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Abstract: The use of risk measures such as the Value at Risk (VaR) or Tail Conditional Expectation (TCE) is 
required by the Basel Committee on Banking Supervision in determining a bank’s risk profile. However, both 
measures can be shown to have shortcomings in the information that they provide to regulators and investors. In 
this paper we present an introduction to risk measure calculations before demonstrating the weaknesses of these 
measures. Through the exploration of specific cases we show how familiar yet differing risk profiles have identical 
values for combinations of these measures. From this evidence we recommend that a sequence of several risk 
measures should be used to give a more accurate representation of the risk contained on banking balance sheet.
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In a world of crumbling visions of economic security, most individuals are all too familiar with the negative side of10

investments–losses, which are sometimes enormous. With most retirement investment now i markets, risk has11

become an even more pressing reality than it has been in decades past. As such, the study of measuring and12

managing risk is now given more attention than in previous times. In this paper, we will focus on risk measures as13

tools to evaluate risk and better understand financial profiles. We will look at how risk measures have traditionally14

been used and then move to an information-based mindset that incorporates the significant elements of the risk15

measure. If we can better understand and quantify risk then we can more effectively prepare for and secure16

ourselves against devastating losses.17

18

As we progress, we will first introduce the two risk measures being used, the Value at Risk and the Tail Conditional19

Expectation. Next we will explore the information-based approach that characterizes our perspective. Then we20

will undertake several calculations using probability distributions before concluding that several risk measures are21

necessary to truly understand the risk of a financial portfolio.22

23

1. Some definitions24

1.1. Risk and Risk Measures25

The situation of risk requires both uncertainty and exposure. If a company already knows that a loan will default,26

there is no uncertainty and thus no risk. And if the bank decides not to loan to a business that is considered27

likely to default, there is also no risk for that bank as the bank has no exposure to the possibility of loss. Thus,28

Merriam-Webster (16) defines risk as the possibility of loss or injury.29

30
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So now one goal could be to have a single risk measure that will account for all the risk that a bank or securities31

firm might encounter. Some have objected to the risk measure being a single number, but there is some support for32

this idea. Investing is always a binary decision- either one invests or one chooses not to invest. Thus the argument is33

that, given a single number, one should have enough information to decide whether to invest or not. There have been34

some general agreements about the kinds of properties that such a risk measure ought to possess. These agreements35

must be acknowledged as being biases of what we consider important, but they have provided the definition that is36

now universal.37

38

So, we will define a risk measure in the universally accepted fashion of Artzner et al. (1). Let X be a random39

variable. Then ρ is a risk measure if it satisfies the following properties:40

• (Monotonicity) if X ≥ 0, then ρ(X) ≤ 041

• (Positive Homogeneity) ρ(βX) = βρ(X) ∀ β ≥ 042

• (Translation Invariance) ρ(X + a) = ρ(X)−a ∀ a ∈.43

The idea behind this definition is that a positive number implies that one is at risk for losing capital and should44

have that positive number of a cash balance on hand to offset this potential loss. A negative number would say45

that the company has enough capital to take on more risk or to return some of its cash to other operations or to46

its shareholders. The monotonicity property states that an investment that always has positive payoff gives the47

company the ability to take on more risk. Positive homogeneity implies that multiplying your investment by β times48

gives you a risk of a loss that is β times larger. Translation invariance implies that a company holding a in cash49

lowers its measure of risk by a.50

51

1.2. The Value at Risk52

The most well-known measure seems to be the Value at Risk (henceforth referred to as the "VaR"). In order to53

define VaR, we must first recall some basic concepts. Let X be a random variable and α ∈ [0,1].54

• q is called an α-quantile if Pr[X < q] ≤ 1−α ≤ Pr[X ≤ q],55

• the largest α-quantile is qα (X) = inf{x|Pr[X ≤ x] > 1−α}, and56

• the smallest α-quantile is q−α = inf{x|Pr[X ≤ x] ≥ 1−α}.57

It is clear that qα ≥ q−α and that q is an α-quantile if and only if q−α ≤ q≤ qα .58

59

Given a position X and a number α ∈ [0,1], we define the α-Value at Risk, α-VaR or VaRα (X), by60

VaRα (X) = −qα (X). The α-VaR can be seen as the amount of cash that a firm needs in order to make61

the probability of that firm going bankrupt to be equal to α . This leads to the following property of VaR:62

