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In major depression, increased serum dynorphin and kappa opioid receptor levels are positively 

associated with mu opioid receptor levels and immune activation and are attenuated by nicotine 

dependence. 
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Abstract 

Background: There is now evidence that immune and opioid systems show functional reciprocal 

relationships and that both systems may participate in the pathophysiology of major depression 

(MDD). 

Objective: The present study was carried out to delineate differences between MDD patients and 

healthy controls in dynorphin and kappa opioid receptor (KORs) in association with levels of β-

endorphins and mu opioid receptors (MORs), interleukin-6 (IL-6) and IL-10.  

Method: The present study recruited 60 drug-free male participants with MDD aged 24-70 year 

and 30 age-matched healthy males as control group and measured serum levels of dynorphin, 

KOR, β-endorphin, MOR, IL-6 and IL-10.  

Results: Serum dynorphin, KOR, β-endorphin and MOR are significantly increased in MDD as 

compared with controls. The increases in the dynorphin/KOR system and β-endorhin/MOR 

system are significantly intercorrelated and are both strongly associated with increased IL-6 and 

IL-10 levels. Dynorphin, β-endorphin, KOR and both cytokines showed a good diagnostic 

performance for MDD versus controls, whereby both opioid peptides and cytokines show a 

bootstrapped (n=2000) area under the receiver operating curve of 0.972. KOR and the 

dynorphin/KOR system are both significantly decreased in depressed subjects with comorbid 

nicotine dependence.  

Conclusion: Our findings suggest that in MDD, immune activation is associated with a 

simultaneous activation of dynorphin/KOR and β-endorhin/MOR signaling and that these opioid 

systems may participate in the pathophysiology of depression by a) exerting immune regulatory 

activities attenuating the primary immune response; and b) modulating reward responses and 

mood as well as emotional and behavioral responses to stress.    
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Significant outcomes 

 Serum dynorphin and kappa opioid receptor (KOR) levels are significantly increased in 

depression (MDD) suggesting that dynorphin/KOR signaling is increased. 

 In MDD, Dynorphin/KOR and β-endorhin/mu opioid (MOR) signaling are significantly 

intercorrelated and associated with immune activation. 

 Both KOR and MOR systems may participate in the pathophysiology of depression by 

exerting immune regulatory as well as emotional and behavioral effects. 

 

Limitations 

 It would have been more interesting if we had measured more cytokines including those of M1 

macrophage, T helper (Th)-1, Th-2, Th-17 and T regulatory phenotypes  

 This study examined male subjects and therefore our study should be replicated in females. 
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Introduction 

  Major depressive disorder (MDD) is a chronic relapsing disorder characterized by the 

recurrence of major depressive episodes. A recent meta-analysis reported that, from 1994 to 

2014, the lifetime prevalence of depression was 10.8% (1). There is now evidence that MDD is 

associated with changes in immune functioning and activation of immune-inflammatory 

pathways comprising increased production of pro-inflammatory (e.g. interleukin-6 (IL-6)) as 

well as immune regulatory (e.g.. IL-10) mediators (2, 3, 4, 5, 6, 7, 8). The latter are part of a 

regulatory system that down-regulates the primary immune-inflammatory response via multiple 

negative feedback systems, collectively named the “compensatory immune regulatory system” 

(CIRS) (8, 9). 

Aberrations in endogenous opioid peptides and their receptors are other characteristics of 

MDD. The opioid system comprises three families of neuropeptides, namely endorphins, 

enkephalins, and dynorphins, and three cognate receptor subtypes, namely μ (MOR), δ (DOR), 

and κ (KOR) receptors (10). β-Endorphin and enkephalins bind to MORs and DORs, while 

dynorphin bind predominately to KORs (11). Both opioid receptors and opioid peptides are 

expressed throughout peripheral and central nervous systems (12). A growing body of research 

indicates that those endogenous opioids and their receptors are involved in emotional and 

behavioral responses to stress, regulation of mood and the pathophysiology of MDD (13, 14). 

MOR is a key component of reward processing, while acute activation of MOR attenuates 

depressive-like behaviors in some but not all studies (15). MDD is accompanied by increased 

baseline and post-dexamethasone β-endorphin concentrations (2, 16, 17, 18). In animal models, 

increased β-endorphin secretion is associated with depressive-like behaviors suggesting that the 

opioid system could be a new drug target to treat depression (19). Recently, we reported that 
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MOR levels were significantly higher in MDD patients than controls (13), while post-mortem 

studies showed increased MOR binding in suicide victims (20). Positron emission tomography 

(PET), on the other hand, showed contradictory results with increased binding potential for 

[
11

C]-carfentanil during depression, but decreased biding potential in women with MDD (21).  

