.M.; Moumen, B.; Maguin, E.; van de Guchte, M. *Lactobacillus delbrueckii* ssp. *lactis* and
432 ssp. *bulgaricus*: a chronicle of evolution in action. *BMC Genomics* **2014**, *15*, 407. doi: 10.1186/1471-2164-15-
433 407.

43414. Siezen, R.J.; Tzeneva, V.A.; Castioni, A.; Wels, M.; Phan, H.T.; Rademaker, J.L.; Starrenburg, M.J.;
435 Kleerebezem, M.; Molenaar, D.; van Hylckama Vlieg, J.E. Phenotypic and genomic diversity of strains
436 isolated from various environmental niches. *Environ. Microbiol* **2010**, *12*, 758–773. doi: 10.1111/j.1462-
437 2920.2009.02119.x.

43815. Mu, Q.; Tavella, V.J.; Luo, X.M. Role of *Lactobacillus reuteri* in human health and diseases. *Front Microbiol*
439 **2018**, *9*, 757. doi: 10.3389/fmicb.2018.00757.

44016. Capurso, L. Thirty years of *Lactobacillus rhamnosus* GG: a review. *J Clin Gastroenterol* **2019**, *53* Suppl 1:S1-
441 S41. doi: 10.1097/MCG.0000000000001170.

44217. Amadoro, C.; Rossi, F.; Piccirilli, M.; Colavita, G. Features of *Lactobacillus sakei* isolated from Italian
443 sausages: focus on strains from Ventricina del Vastese. *Ital J Food Saf* **2015**, *4*, 5449.

44418. Eisenbach, L.; Geissler, A.J.; Ehrmann, M.A.; Vogel, R.F. Comparative genomics of *Lactobacillus sakei*
445 supports the development of starter strain combinations. *Microbiol Res* **2019**, *221*, 1–9. doi:
446 10.1016/j.micres.2019.01.001.

44719. Gänzle, M.G.; Zheng, J. Lifestyles of sourdough lactobacilli - Do they matter for microbial ecology and
448 bread quality? *Int J Food Microbiol* **2018**, pii: S0168-1605(18)30542-7. doi: 10.1016/j.ijfoodmicro.2018.08.019.

44920. Lee, J.Y.; Han, G.G.; Kim, E.B.; Choi, Y.J. Comparative genomics of *Lactobacillus salivarius* strains focusing
450 on their host adaptation. *Microbiol Res* **2017**, *205*, 48–58. doi: 10.1016/j.micres.2017.08.008.

45121. Renouf, V.; Claisse, O.; Lonvaud-Funel, A. Understanding the microbial ecosystem on the grape berry
452 surface through numeration and identification of yeast and bacteria. *Aust J Grape Wine Res* **2005**, *11*, 316–
453 327. doi.org/10.1111/j.1755-0238.2005.tb00031.x.

45422. Franz, C.M.A.P.; Endo, A.; Abriouel, H.; Van Reenen, C.A.; Gálvez, A.; Dicks, L.M. The genus *Pediococcus*.
455 In: *Lactic acid bacteria: biodiversity and taxonomy*; Eds. Holzapfel, W. H., Wood, B.J.B.; Publisher: Wiley &
456 Sons Ltd. **2014**, 359–376. doi:10.1002/9781118655252.

45723. Amadoro, C.; Rossi, F.; Pallotta, M.L.; Gasperi, M.; Colavita, G. Traditional dairy products can supply
458 beneficial microorganisms able to survive in the gastrointestinal tract. *LWT Food Sci Technol* **2018**, *93*,
459 376–383. doi.org/10.1016/j.lwt.2018.03.056.

46024. Dheeney, D.; Gareau, M.G.; Marco, M.L. Intestinal *Lactobacillus* in health and disease, a driver or just
461 along for the ride? *Curr Opin Biotechnol* **2018**, *49*, 140–147. doi: 10.1016/j.copbio.2017.08.004.

46225. Rossi, M.; Martinez-Martinez, D.; Amaretti, A.; Ulrici, A.; Raimondi, S.; Moya, A. Mining metagenomic
463 whole genome sequences revealed subdominant but constant *Lactobacillus* population in the human gut
464 microbiota. *Environ Microbiol Rep* **2016**, *8*, 399–406. doi: 10.1111/1758-2229.12405.