VaRα (X +VaRα (X)) = 0. This states that one may offset the risk of an investment by having an amount of cash63

on hand equal to the Value at Risk inherent in holding the asset.64

65

The Value at Risk has historically been the most important of the risk measures, as it has been the one used by the66

Basel Committee on Banking Supervision in order to determine capital requirements for banks (2).67

1.3. The Tail Conditional Expectation68

We now introduce the notion of tail conditional expectation. Given a base probability measure P on a probability
space Ω, and a level α , the tail conditional expectation (TCE) is the measure of risk defined by

TCEα (X) = −EP[X |X ≤−VaRα (X)] (1)

For continuous random variables this concept is variously called the expected shortfall, expected tail loss,69

conditional value at risk, mean excess loss, loss given default, or mean shortfall by several authors in the literature,70
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Rockafellar and Uryasev, (17). In mathematical terms, the TCEs are measures on probability spaces.71

72

The TCE is often considered preferable to the VaR because it respects diversification. Since the paper of Markowitz73

[15] in 1952, diversification has been valued in investment. In fact Artzner et al. call any measure that fails to favor74

diversification an incoherent measure in (1). Accordingly, the TCE is a coherent measure.75

Finally, we can remark that for each risk X one has the equality

VaRα (X) = inf{ρ(X)|ρ coherent, ρ ≥VaRα (X)}.

Thus, knowing that more restrictive measures are available to them, the question is why regulators would use the76

Value at Risk, noting that no known organized exchanges use VaR as the basis of risk measurement for margin77

requirements. ADEH [1] immediately answer their own question, with a quote from Stulz (18), “Regulators like78

Value at Risk because they can regulate it.” An expansion of this discussion can be found in Guégan and Tarrant (11).79

80

1.4. Calculation81

To calculate the α-VaR we seek that value V which, when the probability density function (pdf) P(x) is integrated82

from negative infinity to −V , provides the value 1−α . That is, if
∫ −V
−∞

P(x)dx = (1−α), then the α-VaR is V .83

Similarly, the calculation of some α-TCE is reached by integrating xP(x) from negative infinity to the negative
α-VaR and then dividing that value by (1−α). This simply calculates a weighted average of the distribution’s tail.
Symbolically then,

1
(1−α)

∫ −(α-VaR)

−∞

xP(x)dx = α-TCE

84

85

2. Example of Risk Measures as Information86

Let us recall the information provided by the definition of the VaR: there is a 100(1-α)% chance that a return will be87

less than or equal to the α-VaR. While this is important information to have about a probability distribution, Artzner88

et al. (1) have shown that a single VaR does not provide significant insight into the risk portfolio of investments.89

This can be demonstrated in the following example, in which we only show the lowest 5% of the returns distribution:90

91

Figure 1. Three uniform distributions with equal 95%-VaRs
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Consider the 95%-VaR and several uniform distributions. Notice that in the figure above, all distributions have an
area of 5%. In other words, ∫ −10

−∞

P(x)dx = 0.05

Also, the right-most boundary is −10 for each pdf, making the 95%-VaR= 10 for each distribution. This calculation92

does not take into account the differences of the distributions, nor does it even make note of differences. Which is a93

“better” distribution? Which is least risky? Risk measures should at least be able to provide some insight into such94

questions. If we did not have direct access to these distributions, we would be making blind decisions. The α-VaR95

alone gives an investor or regulator no information about what actually happens inside of the worst (1−α) of96

returns; it provides no knowledge of the tail end itself, only where the tail begins. As Simon Johnson of MIT has97

put it, “VaR misses everything that matters when it matters.”98

99

The practical application of this idea to the traditional use of a VaR is as follows. Three banks with the probability100

distributions above would be advised by the VaR to keep the same amount of cash on hand to legally hedge their101

risks. As we can see, there is a significant difference between these distributions, a difference that is not indicated102

by the VaR.103

104

Notice in Figure 2 that the same idea applies for three uniform distributions with identical values for the 95%-TCE.105

The last 5% of returns for each distribution is shown graphically and, for each distribution, the 95%-TCE = 10.106

Again, the use of the TCE as a risk measure would give the three banks identical advice under quite different107

circumstances.108

109

Figure 2. Three uniform distributions with equal 95%-TCEs

Hence acquiring more information about a risk distribution is important; one measure does not provide sufficient110

information. When one more clearly sees the true nature of a probability distribution, one can make a better111

decision about the amount of cash needed to secure a portfolio. Although our preceding examples focus on uniform112

distributions and the 95% level, we will show more realistic examples in the coming sections.113