A variety of stressors may increase KOR signaling, which is implicated in stress-induced 

changes in brain reward systems, which, in turn, may contribute to despair- and depression-like 

responses and depressive disorders (15, 22, 23, 24, 25). As such, some authors regard KOR 

signaling as an anti-reward dysphoric system increasing risk towards depression (26, 27). The 

overall conclusion from animal models supports the idea that the KOR system may underpin 

aspects of sadness and dysphoria but that the cause of the opioid alterations in MDD remains 

inconclusive (28). Nevertheless, in a pilot study, no differences in KOR binding (using 

[11C]GR103545) could be found between MDD patients and controls (29), while prodynorphin 

mRNA was significantly lower in MDD and bipolar depression as compared with controls (30). 

There is now evidence that immune and opioid systems show functional relationships. T 

and B-lymphocytes, granulocytes, and monocytes/macrophages express opioid peptides, 

including β-endorphin and pro-opiomelanocortin (POMC) and all POMC processing enzymes 

(31, 32). Opioid peptides are synthesized in circulating leukocytes that, directed by chemokines 

and adhesion molecules, may migrate to inflamed tissues where they may exert immune 

stimulatory as well as immune inhibitory activities (32,33). β-endorphin and dynorphin peptides 

modulate functions of lymphocytes and other cells involved in host defense and immunity (34). 

Associations between both systems are also detected in patients with MDD. For example, 

lowered cell-mediated hypersensitivity and natural killer (NK) activity are significantly 

associated with increased β-endorphin levels in depression (32, 35). Castilla et al. (1992) 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 16 April 2019                   doi:10.20944/preprints201904.0176.v1

http://dx.doi.org/10.20944/preprints201904.0176.v1


7 
 

reported an increased opioid tone in depression and a concomitant suppression of monocytic 

functions (36). Recently, we reported significant associations between MOR levels and IL-10 in 

patients with major depression (13). Nevertheless, the associations between immune activation 

and the KOR/dynorphin system were not studied in patients with MDD. 

There is also a strong comorbidity between MDD and tobacco use (NU) or nicotine 

dependence (ND) with increased inflammatory potential and affiliated nitro-oxidative pathways 

in comorbid MDD and NU/ND (37, 38, 39). Nicotine has a biphasic effect on the opioid system 

with anti-opioid effects at lower doses, while nicotine administration may entrain opioid activity 

“during the acquisition and re-acquisition of nicotine self-administration” (40). Nevertheless, the 

effects of comorbid MDD and ND on the KOR system has not been examined. 

Hence, the present study was carried out to delineate a) serum IL-6 and IL-10 levels in 

association with the KOR/Dynorphin and MOR/endorphin systems in MDD patients as 

compared with healthy controls; and b) examine the effects of comorbid MDD and ND on these 

associations.  

 

Subjects and Methods 

Participants 

 The present study recruited 60 drug-free male participants with MDD aged 24-70 year 

and 30 age-matched healthy males as a control group. Participants were recruited at “The 

Psychiatry Unit”, Al-Hakeem General Hospital and at a private psychiatric clinic, Najaf 

Governorate, Iraq during the period of January to July 2017. This study reports KOR and 

dynorphin values in the same study group on which we published MOR, β-endorphin, IL-6 and 

IL-10 data (13), except that one patient and one control were substituted by two new cases with 
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dynorphin/KOR measurements. The diagnosis was made using criteria of the 4
th

 edition of 

Diagnostic and Statistical Manual of Mental Disorders (DSM-IV) [American Psychiatric 

Association 2000]. Severity of depressive symptoms was assessed using the 24-item Hamilton 

Depression Rating Scale (HDRS) one or two days before blood was drawn. Only patients with a 

total HDRS score >21 were enrolled in the present study. Patients were divided in those with and 

without ND and all ND patients showed heavy nicotine use of more than 20 cigarettes/day. 

Patients were evaluated using a full medical history. We excluded subjects with systemic disease 

that may affect immune parameters, including diabetes mellitus, autoimmune disorders, neuro-

inflammatory disorders, inflammatory bowel disorder, and chronic kidney disease. We also 

excluded subjects with neurodegenerative/neuroinflammatory disease including stroke, multiple 

sclerosis, and Alzheimer and Parkinson’s disease. We also excluded MDD patients who were 

medicated, and subjects with other-axis I diagnosis including schizophrenia, psycho-organic 

disorders and substance abuse. To eliminate any effects of overt inflammation from other 

disorders, serum C-reactive protein (CRP) was evaluated in all samples and we excluded subjects 

with CRP values >6 mg/L. Written informed consent was obtained from all participants, 

according to the guidelines laid down in the current version of the Declaration of Helsinki, after 

approval from the ethics committee (IRB) of the College of Science, University of Kufa, Iraq 

(229-1/2017). 

