
  

 

Article 1 

The Validity of a Mixed Reality-based Automated 2 

Functional Mobility Assessment 3 

Ruopeng Sun 1, *, Roberto G. Aldunate 1 and Jacob J Sosnoff 1 4 
1 Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign; 5 

rusun@illinois.edu, aldunate@illinois.edu, jsosnoff@illinois.edu; 6 
* Correspondence: rusun@illinois.edu; 7 

 8 

Abstract: Functional mobility assessments (i.e. Timed Up and Go) are commonly used clinical tools 9 
for mobility and fall risk screening in the aging population. In this work, we proposed a new Mixed 10 
Reality (MR)-based assessment that utilized a Microsoft HoloLensTM headset to automatically lead 11 
and track the performance of functional mobility tests, and subsequently evaluated its validity in 12 
comparison with reference inertial sensors. Twenty-two healthy adults (10 older, 12 young) 13 
participated in this study. An automated functional mobility assessment app was developed based 14 
on the HoloLens platform. Mobility performance was recorded with the headset built-in sensor and 15 
validated with reference inertial sensor (Opal, APDM) taped on the headset and lower back. Results 16 
indicate vertical kinematic measures by HoloLens was in good agreement with the reference sensor 17 
(Normalized RMSE ~ 10%). Additionally, the HoloLens-based test completion time was in perfect 18 
agreement with clinical standard stopwatch measure. Overall, our preliminary investigation 19 
indicates that it is possible to use an MR headset to automatically guide users to complete common 20 
mobility tests with good measurement accuracy, thus it has great potential to provide objective and 21 
efficient sensor-based mobility assessment.  22 

Keywords: Mixed Reality Headset; Mobility Assessment; Wearable Sensor; Fall Risk; Aging   23 
 24 

1. Introduction 25 
Falls are the leading cause of injury related death in older adults [1]. Over 1 in 4 older adults will 26 

experience a fall in the next year and a significant portion of those that fall will suffer an injury [2], 27 
resulting in more than $50 billion annual medical costs [3]. Moreover, although most falls do not end 28 
in death or result in significant physical injury, the psychological impact of a fall, such as fear of 29 
falling, loss of confidence, often results in anxiety and depression that further decreased quality of 30 
life [4]. The risk of falling increase with aging due to multiple risk factors, such as deficits in vision, 31 
cognition, muscle strength and mobility [1]. Given the frequency and severe consequences of falls, 32 
there is a critical need for early and regular monitoring on individual’s fall risk to reduce falls and 33 
fall-related injuries. 34 

Indeed, the American Geriatrics Society (AGS) and the Centers for Disease Control and 35 
Prevention (CDC) recommends annual fall risk screening for older adults [5, 6]. The most commonly 36 
used fall risk screening tests include functional mobility tests such as the five time sit to stand test 37 
(STS) [7] and timed up and go test (TUG) [8]. Both tests are valid and reliable clinical tests focusing 38 
on assessing lower-limb muscle strength and mobility, which are both critical factors to the overall 39 
risk of falling.  The STS is a clinical test that asks participants to stand up and sit down from a chair 40 
five times as quickly as possible without using the armrest. Whereas the TUG test requires participant 41 
stand up from a chair, walks 3m at normal pace, turn around and return to the chair.  42 

Even though such standardized tests are relatively easy to conduct, it is still underutilized and 43 
not routinely integrated into clinical practice. Partially due to clinicians’ time constraints and 44 
competing medical priorities, lack of access to lab-grade advanced testing equipment (such as motion 45 
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capture device, force platform), as well as lack of clinical expertise [9], thus limiting access to fall risk 46 
screening in the community dwelling older adults. Consequently, older adults remain unaware of 47 
their individual fall risk, appropriate fall prevention approaches and at elevated risk of falls. 48 

With the recent advancement in sensing technology, sensor-based fall risk assessment that can 49 
efficiently capture and analyze quantitative mobility data have received a growing interest for its 50 
portability, accessibility and inexpensiveness [9, 10]. More specifically, the use of wearable sensors 51 
(inertial measurement unit, IMU) for mobility-related tracking has been the focus of these work, in 52 
which miniature accelerometers and/or gyroscopes were used to quantify movement 53 
pattern/abnormality by various time and frequency parameters [9, 11].  54 

Two recent systematic reviews on sensor-based fall risk assessment [9, 12] identified over 50 55 
investigations using IMUs for fall risk assessment in older adults. This body of literature highlights 56 
that sensors are capable of accurately quantifying mobility and capable of distinctive in identifying 57 
mobility impairment in high fall risk individuals. Overall it is concluded that wearable sensors are a 58 
viable technology for fall risk assessment. It is worth noting that in most investigations, IMU sensor(s) 59 
was attached to lower back and/or lower limb as stand-alone recording device, and still required 60 
additional personnel to guide the wearer through the assessment protocols.  61 