46526. Walter, J. Ecological role of lactobacilli in the gastrointestinal tract: implications for fundamental and
466 biomedical research. *Appl Environ Microbiol* **2008**, *74*, 4985–4996. doi: 10.1128/AEM.00753-08.

46727. Roos, S.; Engstrand, L.; Jonsson, H. *Lactobacillus gastricus* sp. nov., *Lactobacillus antri* sp. nov., *Lactobacillus*
468 *kalixensis* sp. nov. and *Lactobacillus ultunensis* sp. nov., isolated from human stomach mucosa. *Int J Syst*
469 *Evol Microbiol* **2005**, *55*, 77–82. doi: 10.1099/ijss.0.63083-0.

47028. Caufield P.W.; Schön, C.N.; Saraithong, P.; Li Y.; Argimón, S. Oral lactobacilli and dental caries: a model
471 for niche adaptation in humans. *J Dent Res* **2015**, *94*(9 Suppl), 110S–118S. doi: 10.1177/0022034515576052.

47229. Jespers, V.; Menten, J.; Smet, H.; Poradosú, S.; Abdellati, S.; Verhelst, R.; Hardy, L.; Buvé, A.; Crucitti, T.
473 Quantification of bacterial species of the vaginal microbiome in different groups of women, using nucleic
474 acid amplification tests. *BMC Microbiol* **2012**, *12*, 83. doi: 10.1186/1471-2180-12-83.

47530. Nishiyama, K.; Sugiyama M.; Mukai, T. Adhesion properties of lactic acid bacteria on intestinal mucin.
476 *Microorganisms* **2016**, *4*, E34. doi: 10.3390/microorganisms4030034.

47731. Liu, Y.W.; Su, Y.W.; Ong, W.K.; Cheng, T.H.; Tsai, Y.C. Oral administration of *Lactobacillus plantarum* K68
478 ameliorates DSS-induced ulcerative colitis in BALB/c mice via the anti-inflammatory and
479 immunomodulatory activities. *Int Immunopharmacol* **2011**, *11*, 2159–2166. doi: 10.1016/j.intimp.2011.09.013.

48032. Wang, Y.; Wu, Y.; Wang, Y.; Xu, H.; Mei, X.; Yu, D.; Wang, Y.; Li, W. Antioxidant properties of probiotic
481 bacteria. *Nutrients* **2017**, *9*, 521. doi: 10.3390/nu9050521.

48233. Cohen, P.A. Probiotic Safety—Reasonable Certainty of No Harm—Reply. *JAMA Intern Med* **2019**, *179*,
483 276–277. doi:10.1001/jamainternmed.2018.7492.

48434. Boyle, R.J.; Robins-Browne, R.M.; Tang, M.L.K. Probiotic use in clinical practice: What are the risks? *Am J
485 Clin Nutr* **2006**, *83*, 1256–1264. doi: 10.1093/ajcn/83.6.1256.

48635. Sheridan, M.; Samo, S.; Sulaiman, S.; Husein, H.; Sifuentes, H.; Sridhar, S. Liver abscess and bacteremia
487 caused by *Lactobacillus*: role of probiotics? Case report and review of the literature. *BMC Gastroenterol*
488 **2016**, *16*, 138. doi: 10.1186/s12876-016-0552-y.

48936. Rocca, M.F.; Aguerre, L.; Cipolla, L.; Martínez, C.; Armitano, R.; Dangiolo, G.; Prieto, M. *Lactobacillus* spp.
490 invasive infections in Argentina. *Int J Infect Dis* **2018**, *73*, Supplement, 163.
491 doi.org/10.1016/j.ijid.2018.04.3783.

49237. Costa, R.L.; Moreira, J.; Lorenzo, A.; Lamas, C.C. Infectious complications following probiotic ingestion:
493 A potentially underestimated problem? A systematic review of reports and case series. *BMC Complement
494 Altern Med* **2018**, *18*, 329. doi: 10.1186/s12906-018-2394-3.

49538. Brecht, M.; Garg, A.; Longstaff, K.; Cooper, C.; Andersen, C. *Lactobacillus* sepsis following a laparotomy in
496 a preterm infant: A note of caution. *Neonatology* **2016**, *109*, 186–189. doi: 10.1159/000441965.