114

3. Standard Normal versus Uniform115

Comparing different uniform distributions is surely contrived, so we move to comparing uniform distributions116

with the standard normal distribution. Now since we have seen how easily one risk measure may be “fooled,” let117

us explore the possibility of using several risk measures in conjunction. This idea is recommended and further118
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explained in Guegan and Tarrant (2012). We will first explore the possibilities of two risk measures together.119

The combinations of two risk measures that we will use are the 95%-VaR and the 99%-VaR, the 95%-VaR and120

95%-TCE, and the 95%-TCE and 99%-TCE.121

122

3.1. Two Risk Measures123

3.1.1. 95%-VaR and 99%-VaR124

Figure 3. Standard normal and uniform distributions

Notice in Figure 3 that there are two significantly different distributions that are graphed on the same axes. In125

Figure 4, we have magnified the relevant sections of the distributions under consideration for our example.126

127

Figure 4. A magnification of the last 5%

Recall that the 95%-VaR is that V for which
∫ −V
−∞

P(x)dx = 0.05. The PDFs of the two graphs shown are 1√
2π

e
−x2

2 ,128

the standard normal distribution (N(0,1)), and 0.029863 · 1X , where X = [−3.31915,30.16672], a uniform129

distribution. Upon calculating, we find that the 95%-VaR of both distributions is 1.64485. Similarly, the 99%-VaR130
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of each is 2.32635. So the two VaRs that we have selected make no differentiation between these two very different131

risk distributions. However, the risk distributions are shown to be different first by simple inspection and then also132

by the two TCEs. The 95%-TCE and 99%-TCE for the standard normal distribution are 2.06271 and 2.66522,133

respectively, while the same statistics for this uniform distribution are 2.48200 and 2.82275, respectively. At least134

the use of a third measure makes some sort of delineation between the distributions, enabling a more educated135

decision about investment.136

137

We collect these results in the following table and, henceforth, we shall present these statistics in a similar tabular138

format so as to reduce potential confusion.139

140

standard normal uniform
95%-VaR 1.64485 1.64485
95%-TCE 2.06271 2.48200
99%-VaR 2.32635 2.32635
99%-TCE 2.66522 2.82275

141

Table 1: Comparison of TCEs and VaRs of N(0,1) & 0.029863 ·1X142

3.1.2. 95%-VaR and 95%-TCE143

As in the example above, Figure 5 presents the two distributions that we are dealing with and Figure 6 is the144

enlargement of the last 5% of both distributions.145

146

Figure 5. Standard normal and uniform distributions

While the standard normal has remained the same, our selection of the uniform distribution here,147

0.059828 · 1Y , where Y = [−2.48059,14.23405], has produced the same 95%-VaR and 95%-TCE as the148

standard normal. This can be seen more explicitly in the table below. Here, a combination of the 95%-VaR and the149

95%-TCE shows no differences between the two distributions, though either the 99% VaR or the 99% TCE would150

distinguish between the two.151

152
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Figure 6. A magnification of the last 5%

standard normal uniform
95%-VaR 1.64485 1.64485
95%-TCE 2.06271 2.06271
99%-VaR 2.32635 2.31344
99%-TCE 2.66522 2.39701

153

Table 2: Comparison of TCEs and VaRs of N(0,1) & 0.059828 ·1Y154

3.1.3. 95%-TCE and 99%-TCE155

Once again, the images below represent, respectively, a new uniform distribution, 0.033195 · 1Z , where Z =156

[−2.81585,27.30916], compared to the standard normal and the magnification of the last 5% of each distribution.157

158

Figure 7. standard normal and uniform distributions

The most obvious graphical difference between these distributions and the previous selections is that the standard159

normal and the uniform do not begin their last 5% at the same point (Figure 8). This is a simple illustration that the160

95%-VaRs are different. Similarly, the 99%-VaR differentiates the distributions from one another. However, the two161
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Figure 8. A magnification of the last 5%

TCEs are identical and thus yield no differentiation without further information.162

163

standard normal uniform
95%-VaR 1.64485 1.30960
95%-TCE 2.06271 2.06271
99%-VaR 2.32635 2.51460
99%-TCE 2.66522 2.66522