  

Methods 

 Five milliliters of venous blood samples were drawn, utilizing disposable needle and 

plastic syringes, from patients and controls. The samples were transferred into a clean plain tube. 

Blood was left at room temperature for 15 min for clotting, centrifuged 3000 rpm for 10 min, and 
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then serum was separated and transported into two Eppendorf tubes to be stored at -80 °C until 

thawed for assay. Serum CRP was measured using a kit supplied by Spinreact
®
, Spain. This test 

is based on the principle of the latex agglutination. Commercial ELISA sandwich kits were used 

to measure KOR, MOR, β-endorphin, dynorphin, IL-6 and IL-10 (MyBioSource, Inc, CA, USA; 

and CUSABIO Co, China). We followed exactly all procedures according to the manufacturer’s 

instructions. The intra-assay coefficients of variation (CV) (precision within-assay) were < 7.0% 

for all analytes.  

 

Statistical analysis 

Differences in scale variables between diagnostic groups were examined using analysis 

of variance (ANOVA). Associations between nominal variables were assessed using analysis of 

contingency tables (χ
2
 test). We used Pearson’s product moment correlation coefficients to check 

associations between scale variables. Multivariate general linear model (GLM) analysis was used 

to assess the effects of diagnosis (MDD with and without ND versus controls) as primary 

explanatory variable, while adjusting for extraneous variables (age and BMI). Tests for between-

subjects effects were employed to assess the effects of significant explanatory variables on 

biomarkers. Multiple post-hoc comparisons among treatment means were assessed using 

protected LSD values. Differences in the biomarkers among classes are displayed as mean (SE) 

values computed on their z-scores. Binary logistic regression analysis was employed to delineate 

the most important predictors of MDD versus controls, with computation of Odd’s ratios and 

95% confidence intervals. We computed the area under the curve (AUC) to determine the 

diagnostic accuracy of the biomarkers as well as the bootstrapped (2000 bootstraps) AUC values. 

An optimal diagnostic tool will have an AUC of 1, which indicates 100% sensitivity and 
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specificity (41). Tests were 2-tailed and a p-value of 0.05 was used for statistical significance. 

All statistical analyses were performed using IBM SPSS windows version 25, 2017. Statistical 

analyses were conducted in accordance with the International Conference on Harmonisation E9 

statistical principles (November 2005). 

Based on the measurements of IL-6, IL-10, β-endorphin, dynorphin, KOR and MOR we 

computed z unit weighted composite scores as follows: 

DYN-KOR: index of KOR signaling computed as z transformation of dynorphin (zDYN) + 

zKOR. 

DYN-END: integrated index of circulating opioid peptides, computed as zDYN + z β-endorphin. 

KOR-MOR: index of opioid receptor status computed as zKOR + zMOR. 

IL6-IL10: index of immune activation computed as zIL-6 + zIL-10. 

 

Results 

Descriptive statistics 

Table 1 shows the socio-demographic data as well as the raw values of the biomarkers 

used in this study. Patients were divided into those with (MDD+ND) and without nicotine 

dependence (MDD). There were no significant differences in age, BMI and urban/rural ratio 

between the three study groups. There were somewhat more married subjects in MDD+ND than 

in controls, while there were more unemployed people in both depressed subgroups than in 

controls. This Table also shows the raw measurements (not adjusted for extraneous variables) of 

the different biomarkers. Figure 1 shows the differences in biomarker profile between the three 

study groups. Shown are the group mean values (±SE) after z transformations were made. The 

BDI-II score was not significantly different between both MDD subgroups. 
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Table 2 shows the intercorrelation matrix between different biomarkers in the 90 subjects 

included in this study. Dynorphin (DYN) was significantly correlated with β-endorphin (END), 

MOR, KOR-MOR and IL6-IL10. KOR was significantly associated with END, MOR, DYN-

END and IL6-IL10. DYN-KOR was significantly correlated with END, MOR and IL6-IL10. 

END levels were significantly correlated with MOR, KOR-MOR and IL6-IL10. DYN-END was 

significantly associated with KOR-MOR and IL6-IL10, while KOR-MOR was positively 

associated with IL6-IL10. Figure 2 shows the association between KOR and IL6-IL10, while 

Figure 3 shows the correlation between DYN-END and IL6-IL10. Figure 4 shows the 

association between KOR-MOR and IL6-IL10. 