49739. Ran, L.; Bégué, R.E.; Penn, D. *Lactobacillus rhamnosus* sepsis in an infant without probiotic use: A case
498 report and literature review. *J Neonat-Perinat Med* **2011**, *4*, 163–167. doi: 10.3233/NPM-2011-2748.

49940. Land, M.H.; Roush-Stevens, K.; Woods, C.R.; Cannon, M.L.; Cnota, J.; Shetty, A.K. *Lactobacillus* sepsis
500 associated with probiotic therapy. *Pediatrics* **2005**, *115*, 178–181. doi: 10.1542/peds.2004-2137.

50141. Wagner, R.D.; Warner, T.; Roberts, L.; Farmer, J.; Balish, E. Colonization of congenitally immunodeficient
502 mice with probiotic bacteria. *Infect Immun* **1997**, *65*, 3345–3351.

50342. Gouriet, F.; Million, M.; Henri, M.; Fournier, P.E.; Raoult, D. *Lactobacillus rhamnosus* bacteremia: an
504 emerging clinical entity. *Eur J Clin Microbiol Infect Dis* **2012**, *31*, 2469–2480.

50543. Castro-González, J.M.; Castro, P.; Sandoval, H.; Castro-Sandoval, D. Probiotic lactobacilli precautions.
506 *Front Microbiol* **2019**, *10*, 375. doi: 10.3389/fmicb.2019.00375.

50744. Lockhart, P.B.; Brennan, M.T.; Sasser, H.C.; Fox, P.C.; Paster, B.J.; Bahrani-Mougeot, F.K. Bacteremia
508 associated with toothbrushing and dental extraction. *Circulation* **2008**, *117*, 3118–3125. doi:
509 10.1161/CIRCULATIONAHA.107.758524.

51045. Lockhart, P.B.; Brennan, M.T.; Thornhill, M.; Michalowicz, B.S.; Noll, J.; Bahrani-Mougeot, F.K.; Sasser,
511 H.C. Poor oral hygiene as a risk factor for infective endocarditis-related bacteremia. *J Am Dent Assoc* **2009**,
512 140, 1238–1244.

51346. Botros, M.; Mukundan, D. *Lactobacillus* endocarditis with prosthetic material: a case report on non-
514 surgical management with corresponding literature review. *Infect Dis Rep* **2014**, *6*, 5497. doi:
515 10.4081/idr.2014.5497.

51647. Aaron, J.G.; Sobieszczyk, M.E.; Weiner, S.D.; Whittier, S.; Lowy, F.D. *Lactobacillus rhamnosus* endocarditis
517 after upper endoscopy. *Open Forum Infect Dis* **2017**, *4*, ofx085. doi: 10.1093/ofid/ofx085.

51848. Boumis, E.; Capone, A.; Galati, V.; Venditti, C.; Petrosillo, N. Probiotics and infective endocarditis in
519 patients with hereditary hemorrhagic telangiectasia: a clinical case and a review of the literature. *BMC
520 Infect Dis* **2018**, *18*, 65. doi: 10.1186/s12879-018-2956-5.

52149. Encarnacion, C.O.; Loranger, A.M.; Bharatkumar, A.G.; Almassi, G.H. Bacterial endocarditis caused by
522 *Lactobacillus acidophilus* leading to rupture of sinus of Valsalva aneurysm. *Tex Heart Inst J* **2016**, *43*, 161–164.
523 doi: 10.14503/THIJ-15-5121.

52450. Grogan-Bada, P.; Mueller, I.I.; Foschi, F.; Gawaz, M.; Eick, C. Mitral valve endocarditis due to *Lactobacillus*.
525 *Case Rep Med* **2018**, *2018*, 8613948. doi: 10.1155/2018/8613948.

52651. Chen, F.; Zhang, Z.; Chen, J. Infective endocarditis caused by *Lactococcus lactis* subsp. *lactis* and
527 *Pediococcus pentosaceus*: a case report and literature review. *Medicine (Baltimore)* **2018**, *97*(50):e13658. doi:
528 10.1097/MD.00000000000013658.