164

Table 3: Comparison of TCEs and VaRs of N(0,1) & 0.033195 ·1Z165

This is the final combination of two risk measures, and has been included to exhaust possible combinations.166

The reader will now understand that each set of two risk measures is insufficient for differentiating among all167

possible standard normal and uniform pairs. Before moving on, we must note that we have compared the uniform168

distribution to a very specific instance of normal Gaussian distributions (with variables µ = 0 and σ = 1). This is169

for simplicity’s sake, because the standard normal is used quite often and thus it is familiar. Clearly, it is reasonable170

to see that this idea applies to the entire family of normal Gaussian distributions: that any combination of two risk171

measures can fail to differentiate between some normal Gaussian and some uniform distribution.172

173

3.2. Three Risk Measures174

The possibility of finding three risk measures that are equal for two separate probability distributions is somewhat175

more complex than the earlier results with two measures. In order to test the possibility, we first develop ratios that176

make experimentation possible. At this point in the paper, it will be beneficial for the reader to understand the177

approach to these ratios. Furthermore, these ratios make the results with two risk measures much more simple in178

retrospect.179

180

The nature of the uniform distribution, geometrically, gives it certain simple properties which must always be181

respected. For instance, a rectangle’s area is equal to its length multiplied by its width. In the same way, the182

95%-VaR subtracted from the Maximum Loss (length) multiplied by the value (or height) of the uniform distribution183

must be equal to the integral over [−∞,−(95%-VaR)].184

185

In figure 9, the worst 5% of returns of an arbitrary uniform distribution is shown. The two rightmost (dashed) lines186

represent 95% risk measures (the TCE and VaR, respectively, from left to right) and the two leftmost (dotted) lines187
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Figure 9. uniform Ratios

represent 99% risk measures (also the TCE and VaR, respectively, from left to right). The TCEs are shown as188

half-lines extended beyond the x-axis while the VaRs are full-length and also extended beyond the x-axis.189

190

We have defined two variables as follows: x = 95%-TCE − 95%-VaR (the length between the dashed lines in
Fig. 9) and y = 99%-TCE − 99%-VaR (one fifth of that length). Using these variables, we arrive at relatively
simple ratios such as 95%-TCE − 99%-TCE + x = y , 1

5 ( 95%-TCE + x− 95%-VaR ) = 2y , and 1
4 ( 99%-VaR

− 95%-VaR ) = 2y. These may be combined to form the ratios used in our results:

10[(99%-TCE)− (95%-TCE)] = 8[(95%-TCE)− (95%-VaR)]

16(95%-TCE)−6(95%-VaR) = 10(99%-VaR)

9[(95%-VaR)− (90%-VaR)] = 5[(99%-VaR)− (90%-VaR)]

Note that the three ratios above must be satisfied by any uniform distribution. Also, each ratio uses a different191

combination of three risk measures. From this we determine that any distribution which might have three risk192

measure calculations in common with a uniform distribution must satisfy the corresponding ratio.193

194

The simple example here is the standard normal, whose risk measure values are as follows. Notice that we have195

included in this table the value for the 90%-VaR, which is necessary as a third VaR value.196

197

standard normal
90%-VaR 1.28155
95%-VaR 1.64485
95%-TCE 2.06271
99%-VaR 2.32635
99%-TCE 2.66522

198

Table 4: TCEs and VaRs for N(0,1)199

If we substitute the values of the standard normal into the ratios for the uniform distribution, we will then be able to200

determine whether three risk measures can differentiate between a standard normal distribution and any uniform201

distribution by checking to see if the ratios for the uniform are respected or violated.202

203
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3.2.1. 95% / 99%-VaR, 95%-TCE204

So, we find as we substitute values,

1.6(95%-TCE)−0.6(95%-VaR) = 1.6(2.06271)−0.6(1.64485)

= 3.30035−0.98691 = 2.31344 6= 2.32635 = (99%-VaR)

3.2.2. 95%-VaR, 95% / 99%-TCE205

The ratio with values substituted,

10[(99%-TCE)− (95%-TCE)] = 10[(2.66522)− (2.06271)]

= 10[0.60250] = 6.02500 6= 3.34296 = 8[0.41787]

= 8[(2.06271)− (1.64485)] = 8[(95%-TCE)− (95%-VaR)]

3.2.3. 90% / 95% / 99%-VaR206

The possibility of three VaRs, while not discussed previously, is shown briefly here as an illustration that this207

combination will not work either. We have the ratio, with values substituted,208

209

9[(95%-VaR)− (90%-VaR)] = 9[1.64485−1.28155]