 

Biomarker differences between controls and patients groups     

Table 3 shows the outcome of a multivariate GLM analysis with the 10 biomarkers as 

dependent variables while adjusting for age and BMI. The dependent variables were DYN, END, 

KOR, MOR, IL-6, and IL-10 levels as well as z unit weighed composite scores, namely DYN-

KOR, DYN-END, KOR-MOR and IL6-IL10. We found a highly significant effect of diagnosis 

with an effect size of 0.483, while age and BMI were not significant. There were highly 

significant associations between all 10 biomarkers and diagnosis with the strongest associations 

between diagnosis and IL6-IL10, END, DYN-END, IL-10 and KOR-MOR (with effect sizes > 

0.300). Table 4 shows the model-generated estimated marginal mean values (in z scores) 

obtained by the GLM analyses shown in Table 3. Pair-wise multiple post-hoc analyses showed 

that DYN was significantly higher in MDD as compared with controls and MDD+ND. KOR, 

DYN-KOR and DYN-END were significantly different between the three study groups and 
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increased from controls  MDD+ND  MDD. END, MOR, KOR-MOR, IL-6, IL-10 and IL6-

IL10 were significantly higher in both MDD groups than in controls.   

Table 5 shows the outcome of a stepwise binary logistic regression analyses with MDD 

(versus controls) as dependent variable. IL6-IL10 and DYN-END were the best predictors of 

MDD (Χ
2
=77.16, df=2, p<0.001) with an effect size of 0.800 (Nagelkerke value).  

Table 6 shows the results of ROC analyses discriminating MDD from controls. The AUC 

ROC curves for DYN, KOR, DYN-KOR and DYN-END were computed on non-smoking MDD 

patients versus controls (because ND has an effect on these biomarkers). The other biomarkers 

were examined in all MDD patients versus controls. In the same Table we also show the 

bootstrapped AUC values after 2000 bootstraps. We found that DYN-END, END, KOR-MOR 

and IL6-IL10 yielded very high (bootstrapped) AUC (all > 0.849) separating MDD from 

controls. The best bootstrapped AUC was delineated for the combination of IL6-IL10 and DYN-

END (0.972).   

 

Discussion 

The first major finding of this study is that serum dynorphin and KOR were significantly 

increased in MDD as compared with controls and that increases in those opioid peptides and 

their receptors are interrelated, suggesting that dynorphin/KOR signaling is significantly 

increased in MDD. However, two previous clinical studies were unable to observe signs of 

increased dynorphin/KOR signaling in depression (see introduction: 29, 30). As described in the 

Introduction, increased KOR signaling results in anti-reward and dysphoric effects thereby 

contributing to depressive behaviors (15, 22, 23, 24, 25, 26, 27). Acute stress induces numerous 

physiologic and behavioral effects that are mediated by KOR signaling in limbic brain regions, 
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while dynorphin release can be both a cause and consequence of stress hormone release, or may 

occur as a direct result of stress-induced increases in neuronal activity (42, 43). Evidence 

suggests that the acute effects of stress are caused, at least in part, by dynorphin-mediated KOR 

activation. The predominant effect of KOR stimulation is decreased neuronal activity in cell 

populations that express KORs (24). Dendritic dynorphin release in the hippocampus and 

hypothalamus negatively regulates excitatory inputs via retrograde activation of presynaptic 

KORs (44). This inhibitory mechanism may generalize to other neuronal populations often 

implicated in the regulation of mood and motivation, such as the amygdala and striatum, which 

express dendritic dynorphin (45). KORs are also involved in the regulation of serotonergic (42) 

and noradrenergic (46) systems, which may play a role in MDD. Blockade of KORs decrease 

immobility time in animal models of the forced swim test, suggesting these receptors may show 

antidepressant-like effects (47). On the other hand, during acute stress, KOR signaling may 

increase physical ability (by producing analgesia) and motivation to escape threat (by producing 

aversion) thereby facilitating adaptive responses (24).  

Our results on dynorphin and KOR are in agreement with our findings that also β-

endorphin and MOR are upregulated in MDD and that the increases in β-endorphin and MOR 

are significantly intercorrelated, indicating increased β-endorphin/MOR signaling in MDD (13). 

Previously, one paper showed increased expression of MOR in suicide victims, whereas PET 

scan studies showed controversial results on MOR binding profiles (see Introduction). 

Interstingly, MOR (and DOR) activation may elevate mood and therefore may improve 

depressive states (48).  

