Preprint Article Version 1 This version is not peer-reviewed

Enhanced Protection of Biological Membranes during Lipid Peroxidation. Study of the Interactions between Flavonoid Loaded Mesoporous Silica Nanoparticles and Model Cell Membranes

Version 1 : Received: 14 April 2019 / Approved: 16 April 2019 / Online: 16 April 2019 (09:54:03 CEST)

A peer-reviewed article of this Preprint also exists.

Mandić, L.; Sadžak, A.; Strasser, V.; Baranović, G.; Domazet Jurašin, D.; Sikirić, M.D.; Šegota, S. Enhanced Protection of Biological Membranes during Lipid Peroxidation: Study of the Interactions between Flavonoid Loaded Mesoporous Silica Nanoparticles and Model Cell Membranes. Int. J. Mol. Sci. 2019, 20, 2709. Mandić, L.; Sadžak, A.; Strasser, V.; Baranović, G.; Domazet Jurašin, D.; Sikirić, M.D.; Šegota, S. Enhanced Protection of Biological Membranes during Lipid Peroxidation: Study of the Interactions between Flavonoid Loaded Mesoporous Silica Nanoparticles and Model Cell Membranes. Int. J. Mol. Sci. 2019, 20, 2709.

Journal reference: Int. J. Mol. Sci. 2019, 20, 2709
DOI: 10.3390/ijms20112709

Abstract

Flavonoids, polyphenols with anti-oxidative activity have high potential as novel therapeutics for neurodegenerative disease, but their applicability is rendered by their poor water solubility and chemical instability under physiological conditions. In this study, this is overcome by delivering flavonoids to model cell membranes (unsaturated DOPC) using prepared and characterized biodegradable mesoporous silica nanoparticles, MSNs. Quercetin, myricetin and myricitrin have been investigated in order to determine the relationship between flavonoid structure and protective activity towards oxidative stress i.e. lipid peroxidation induced by addition of hydrogen peroxide and/or Cu2+ ions. Among investigated flavonoids, quercetin showed the most enhanced and prolonged protective anti-oxidative activity. The nanomechanical (Young modulus) measurement of the MSNs treated DOPC membranes during lipid peroxidation confirmed attenuated membrane damage. By applying combination of experimental techniques (AFM, force spectroscopy, ELS, DLS), this work generated detailed knowledge about the effects of flavonoid loaded MSNs on the elasticity of model membranes, especially under oxidative stress conditions. Results from this study will pave the way towards the development of innovative and improved markers for oxidative stress-associated neurological disorders. In addition, the obtained could be extended to designing effective delivery systems of other high potential bioactive molecules with an aim to improve human health in general.

Subject Areas

lipid peroxidation; membrane elasticity; mesoporous silica nanoparticles; myricetin; myricitrin; nanomechanics; protective effects of flavonoids; quercetin

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our diversity statement.

Leave a public comment
Send a private comment to the author(s)
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.