52952. Oakey, H.J.; Harty, D.W.; Knox, K.W. Enzyme production by lactobacilli and the potential link with
530 infective endocarditis. *J Appl Bacteriol* **1995**, *78*, 142–148.

531 53. Cohen, S.A.; Woodfield, M.C.; Boyle, N.; Stednick, Z.; Boeckh, M.; Pergam, S.A. Incidence and outcomes
532 of bloodstream infections among hematopoietic cell transplant recipients from species commonly
533 reported to be in over-the-counter probiotic formulations. *Transpl Infect Dis* **2016**, *18*, 699–705. doi:
534 10.1111/tid.12587.

535 54. Haghishat, L.; Crum-Cianflone, N.F. The potential risks of probiotics among HIV-infected persons:
536 Bacteraemia due to *Lactobacillus acidophilus* and review of the literature. *Int J STD AIDS* **2016**, *27*, 1223–
537 1230. doi: 10.1177/0956462415590725.

538 55. Holmberg, P.; Hellmich, T.; Homme, J. Pediatric Sepsis Secondary to an occult dental abscess: a case
539 report. *J Emerg Med* **2017**, *52*, 744–748. doi: 10.1016/j.jemermed.2016.12.034.

540 56. Ambesh, P.; Stroud, S.; Franzova, E.; Gotesman, J.; Sharma, K.; Wolf, L.; Kamholz, S. Recurrent
541 *Lactobacillus* bacteremia in a patient with leukemia. *J Investig Med High Impact Case Rep* **2017**, *5*,
542 2324709617744233. doi: 10.1177/2324709617744233.

543 57. Salminen, M.K.; Rautelin, H.; Tynkkynen, S.; Poussa, T.; Saxelin, M.; Valtonen, V.; Jarvinen, A.
544 *Lactobacillus* bacteremia, clinical significance, and patient outcome, with special focus on probiotic *L.*
545 *rhamnosus* GG. *Clin Infect Dis* **2004**, *38*, 62–69. doi: 10.1086/380455.

546 58. Datta, P.; Gupta, V.; Mohi, G.K.; Chander, J.; Janmeja, A.K. *Lactobacillus coryniformis* causing pulmonary
547 infection in a patient with metastatic small cell carcinoma: case report and review of literature on
548 *Lactobacillus* pleuro-pulmonary infections. *J Clin Diagn Res* **2017**, *1*, DE01–DE05. doi:
549 10.7860/JCDR/2017/22837.9391.

550 59. Biesiada, G.; Krycińska, R.; Czepiel, J.; Stażyk, K.; Kędzierska, J.; Garlicki, A. Meningoencephalitis caused
551 by *Lactobacillus plantarum* - case report. *Int J Neurosci* **2019** *26*:1–4. doi: 10.1080/00207454.2018.1482293.

552 60. Darbro, B.W.; Petroelje, B.K.; Doern, G.V. *Lactobacillus delbrueckii* as the cause of urinary tract infection. *J*
553 *Clin Microbiol* **2009** *47*, 275–277. doi: 10.1128/JCM.01630-08.

554 61. Duprey, K.M.; McCrea, L.; Rabinowitch, B.L.; Azad, K.N. Pyelonephritis and bacteremia from
555 *Lactobacillus delbrueckii*. *Case Rep Infect Dis* **2012**, *2012*:745743. doi: 10.1155/2012/745743.

556 62. Citla, S.D.; Gourishankar, A. *Lactobacillus* causing urinary tract infection in a neonate. *J Med Cases* **2013**, *4*,
557 682–685. doi: <http://dx.doi.org/10.4021/jmc1454w>.

558 63. Kirjavainen, P.V.; Tuomola, E.M.; Crittenden, R.G.; Ouwehand, A.C.; Harty, D.W.; Morris, L.F.; Rautelin,
559 H.; Playne, M.J.; Donohue, D.C.; Salminen, S.J. *In vitro* adhesion and platelet aggregation properties of
560 bacteremia-associated lactobacilli. *Infect Immun* **1999**, *67*, 2653–2655.

561 64. Nissilä, E.; Douillard, F.P.; Ritari, J.; Paulin, L.; Järvinen, H.M.; Rasinkangas, P.; Haapasalo, K.; Meri, S.;
562 Jarva, H.; de Vos, W.M. Genotypic and phenotypic diversity of *Lactobacillus rhamnosus* clinical isolates,
563 their comparison with strain GG and their recognition by complement system. *PLoS One* **2017**, *12*,
564 e0176739. doi: 10.1371/journal.pone.0181292.