The second major finding of this study is that dynorphin/KOR and β-endorhin/MOR 

signaling indices are significantly intercorrelated and are strongly associated with IRS/CIRS 
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activation. Heightened IRS and CIRS responses are commonly observed in patients with MDD, 

with increased levels of immune-inflammatory biomarkers and immune-regulatory compounds, 

(5, 49, 50, 51), including serum IL-6 and IL-10 concentrations (5, 8, 13). Moreover, we observed 

that these opioid and IRS/CIRS responses yielded a good diagnostic performance for MDD with 

a bootstrapped (n=2000) area under the curve of 0.972 (for both opioid peptides combined with 

both cytokines). In this respect it is intersting to note that recent theories suggest that classical 

neurotransmitters convey information between pairs of neurons, whereas neuropeptides and 

cytokines convey information and coordinate activities across broader networks of neurons (52, 

53). This may explain that combinations of immune and opioid biomarkers have a high 

sensitivity, specificity and diagnostic performance for MDD. All in all, our results show that 

increased dynorphin/KOR and β-endorhin/MOR signaling in MDD are strongly associated with 

the peripheral IRS/CIRS response in that illness. 

As described in the Introduction, there are many reciprocal relationships between the 

opioid and immune systems. During inflammation, pro-inflammatory cytokines including IL-1β 

and IL-6 may stimulate hypothalamic corticotrophin releasing hormone (CRH) release (2, 54). In 

response to CRH and cytokines, peripheral blood mononuclear cells may secrete opioids 

(33). Nevertheless, the major sources of local endogenous opioid ligands including β-endorphin 

and dynorphin are leukocytes (55). For example, in macrophages, monocytes, granulocytes and 

lymphocytes, β-endorphin is present in secretory granules arranged at the cell periphery ready for 

exocytosis (11). Quantitative analysis revealed that in early inflammation, granulocytes 

(especially neutrophils) are the major opioid-containing leukocytes, whereas in later stages of 

inflammation, monocytes or macrophages and lymphocytes (especially activated T and B cells) 
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predominate (56, 57). Therefore, leukocytes are able to exert analgesic effects by releasing 

opioid peptides which bind to opioid receptors of the nociceptors in the periphery (11).  

Dynorphins produced during inflammatory conditions display anti-inflammatory effects 

by attenuating translocation of nuclear factor-ΚB and consequently production of tumor necrosis 

factor-α and IL-1β (58). Inhibition of nuclear-factor ΚB is likely a major mechanism explaining 

the anti-inflammatory effects of opioids (58). Also, activation of KOR by dynorphins negatively 

regulates many immune cell functions including cytokine production by macrophages (59), T 

cell proliferation (60), phagocytoses (61) and antibody production (62). Moreover, dynorphins 

may exert some of their activities by binding to other receptors, including NMDA receptors, 

activating the HPA-axis, inhibiting dopaminergic neurons, and mediating changes in calcium 

channels leading to increased intracellular calcium levels (63, 64).  

Immune cells contain and upregulate signal-sequence encoding mRNA of the β-

endorphin precursor POMC and the entire enzymatic machinery necessary for its processing into 

the functionally active peptide (55). POMC neuropeptides such as β-endorphin and ACTH are 

produced in both the anterior and intermediate lobes of the pituitary, as well as in a cluster of 

neurons in the hypothalamic arcuate nucleus (65) leading to a concomitant increase in ACTH, β-

endorphin and cortisol in MDD (2, 6, 13, 66, 67). During inflammatory conditions, “CRH 

stimulates peripheral release of β-endorphin from immune cells” (68) and, therefore, activation 

of immune-inflammatory pathways likely plays an important role in contributing to circulating β-

endorphin levels. Animal data show that β-endorphin have anti-inflammatory and 

immunosuppressive properties (69) explaining the positive benefits of CRH-mediated increases 

in β-endorphin levels under inflammatory conditions (70). Inflammation also induces MOR 

transcription and increased MOR potency as observed in intestinal inflammation (71). MORs, in 
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turn, have anti-infammatory effects and MOR agonists may be used to dampen immune-

inflammatory responses during for example inflammatory bowel disease (72). All in all, our 

findings suggest that in MDD a) immune activation is associated with a simultaneous activation 

of dynorphin/KOR and β-endorhin/MOR signaling, which both may have CIRS activities 

attenuating the primary immune response and b) both increased dynorphin/KOR and β-

endorhin/MOR signaling may play a role in depressive symptomatology albeit with divergent 

effects, namely detrimental (KOR) versus more protective (MOR) effects. 