= 9(0.36330) = 3.26970 6= 5.22400 = 5(1.0448)

= 5[2.32635−1.28155] = 5[(99%-VaR)− (90%-VaR)]

3.2.4. 90% / 95% / 99%-TCE210

It is important here to note that the TCE is a much more comprehensive (or coherent) measure than the VaR. In211

fact, the VaR is used in the calculation of the TCE. In the particular case of the uniform distribution, the TCE will212

effectively act like a VaR (i.e. the 95%-TCE is the 97.5%-VaR) but in distributions such as the standard normal, the213

TCE will contain much more information than the VaR. As a result of the TCE behaving like a VaR for uniform214

distributions, the simple result that 3 VaRs fail to determine between two probability distributions shows that 3215

TCEs will do the same for the specific case where a uniform distribution is involved.216

217

By the previous results we see that there is no uniform distribution in the entire family of uniform distributions that218

will ever achieve the same values over three risk measures as the standard normal distribution.219

220

Essentially, we have proved the following theorem:221

222

Theorem Let N be a random variable with standard normal distribution, N(0,1). Also, let ρ , φ , and ψ be selections223

of VaR or TCE risk measures. Then there exists no random variable U with uniform distribution such that224

ρ(N) = ρ(U) , ϕ(N) = ϕ(U) , and ψ(N) = ψ(U).225

226

4. Pareto versus Uniform227

Now we turn to the Pareto probability random variable since Pareto distributions often arise in economic and228

financial applications.229

230
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First, it is important to recall that the pdf and cdf of the family of Pareto distributions are as follows, with shape
parameter δ , (0 < δ < 100):

PDF: g(x) =
δβ δ

xδ+1 for x≥ β

CDF: G(t) =
∫ t

β

δβ δ

xδ+1 dX for t ≥ β

Both of these will become useful in the calculations to come. Due to the definition of the Pareto function, we shall231

here consider the pdf that is the negative Pareto distribution.232

Figure 10. An instance of the negative Pareto distribution on −1≤ X ≤−0.05 = −β

233

Recall that the α-VaR of some Pareto distribution f (x) is V if and only if∫ −A

−∞

f (x)dx = (1−α)

This is because

∫ −β

−∞

f (x)dx = 1

Similarly, the α-TCE of a Pareto distribution f (x) is T if and only if V is the α-VaR and

− 1
(1−α)

∫ −A

−∞

x f (x)dx = B

Now we present ratios that are particular to the Pareto distribution. The first of these ratios is derived directly
from the calculation of the 95%-VaR in the Appendix. For these calculations, V95% is the 95%-VaR of the Pareto
distribution (and V99% is the 99%-VaR of the Pareto distribution, etc.). This first ratio is:

β = (0.05)
1
δ V95%

The next ratio that we have, also derived in the Appendix, relates a Pareto distribution’s 95%-VaR with its 99%-VaR.
This ratio is:

V99% = 5
1
δ V95%
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Similarly, we have:
V90% = 2−

1
δ V95%

These are the most important and most often used ratios; their derivations can be found in the Appendix.234

235

4.1. 95% / 99%-VaR , 95%-TCE236

In the process of testing the combination of these risk measures, we approach the Pareto in quite a different manner.237

Rather than choosing a single instance of the family of Normal distributions as we did before, we will here work238

with the entire family of Pareto distributions in general.239

240

Recall that the earlier ratio of these three risk measures in the uniform is:241

242

16(95%-TCE)−6(95%-VaR) = 10(99%-VaR)

Here we insert the calculation of these values and find243

244

16(20
∫

∞

V95%

δβ δ

xδ
dx)−6V95% = 10V99%

Which simplifies to245

246

10 · [1−5
1
δ ]+

16
δ −1

= 0

This is solved by δ = 35.14694, which implies that two distributions can have identical values for all three of these247

measures. In this one isolated case a fourth measure would be necessary to delineate between the two distributions.248

To see an example of this idea applied to specific distributions, see the Appendix.249

250

4.2. 95%-VaR , 95% / 99%-TCE251

Similarly, recall that the ratio for these three measures in a uniform distribution is:252

253

10[(99%-TCE)− (95%-TCE)] = 8[(95%-TCE)− (95%-VaR)]