565 65. Fitzgerald, J.R.; Foster, T.J.; Cox, D. The interaction of bacterial pathogens with platelets. *Nat Rev*
566 *Microbiol* **2006**, *4*, 445–457. doi: 10.1038/nrmicro1425.

567 66. Collins, J.; van Pijkeren, J.P.; Svensson, L.; Claesson, M.J.; Sturme, M.; Li, Y.; Cooney, J.C.; van Sinderen,
568 D.; Walker, A.W.; Parkhill, J.; Shannon, O.; O'Toole, P.W. Fibrinogen-binding and platelet-aggregation
569 activities of a *L. salivarius* septicaemia isolate are mediated by a novel fibrinogen-binding protein. *Mol*
570 *Microbiol* **2012**, *85*, 862–877. doi: 10.1111/j.1365-2958.2012.08148.x.

571 67. Floch, M.H. The role of prebiotics and probiotics in gastrointestinal disease. *Gastroenterol Clin North Am*
572 **2018**, *47*, 179–191. doi: 10.1016/j.gtc.2017.09.011.

573 68. Cai, J.; Zhao, C.; Du, Y.; Zhang, Y.; Zhao, M.; Zhao, Q. Comparative efficacy and tolerability of probiotics
574 for antibiotic-associated diarrhea: systematic review with network meta-analysis. *United European*
575 *Gastroenterol J* **2018**, *6*, 169–180. doi: 10.1177/2050640617736987.

576 69. Gorbach, S.; Doron, S.; Magro, F. Chapter 7 - *Lactobacillus rhamnosus* GG. In: The microbiota in
577 gastrointestinal pathophysiology. Implications for human health, prebiotics, probiotics, and dysbiosis. 1st
578 ed.; Floch, M.; Ringel, Y.; Walker, W.A. Eds.; Academic Press, United Kingdom, **2016**, pp. 79–88.

579 70. Mantegazza, C.; Molinari, P.; D'Auria, E.; Sonnino, M.; Morelli, L.; Zuccotti, G.V. Probiotics and
580 antibiotic-associated diarrhea in children: A review and new evidence on *Lactobacillus rhamnosus* GG
581 during and after antibiotic treatment. *Pharmacol Res* **2018**, *128*, 63–72. doi: 10.1016/j.phrs.2017.08.001.

582 71. Tytgat, H.L.; Douillard, F.P.; Reunanan, J.; Rasinkangas, P.; Hendrickx, A.P.; Laine, P.K.; Paulin, L.;
583 Satokari, R.; de Vos, W.M. *Lactobacillus rhamnosus* GG outcompetes *Enterococcus faecium* via mucus-

584 binding pili: evidence for a novel and heterospecific probiotic mechanism. *Appl Environ Microbiol* **2016**, *82*,
585 5756–5762. doi: 10.1128/AEM.01243-16.

586 72. Petrova, M.I.; Imholz, N.C.; Verhoeven, T.L.; Balzarini, J.; Van Damme, E.J.; Schols, D.; Vanderleyden, J.;
587 Lebeer, S. Lectin-like molecules of *Lactobacillus rhamnosus* GG inhibit pathogenic *Escherichia coli* and
588 *Salmonella* biofilm formation. *PLoS One* **2016**, *18*(11):e0161337. doi: 10.1371/journal.pone.0161337

589 73. Wuyts, S.; Wittouck, S.; De Boeck, I.; Allonsius, C.N.; Pasolli, E.; Segata, N.; Lebeer, S. Large-scale
590 phylogenomics of the *Lactobacillus casei* group highlights taxonomic inconsistencies and reveals novel
591 clade-associated features. *MSystems* **2017**, *2*(4). pii: e00061-17. doi: 10.1128/mSystems.00061-17.