The third major finding of this study is that KOR and the index dynorphin/KOR signaling 

are both significantly decreased in MDD subjects with comorbid nicotine dependence, while 

there are no significant effects on β-endorphin or MOR levels (although there is a trend towards 

a decrease). Smoking is highly prevalent among people with MDD (73) and is commonly cited 

as a means to cope with depressed mood and counteract fatigue and inactivity (74). As explained 

in the introduction, smoking is also a risk factor for depression through activated immune-

inflammatory and oxidative pathways, while comorbid MDD and nicotine dependence are 

characterized by lowered antioxidant and increased neuro-immune, neuro-oxidative and 

degenerative biomarkers (38, 39, 73). Isola et al. (2009) proposed that nicotine administration 

may influence dynorphin primarily through dopamine release and that glutamate plays a 

modulatory role (75). Nicotine exposure increases dopamine release in mesolimbic terminal 

fields (76) and, therefore, one possibility is that the lowered dynorphin/KOR levels in comorbid 

MDD and nicotine use may be due to dopamine release in response to nicotine. Moreover, KOR 

activation may attenuate the reinforcing effects of nicotine (77), while KOR agonists attenuate 

nicotine-induced locomotor activity (78). Additionally, mice lacking the prodynorphin gene 

compared to wild-type mice self-administered nicotine at lower doses, suggesting that the 
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dynorphin/KOR system plays an inhibitory role in the reinforcing effects of nicotine (79). 

Therefore, it is aslo possible that MDD patients with releatively lower dynorphin/KOR signaling 

display increased reinforcement effects of nicotine and thus more nicotine dependence behaviors. 

Furthermore, due to lowered dynorphin/KOR signaling, heavy smokers may show lowered anti-

inflammatory protection and, therefore, may be more vulnerable to the detrimental effects of 

smoking-induced IL-6 and TNF-α signaling (73, 80, 81). 

 

Limitations of the study 

The results of this study should be discussed with respect to its limitations. One limitation 

is that it would have been more interesting if we had measured many more cytokines including 

those produced by M1 macrophage, T helper (Th)-1, Th-2, Th-17 and T regulatory phenotypes in 

order to examine the associations of opioids with the full spectrum of IRS and CIRS cytokines 

and their ratios (8). Secondly, this study examined male subjects only and therefore our study 

should be replicated in females. 

 

Conclusion 

Serum dynorphin and KOR and β-endorphin and MOR are significantly increased in 

MDD as compared with controls. The increases in dynorphin/KOR and β-endorhin/MOR 

signaling are significantly intercorrelated with signs of IRS/CIRS activation. KOR and the 

dynorphin/KOR signaling index are both significantly decreased in depressed subjects with 

comorbid nicotine use. Our findings suggest that in MDD immune activation is associated with a 

simultaneous activation of dynorphin/KOR and β-endorhin/MOR signaling and that these opioid 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 16 April 2019                   doi:10.20944/preprints201904.0176.v1

http://dx.doi.org/10.20944/preprints201904.0176.v1


18 
 

systems may participate in the pathophysiology of depression by exerting CIRS activities 

attenuating the primary immune response as well as emotional and behavioral effects.  
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Figure 1 Differences in biomarker profile between controls (HC) and major depressed patients 

with (MDD+ND) and without (MDD) nicotine dependence. 

Shown are the group mean values (±SE) after z transformations were made. 

DYN: dynorphin 

KOR: kappa opioid receptor 

DYN-KOR: index of KOR signaling computed as z transformation of dynorphin (zDYN) + 

zKOR 

END: β-endorphin 

MOR: mu opioid receptor 

DYN-END: integrated index of circulating opioid peptides, computed as zDYN + zEND. 

KOR-MOR: index of opioid receptor status computed as zKOR + zMOR. 

IL: interleukin 

IL6-IL10: index of immune activation computed as z interleukin-6 (zIL6) + zIL10 
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Figure 2 Association between kappa opioid receptor (KOR) levels and immune activation as 

indicated by a z unit weighted composite (IL6-IL10) score based on interleukin (IL)-6 and IL-10 

assays. 
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Figure 3 Association between opioid peptides as indicated by a z unit weighted composite score 

based on dynorphin (DYN) and β-endorphin (END) assays (KOR-MOR) and immune activation 

as indicated by a z unit weighted composite score based on interleukin (IL)-6 and IL-10 assays 

(IL6-IL10). 
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Figure 4 Association between opioid receptor levels as indicated by a z unit weighted composite 

score based on kappa (KOR) and mu (MOR) opioid receptor levels (KOR-MOR) and immune 

activation as indicated by a z unit weighted composite score based on interleukin (IL)-6 and IL-

10 assays (IL6-IL10). 
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Table 1: Socio-demographic, clinical and biomarker data in major depressed patients with nicotine 

dependence (MDD+ND), patients without ND (MDD), and healthy controls (HC).  
 