As above, we insert the general calculations of these measures to find254

255

10[(100
∫

∞

V99%

δβ δ

xδ
dx)− (20

∫
∞

V95%

δβ δ

xδ
dx)] = 8[(20

∫
∞

V95%

δβ δ

xδ
dx)− (V95%)]

This simplifies to256

257

45
∫

∞

V95%

δβ δ

xδ
dx−125

∫
∞

V99%

δβ δ

xδ
dx = V95%

And finally to258

259
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δ

−δ + 1
(−45+ 125 ·5

1
δ
−1) = 20

On the available values of δ , 0 < δ ≤ 100, this equality does not have a solution. This confirms the idea that these260

three measures together will differentiate any uniform distribution from any Pareto distribution. More on these261

simplifications and the proof of this portion of the result can be found in the Appendix.262

263

4.3. 90% / 95% / 99%-VaR264

The necessary ratio that we apply here is265

266

9[(95%-VaR)− (90%-VaR)] = 5[(99%-VaR)− (90%-VaR)]

Substituting for these calculations in the family of Pareto distributions, we find267

268

9[V95%−V90%] = 5[V99%−V90%]

This simplifies finally to269

270

9−4 · (2−
1
δ ) = 5 · (5

1
δ )

This has no solution on 0 < δ ≤ 100. Hence we come to a similar result as before. These details can also be found271

in the Appendix.272

273

4.4. 90% / 95% / 99%-TCE274

As was done before, it is important to recognize that in the uniform distribution the (1−α)-TCE is the (1− α

2 )-VaR.275

This is true only for the uniform distribution. As a result, the earlier proof of 3 VaRs is sufficient to prove that 3276

TCEs will differentiate among any Pareto and any uniform distributions.277

278

Combining the results above, we arrive at the theorem below.279

280

Theorem Let P be any random variable with Pareto distribution, and ρ , φ , ψ , and ξ selections of281

VaR or TCE risk measures. Then there is no random variable U with uniform distribution such that282

ρ(P) = ρ(U) , φ (P) = φ (U) , ψ(P) = ψ(U) , and ξ (P) = ξ (U). (Note, in some cases four measures will indeed283

be necessary)284

285

5. Standard Normal versus Pareto286

Now we will see if combinations of risk measures can differentiate between normal and fatter tailed Pareto287

distributions. Here we return to a method analogous to that of section 3.2. We will be comparing a single instance288

of the normal distribution, the standard normal (N(0,1)), to the entire family of Pareto distributions.289

290

So we once again start with the standard normal distribution. All of its VaRs are set and are easily found291

by looking at standard charts. We can also easily find all of its TCEs with simple definite integral calculations.292

Equating the desired VaRs and/or TCEs with the general Pareto distribution will allow us to solve for the parameters293

in the Pareto. Since there are two parameters in the Pareto, we can choose any two VaRs and/or TCEs to set the294
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parameters and then see if a third measure will also align with that of the standard normal. That is our approach295

here.296

297

5.1. 95% / 99%-VaR298

Consider the standard normal distribution and the Pareto distribution with parameters δ = 4.64281 and299

β = 0.86278. In this case, the 95%-VaR for both distributions is 1.64885, while the 99%-VaR for each is 2.32635.300

However, as we return to tabular format below, we can see that any third measure will differentiate between the two301

distributions.302

303

standard normal pareto
90%-VaR 1.28155 1.41674
90%-TCE 1.75498 1.80565
95%-VaR 1.64485 1.64485
95%-TCE 2.06271 2.06069
99%-VaR 2.32635 2.32635
99%-TCE 2.66522 2.91448

304

Table 5: Comparison of TCEs and VaRs of N(0,1) & Pareto(0.86278, 4.64281)305

5.2. 95% / 99%-TCE306

Now we take the standard normal and the Pareto with δ = 5.43736 and β = 0.98509. Here the 95%-TCE for307

each is 2.06271 and the 99%-TCE for each is 2.66522. Again, any third measure will differentiate between the308

distributions.309

standard normal pareto
90%-VaR 1.28155 1.50450
90%-TCE 1.75498 1.84355
95%-VaR 1.64485 1.70905
95%-TCE 2.06271 2.06271
99%-VaR 2.32635 2.29776
99%-TCE 2.66522 2.66522