592 74. Costabile, A.; Bergillos-Meca, T.; Rasinkangas, P.; Korpela, K.; de Vos, W.M.; Gibson, G.R. Effects of
593 soluble corn fiber alone or in synbiotic combination with *Lactobacillus rhamnosus* GG and the pilus-
594 deficient derivative GG-PB12 on fecal microbiota, metabolism, and markers of immune function: a
595 randomized, double-blind, placebo-controlled, crossover study in healthy elderly (Saimes study). *Front
596 Immunol* **2017**, *8*:1443. doi: 10.3389/fimmu.2017.01443.

597 75. Pace, F.; Pace, M.; Quartarone, G. Probiotics in digestive diseases: focus on *Lactobacillus* GG. *Minerva
598 Gastroenterol Dietol* **2015**, *61*, 273–92. Review.

599 76. Blaabjerg, S.; Artzi, D.M.; Aabenhus, R. Probiotics for the prevention of antibiotic-associated diarrhea in
600 outpatients-a systematic review and meta-analysis. *Antibiotics (Basel)* **2017**, *12*, 6(4). pii: E21. doi:
601 10.3390/antibiotics6040021.

602 77. Pessi, T.; Sütas, Y.; Hurme, M.; Isolauri, E. Interleukin-10 generation in atopic children following oral
603 *Lactobacillus rhamnosus* GG. *Clin Exp Allergy* **2000**, *30*, 1804–1808.

604 78. Viljanen, M.; Savilahti, E.; Haahtela, T.; Juntunen-Backman, K.; Korpela, R.; Poussa, T.; Tuure, T.;
605 Kuitunen, M. Probiotics in the treatment of atopic eczema/dermatitis syndrome in infants: a double-blind
606 placebo-controlled trial. *Allergy* **2005**, *60*, 494–500.

607 79. Laursen, R.P.; Hojsak I. Probiotics for respiratory tract infections in children attending day care centers-a
608 systematic review. *Eur J Pediatr* **2018**, *177*, 979–994. doi: 10.1007/s00431-018-3167-1.

609 80. Rungsri P.; Akkarachaneeyakorn N.; Wongswanlert M.; Piwat S.; Nantarakchaikul P.; Teanpaisan R.
610 Effect of fermented milk containing *Lactobacillus rhamnosus* SD11 on oral microbiota of healthy volunteers:
611 A randomized clinical trial. *J Dairy Sci* **2017**, *100*, 7780–7787. doi.org/10.3168/jds.2017-12961.

612 81. Lee, K.; Lee, Y. Production of c9,t11- and t10,c12-conjugated linoleic acids in humans by *Lactobacillus
613 rhamnosus* PL60. *J Microbiol Biotechnol* **2009**, *19*, 1617–1619. doi: 10.4014/jmb.0907.07010.

614 82. Braat, H.; van den Brande, J.; van Tol, E.; Hommes, D.; Peppelenbosch, M.; van Deventer S. *Lactobacillus
615 rhamnosus* induces peripheral hyporesponsiveness in stimulated CD4+ T cells via modulation of dendritic
616 cell function. *Am J Clin Nutr* **2004**, *80*, 1618–1625. doi.org/10.1093/ajcn/80.6.1618.

617 83. Gill, H.S.; Rutherford, K.J.; Cross, M.L. Dietary probiotic supplementation enhances natural killer cell
618 activity in the elderly: an investigation of age-related immunological changes. *J Clin Immunol* **2001**, *21*,
619 264–271.

620 84. Salminen, M.K.; Rautelin, H.; Tynkkynen, S.; Poussa, T.; Saxelin, M.; Valtonen, V.; Järvinen, A.
621 *Lactobacillus* bacteremia, species identification, and antimicrobial susceptibility of 85 blood isolates. *Clin
622 Infect Dis* **2006**, *42*, E35–44. doi:10.1086/500214.

623 85. Meini, S.; Laureano, R.; Fani, L.; Tascini, C.; Galano, A.; Antonelli, A.; Rossolini, G.M. Breakthrough of
624 *Lactobacillus rhamnosus* GG bacteremia associated with probiotic use in an adult patient with severe active
625 ulcerative colitis: case report and review of the literature. *Infection* **2015**, *43*, 777–781. doi: 10.1007/s15010-
626 015-0798-2.

627 86. Kulkarni, H.S.; Khouri, C.C. Sepsis associated with *Lactobacillus* bacteremia in a patient with ischemic
628 colitis. *Indian J Crit Care Med* **2014**, *18*, 606–608. doi: 10.4103/0972-5229.140152.