 

 

Variables 

 

HC 
A 

n=30 

MDD 
B
 

n=35 

MDD+ND 
c
 

n=25 

F/χ
2 

 

df 

 

p 

 

Age           (years) 30.3(8.8) 31.1(11.8) 33.8(9.9) 0.82 2/87 0.443 

BMI           (kg/m
2
) 26.2(2.8) 24.2(3.6) 25.3(3.8) 

2.60 2/87 0.080 

Single/Married  16/14
 C

 14/21 5/20 
A
 6.41 2 0.041 

Urban/Rural  5/25 7/28 8/17 2.02 2 0.364 

Employment (N/Y) 4/26
 B,C

 16/19 
A
 11/14 

A
 8.90 2 0.012 

Dynorphin (pg/ml) 17.04(2.55) 
B
 18.83(1.86)

 A,C
 17.50(1.79) 

B
 6.35 2/87 0.003 

KOR          (pg/ml) 8.32(1.71)
 B,C

 11.99(3.99)
 A,C

 10.02(1.81) 
A,B

 13.46 2/87 <0.001 

END          (pg/ml) 24.90(5.27)
 B,C

 34.95(4.02)
 A

 33.02(2.75) 
A
 49.94 2/87 ˂0.001 

MOR         (pg/ml) 3.01(0.83)
 B,C

 4.43(1.49)
 A

 4.03(1.27)
A
 10.94 2/87 ˂0.001 

IL-6           (pg/ml) 11.4(2.8)
 B,C

 16.2(3.7)
 A

 16.7(4.3) 
A
 18.78 2/87 ˂0.001 

IL-10         (pg/ml) 6.0(1.7)
 B,C

 8.9(2.2)
 A

 8.9(2.0) 
A
 21.78 2/87 <0.001 

BDI-II - 48.3(11.0) 50.9(8.5) 0.96 1/58 0.336 

 

BMI: Body mass index 

KOR: Kappa opioid receptor 

END: β-endorphins 

MOR: Mu opioid receptor 

IL: interleukin 

BDI-II: Beck Depression Inventory  
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Table 2: Inter-correlation matrix among biomarkers data. 

 

Variables 

 

DYN 

 

KOR 

 

DYN-

KOR 

END MOR DYN-

END 

KOR-MOR 

 

KOR   0.388**       

DYN-KOR 0.833** 0.833**      

END    0.396** 0.440** 0.502**     

MOR   0.339** 0.328* 0.400** 0.358**    

DYN-END    0.835** 0.495** 0.799** 0.835** 0.417**   

KOR-MOR 0.209* 0.738** 0.568** 0.477** 0.815** 0.410**  

IL6-IL10      0.316** 0.440** 0.454** 0.568** 0.529** 0.529** 0.594** 

 

*: p<0.05 **: p<0.001 (n=90) 

KOR: kappa opioid receptor 

DYN-KOR: index of KOR signaling computed as z transformation of dynorphin (zDYN) + zKOR 

END: β-endorphin 

MOR: mu opioid receptor 

DYN-END: integrated index of circulating opioid peptides, computed as zDYN + zEND. 

KOR-MOR: index of opioid receptor status computed as zKOR + zMOR. 

IL6-IL10: index of immune activation computed as z interleukin-6 (zIL6) + zIL10 
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Table 3: Results of multivariate GLM analysis with the biomarkers as dependent variables and diagnosis 

as explanatory variable while adjusting for extraneous variables. 
 

 

Tests 

 

Dependent variables 

 

Explanatory 

variables 

F 

 

df 

 

p 

 

Partial 

η
2
 

Multivariate 10 Biomarkers 

Diagnosis 12.46 12/160 ˂0.001 0.483 

Age 1.61 6/80 0.155 0.108 

BMI 1.43 6/80 0.215 0.097 

Between-

subject effects 

DYN  Diagnosis 7.46 2/85 0.001 0.149 

KOR   Diagnosis 15.13 2/85 ˂0.001 0.263 

DYN-KOR Diagnosis 16.99 2/85 ˂0.001 0.286 

END    Diagnosis 50.50 2/85 ˂0.001 0.543 

MOR   Diagnosis 10.52 2/85 ˂0.001 0.198 

DYN-END    Diagnosis 31.10 2/85 ˂0.001 0.423 

KOR-MOR Diagnosis 22.71 2/85 ˂0.001 0.348 

IL6     Diagnosis 20.98 2/85 ˂0.001 0.330 

IL10  Diagnosis 23.32 2/85 ˂0.001 0.354 

IL6-IL10    Diagnosis 51.30 2/85 ˂0.001 0.547 

 

 
Diagnosis: Healthy controls versus depression with and without nicotine dependence  

DYN: dynorphin 

KOR: kappa opioid receptor 

DYN-KOR: index of KOR signaling computed as z transformation of dynorphin (zDYN) + zKOR 

END: β-endorphin 

MOR: mu opioid receptor 

DYN-END: integrated index of circulating opioid peptides, computed as zDYN + zEND. 

KOR-MOR: index of opioid receptor status computed as zKOR + zMOR. 