310

Table 6: Comparison of TCEs and VaRs of N(0,1) & Pareto(0.98509, 5.43735)311

5.3. 95% VaR / 95% TCE312

Here, our Pareto distribution is given by δ = 1.04153 and β = 0.092677. As with the earlier sections, we313

again see that a combination of two measures fails to differentiate between this Pareto and the standard normal; as314

such, a third measure is necessary.315

standard normal pareto
90%-VaR 1.28155 1.42937
90%-TCE 1.75498 1.79249
95%-VaR 1.64485 1.64485
95%-TCE 2.06271 2.06271
99%-VaR 2.32635 2.27889
99%-TCE 2.66522 2.85782

316

Table 7: Comparison of TCEs and VaRs of N(0,1) & Pareto(0.092676, 1.04153)317

After considering the above results, we conclude that at least three risk measures be used to differentiate a standard318

normal distribution from any Pareto distribution. This result is similar to previous sections and implies the following319
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theorem.320

321

Theorem Let N be a random variable with standard normal distribution, N(0,1), and let ρ , φ , and ψ be322

selections of VaR or TCE risk measures. Then there is no random variable P with Pareto distribution such that323

ρ(N) = ρ(P) , φ (N) = φ (P) , and ψ(N) = ψ(P).324

325

6. Conclusion and future directions326

We have shown that using more risk measures improves information about loss distributions, which should help327

investment decisions. When it is not possible to have the distribution itself, a quantity of risk measures is a good328

option for investors and regulators to more clearly understand the risk presented by an investment portfolio. In fact329

it is interesting to consider whether regulation could even be rendered unnecessary if investors had access to such330

information.331

332

Since one and two risk measures are shown as possessing too little information about a risk level, and in light of our333

one anomaly, we recommend that at least four risk measures be required in investment practices to get a more334

accurate idea of how much risk is truly present.335

336

Further study in this area is certainly feasible, since there are a great many more complex distributions to which this337

idea might be applied. Also, there is potential to explore the pros and cons of various risk measures. Testing of this338

idea with live data should prove most insightful for practical purposes. The beginnings of such work appears in a339

paper of Tarrant, (19).340

341

As evidenced by the world’s current economic turmoil, risk is an area which cannot be forgotten. Perhaps as the342

methods of studying and quantifying risk improve, more knowledgeable decisions concerning investment will help343

to prohibit the catastrophes that have been experienced in the recent past.344

345

Appendix346

Derivation of Pareto ratios347

Note that
∫

∞

V95%

δβ δ

xδ+1 dx = 0.05. So −β δ

xδ
|∞V95%

= 0.05. Then ( β

V95%
)δ = 0.05 or β

V95%
= (0.05)

1
δ . Finally, our

ratio, which holds for all Pareto distributions, is

β = (0.05)
1
δ V95%

Similarly, for a 99%-VaR V99%,

β = (0.01)
1
δ V99%

And, generally, for an α-VaR Vα ,

β = (1−α)
1
δ Vα

From above, β = (0.05)
1
δ V95% and β = (0.01)

1
δ V99%. So (0.05)

1
δ V95% = (0.01)

1
δ V99%.348

And finally, we have

V99% = 5
1
δ V95%
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Furthermore, the similar β = (0.1)
1
δ V90% and β = (0.05)

1
δ V95% provides the result

V90% = 2−
1
δ V95%

Computation of 95% / 99%-VaR , 95%-TCE with Pareto and uniform349

Recall that the ratio from above, with values substituted, comes to:

16(20
∫

∞

V95%

δβ δ

xδ
dx)−6V95% = 10V99%

Using the ratios that we have previously defined and basic integration, we find:

16(20
∫

∞

V95%

δβ δ

xδ
dx)−6V95% =

320 ·δ ·β δ

δ −1
· [ 1
(V95%)δ−1 ]−6V95% =

320 ·δ · [(0.05)
1
δ V95%]

δ

δ −1
· [ 1
(V95%)δ−1 ]−6V95% =

320 ·δ
δ −1

· [(0.05)(V95%)
δ ] · [ 1

(V95%)δ−1 ]−6V95% =

16 ·δ
δ −1

· [ 1
(V95%)−1 ]−6V95% =

16 ·δ
δ −1

· [V95%]−6V95% = 10V99% = 10(5
1
δ V95%)

Then this simplifies to:

16 ·δ
δ −1

−6 = 16(1+
1

δ −1
)−6 = 16+

16
δ −1

−6 = 10+
16

δ −1
= 10(5

1
δ )