629 87. Dani, C.; Coviello, C.; Corsini, I.; Arena, F.; Antonelli, A.; Rossolini, G.M. *Lactobacillus* Sepsis and
630 probiotic therapy in newborns: two new cases and literature review. *AJP Rep* **2016**, *6*, e25–e29. doi:
631 10.1055/s-0035-1566312.

632 88. Luong, M.-L.; Sareyyupoglu, B.; Nguyen, M.H.; Silveira, F.P.; Shields, R.K.; Potoski, B.A.; Pasculle, W.A.;
633 Clancy, C.J.; Toyoda, Y. *Lactobacillus* probiotic use in cardiothoracic transplant recipients: A link to
634 invasive *Lactobacillus* infection? *Transpl Infect Dis* **2010**, *12*, 561–564. doi: 10.1111/j.1399-3062.2010.00580.x.

635 89. Doern, C.D.; Nguyen, S.T.; Afolabi, F.; Burnham, C.A. Probiotic-associated aspiration pneumonia due to
636 *Lactobacillus rhamnosus*. *J Clin Microbiol* **2014**, *52*, 3124–3126. doi: 10.1128/JCM.01065-14.

637 90. Sadowska-Krawczenko, I.; Paprzycka, M.; Korbal, P.; Wiatrzyk, A.; Krysztopa-Grzybowska, K.; Polak, M.;
638 Czajka, U.; Lutyńska, A. *Lactobacillus rhamnosus* GG suspected infection in a newborn with intrauterine
639 growth restriction. *Benef Microb* **2014**, *5*, 397–402. doi: 10.3920/BM2013.0074.

640 91. Koyama, S.; Fujita, H.; Shimosato, T.; Kamijo, A.; Ishiyama, Y.; Yamamoto, E.; Ishii, Y.; Hattori, Y.;
641 Hagiwara, M.; Yamazaki, E.; Tomita, N.; Nakajima, H.; Yokohama Cooperative Study Group for
642 Hematology (YACHT). Septicemia from *Lactobacillus rhamnosus* GG, from a probiotic enriched yogurt, in
643 a patient with autologous stem cell transplantation. *Probiotics Antimicrob Proteins* **2018**, *11*, 295–298. doi:
644 10.1007/s12602-018-9399-6.

645 92. Alander, M.; Satokari, R.; Korpela, R.; Saxelin, M.; Vilpponen-Salmela, T.; Mattila-Sandholm, T.; von
646 Wright, A. Persistence of colonization of human colonic mucosa by a probiotic strain, *Lactobacillus*
647 *rhamnosus* GG, after oral consumption. *Appl Environ Microbiol* **1999**, *65*, 351–354.

648 93. Tynkkynen, S.; Satokari, R.; Saarela, M.; Mattila-Sandholm, T.; Saxelin, M. Comparison of ribotyping,
649 randomly amplified polymorphic DNA analysis, and pulsed-field gel electrophoresis in typing of
650 *Lactobacillus rhamnosus* and *L. casei* strains. *Appl Environ Microbiol* **1999**, *65*, 3908–14.

651 94. Ceapa, C.; Lambert, J.; van Limp, K.; Wels, M.; Smokvina, T.; Knol, J.; Kleerebezem, M. Correlation of
652 *Lactobacillus rhamnosus* genotypes and carbohydrate utilization signatures determined by phenotype
653 profiling. *Appl Environ Microbiol* **2015**, *81*, 5458–5470. doi: 10.1128/AEM.00851-15.

654 95. Nadkarni, M.A.; Chen, Z.; Wilkins, M.R.; Hunter, N. Comparative genome analysis of *Lactobacillus*
655 *rhamnosus* clinical isolates from initial stages of dental pulp infection: identification of a new
656 exopolysaccharide cluster. *PLoS One* **2014**, *9*, e90643. doi: 10.1128/AEM.00851-15.

657 96. Rossi, F.; Zotta, T.; Iacumin, L.; Reale, A. Theoretical insight into the heat shock response (HSR)
658 regulation in *Lactobacillus casei* and *L. rhamnosus*. *J Theor Biol* **2016**, *402*, 21–37. doi:
659 10.1016/j.jtbi.2016.04.029.