IL6-IL10: index of immune activation computed as z interleukin-6 (zIL6) + zIL10 
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Table 4: Model-generated estimated marginal means of the 10 biomarkers obtained by GLM analysis 
shown in Table 2 in controls (HC) and major depressed (MDD) patients, divided into those with 

(MDD+ND) and without (MDD) nicotine dependence. 

 
 

Variables 

HC 
A 

n=30 

MDD 
B
 

n=35 

MDD+ND 
C
 

n=25 

DYN  -0.438(0.175) 
B
 0.472(0.161)

 A,C
 -0.134(0.189)

 B
 

KOR   -0.689(0.163)
 B,C

 0.548(0.150)
 A,C

 0.059(0.176)
 A,B

 

DYN-KOR -0.677(0.161)
 B,C

 0.612(0.147)
 A,C

 -0.045(0.173)
 A,B

 

END    -1.052(0.128)
 B,C

 0.653(0.118)
 A

 0.349(0.1.38)
 A

 

MOR   -0.607(0.163)
 B,C

 0.389(0.149)
 A

 0.149(0.172)
 A

 

DYN-END    -0.892(0.145)
 B,C

 0.673(0.133)
 A,C

 0.129(0.156)
 A,C

 

KOR-MOR -0.795(0.149)
 B,C

 0.575(0.137)
 A

 0.149(0.160)
 A

 

IL6     -0.834(0.156)
 B,C

 0.388(0.143)
 A

 0.457(0.168)
 A

 

IL10  -0.866(0.153)
 B,C

 0.435(0.141)
 A

 0.430(0.165)
 A

 

IL6-IL10    -1.074(0.128)
 B,C

 0.520(0.118)
 A

 0.560(0.138)
 A

 

 
All results are shows as mean (SE) and as z scores 

 

DYN: dynorphin 

KOR: kappa opioid receptor 

DYN-KOR: index of KOR signaling computed as z transformation of dynorphin (zDYN) + zKOR 

END: β-endorphin 

MOR: mu opioid receptor 

DYN-END: integrated index of circulating opioid peptides, computed as zDYN + zEND. 

KOR-MOR: index of opioid receptor status computed as zKOR + zMOR. 

IL6-IL10: index of immune activation computed as z interleukin-6 (zIL6) + zIL10 
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Table 5: Results of binary logistic regression analysis with major depression (controls as reference group) 

as dependent variable. 

 

Variable B SE W df p OR 95%CI 

IL-6-IL-10 3.784 1.195 10.02 1 0.002 44.01 4.23-458.17 

DYN-END   2.000 0.916 4.77 1 0.029 7.39 1.23-44.49 

 

 

OR: Odd’s ratio with 95% confidence intervals 

 

IL6-IL10: Computed as z(z interleukin-6 (zIL6) + zIL10)) 

 

DYN-END: Computed as z(z Dynorphin (zDYN)+ z β-endorphin (zEND)) 
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Table 6: Results of receiver operating characteristic (ROC) analysis discriminating major depression from 

normal controls. 

 

* Performed in non-smokers only (all other analyses in all participants) 

DYN: dynorphin 

KOR: kappa opioid receptor 

DYN-KOR: index of KOR signaling computed as z transformation of dynorphin (zDYN) + zKOR 

END: β-endorphin 

MOR: mu opioid receptor 

DYN-END: integrated index of circulating opioid peptides, computed as zDYN + zEND. 

KOR-MOR: index of opioid receptor status computed as zKOR + zMOR. 

IL6-IL10: index of immune activation computed as z interleukin-6 (zIL6) + zIL10 

IL6-IL10 and DYN-END: as obtained using binary logistic regression (shown in Table 5) 

 

 

Variables 
Area 

ROC 
SE p 95% CI 

Bootstrapped AUC 

Boot-AUC 95%CI 

DYN * 0.651 0.069 0.036 0.517-0.786 0.664 0.523-0.785 

KOR * 0.805 0.053 <0.001 0.702-0.909 0.786 0.670-0.882 

DYN-KOR* 0.787 0.056 <0.001 0.677-0.896 0.786 0.677-0.877 

DYN-END *   0.936 0.936 <0001 0.883-0.990 0.922 0.852-0.971 

END 0.952 0.020 <0.001 0.913-0.990 0.944 0.900-0.978 

MOR   0.754 0.053 <0.001 0.651-0.858 0.742 0.633-0.897 

KOR-MOR  0.849 0.039 <0.001 0.772-0.925 0.850 0.759-0.911 

IL6-IL10      0.947 0.023 <0.001 0.902-0.993 0.931 0.877-0.978 

IL6-IL10 and DYN-END 0.972 0.014 <0.001 0.944-1.000 0.972 0.932-0.994 
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