And finally,

10 · [1−5
1
δ ]+

16
δ −1

= 0

This function has a unique solution at δ = 35.14694 on 0 < δ < 100.350

351

As we check this value, we obtain: β = (0.05)
1
δ V95% = (0.05)

1
35.146942 V95% ≈ 0.918297 ·V95%.352

For the standard normal the 95%-VaR = 1.64485, and thus we find

β = 0.91830 ·V95% = 0.91830 ·1.64485 = 1.51046

Then,

95%-TCE = 20 ·
∫

∞

V95%

δβ δ

xδ
dx = 20 ·

∫
∞

1.64485

35.14694 · (1.51046)35.14694

x35.14694 dx = 1.69302

Finally, the 99%-VaR and 99%-TCE are:

V99% = 5
1
δ V95% = 5

1
35.14694 ·1.64485 = 1.72192

99%-TCE = 100 ·
∫

∞

V99%

δβ δ

xδ
dx = 100 ·

∫
∞

1.72192

35.14694 · (1.51046)35.14694

x35.14694 dx = 1.77235

By analyzing the relationship between the 95%-VaR and 99%-Var, we arrive at a uniform distribution353

0.51900 ·1A, where A = [−1.74119,0.18560]. The risk measure values for these two distributions are compared354

below:355

356
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Pareto uniform
95%-VaR 1.64485 1.64485
95%-TCE 1.69302 1.69302
99%-VaR 1.72192 1.72192
99%-TCE 1.77235 1.73156

357

Table 5: Comparison of TCEs and VaRs of Pareto(δ = 35.14694) & 0.51900 ·1A358

Note that the values for the 95%-VaR, 95%-TCE, and 99%-VaR are all equal. This one instance serves as an359

illustration and confirmation of our result in a particular case.360

361

Computing 95%-VaR , 95% / 99%-TCE for uniform and standard normal362

Here we begin with the necessary ratio and substituted values:

10[(100
∫

∞

V99%

δβ δ

xδ
dx)− (20

∫
∞

V95%

δβ δ

xδ
dx)] = 8[(20

∫
∞

V95%

δβ δ

xδ
dx)− (V95%)]

Simplifying terms gives us

45
∫

∞

V95%

δβ δ

Xδ
dX−125

∫
∞

V99%

δβ δ

Xδ
dX = V95%

Then we integrate and substitute above ratios to find

45
∫

∞

V95%

δβ δ

xδ
dx−125

∫
∞

V99%

δβ δ

xδ
dx =

45 ·δ ·β δ

(V95%)δ−1 · (δ −1)
− 125 ·δ ·β δ

(V99%)δ−1 · (δ −1)
=

δ

δ −1
· [ 45 ·β δ

(V95%)δ−1 −
125 ·β δ

(V99%)δ−1 ] =
δ

δ −1
· [45 · ((0.05)

1
δ V95%)

δ

(V95%)δ−1 − 125 · ((0.05)
1
δ V95%)

δ

(5
1
δ V95%)δ−1

] =

δ

δ −1
· [45 · (0.05) · (V95%)

δ

(V95%)δ−1 − 125 · (0.05) · (V95%)
δ

(51− 1
δ ) · (V95%)δ−1

] =

0.05 ·δ
δ −1

· [45 · (V95%)−125 · (V95%) · (5
1
δ
−1)] =

0.05 ·δ · (V95%)

δ −1
· [45−125 · (5

1
δ
−1)] = V95%

Or, finally,

δ

δ −1
· [45−125 · (5

1
δ
−1)] = 20

The only solution to this function is δ = −1, which is not on the available values of δ , (0 < δ < 100).363

6.1. Computing 90% / 95% / 99%-VaR for standard normal and uniform364

Beginning with the necessary ratio,365

366

9[V95%−V90%] = 5[V99%−V90%]

We find367

368

9 ·V95%−9 ·V90% = 9[V95%−V90%] = 5[V99%−V90%] = 5 ·V99%−5 ·V90% = 5 · (5
1
δ V95%)−5 ·V90%
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369 By simplifying like terms, we arrive at
370

(9−5
1
δ
+1) ·V95% = 4 ·V90% = 4 ·2−

1
δ V95%

And finally

9−5
1
δ
+1 = 4 ·2−

1
δ = 22− 1

δ

As before, the only possible solution to this equation is δ = −1, which is not on the domain of possible values of δ ,371

(0 < δ < 100).372
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