An alternative approach to further improve the efficiency of sensor-based assessment is to offer 62 
direct technology interaction with the intended users, such as deliver demonstrations and 63 
instructions, and receive user inputs. Such a system would be able to provide an automated and self-64 
guided assessment system that requires no additional personnel. To achieve this goal, an ideal device 65 
should be able to communicate with the wearer with both visual and auditory prompt, and allow 66 
user input through natural interactions (gesture, voice, gaze, etc.). Indeed, recent research has 67 
highlighted that smartphone and tablets can provide valid and reliable fall risk assessment to older 68 
adults [13, 14].  69 

Mixed reality head-mounted display (HMD, e.g. Microsoft HoloLens, Fig.1a) systems are also 70 
uniquely fitted for technology-based fall risk assessment. For instance, the HoloLens uses a 71 
transparent display with light projector to provide holograms on the lenses in front of user’s eye that 72 
blend the digital display with physical environments [15]. It contains multiple sensors to scan the 73 
user’s environment which enables the holograms to be placed at a specific location in real world [15]. 74 
By using such device in mobility assessment, the user can receive instructions and visual 75 
demonstration, naturally interact with the virtual display through voice command, gesture control 76 
and gaze, and complete mobility tests with full visibility of the surrounding environments. In 77 
addition, the embedded IMU and depth sensor can be used to track the user’s head movement during 78 
balance and mobility tests. Although less commonly used than sensors mounted at lower limb and 79 
lower back for mobility assessment, head movement has been used as approach for mobility 80 
evaluation, based on the notion that head movement is linked to the trunk movement as well as gait-81 
related oscillations during locomotion [16, 17]. Additionally, given that head stabilization has been 82 
shown as a critical component in maintaining upright posture [16], monitoring head movement may 83 
provide novel insights to the mobility control and fall risk evaluation. These unique features of HMD 84 
have the potential to enable older adults to complete fall risk screening intuitively and autonomously.  85 

Although this Mixed Reality Headset holds promise for enhancing the fall risk assessment in 86 
community dwelling older adult, its validity for objective mobility assessment have not been 87 
investigated. Therefore, the aim of this study is to evaluate the validity of the mixed-reality headset 88 
for automated mobility assessment in young and older adults. 89 

2. Materials and Methods 90 

2.1 Participants 91 
Twenty-two healthy adults (10 older adults -OA, 12 young adults-YA) participated in this study. 92 

The inclusion criteria for participation were age between 18-30 years or 65 years and older, able to 93 
stand 30s unaided, able to walk with or without aid, have normal or corrected to normal hearing and 94 
vision, no history of neuro-muscular or cardiovascular disease, and no history of motion sickness, 95 
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chronic neck pain or seizure-related conditions. All procedures were approved by the University of 96 
Illinois at Urbana-Champaign Institutional Review Board, and all participants completed written 97 
informed consent prior to participation. Participant testing was performed at 2 sites selected for 98 
convenience for the participants. OA were tested at an unoccupied apartment setting at a local 99 
retirement community, while YA were tested at the university laboratory setting.  100 

2.2 System Setup 101 
A customize built Universal Windows Platform application was developed under Unity (2018 102 

2.6 personal) and Visual Studio (Microsoft Visual Studio 2017), and deployed on the Microsoft 103 
HoloLens head-mounted display operating under the Windows 10 system. The HoloLens features 104 
depth cameras for environment scanning and spatial mapping, as well as IMU for position and 105 
orientation estimation [15]. The transparent visor and light projector allow user to see high-definition 106 
virtual content (hologram) over real world objects (Fig.1b). The field of view from HoloLens was 107 
estimated as 30° H and 17.5° V [15]. The system can operate as a stand-alone device that requires 108 
neither PC nor smartphone. For this project, the onscreen display was also streamed on a laptop for 109 
monitoring participant’s interaction with the system.  The HoloLens features multimodal user 110 
interaction methods, such as finger pinch, voice command, and estimated gaze fixation, etc. In order 111 
to simplify user interaction and allow intuitive control for senior user, we chose to use gaze fixation 112 
(orientation estimated) to control the interface, i.e. user will control the system by fixating their gaze 113 
on a control button for 1-2 s (Fig 1b, purple circle as gaze cursor, white blocks as control buttons. 114 
Video in Supplementary S1). Additionally, to facilitate user onboarding and ensure self-guided test 115 
completion, participant watched a standardized tutorial video on a laptop explaining how to put on, 116 
adjust and control the headset (Supplementary S2). Participants were encouraged to ask questions 117 
before putting on the headset.  Details about the user-interface design process and usability 118 
investigation will be reported in a separate publication.    119 

Figure 1. Illustration of system setup. (a) HoloLens headset; (b) Onscreen hologram instruction for 120 

Timed Up and Go test (Shaded background, video animation, green font, white control button and 121 
purple gaze cursor); (c) Illustration of participant’s starting position; (d) Reference IMU sensors 122 
placement.   123 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 10 April 2019                   doi:10.20944/preprints201904.0120.v1

Peer-reviewed version available at Sensors 2019, 19, 2183; doi:10.3390/s19092183

http://dx.doi.org/10.20944/preprints201904.0120.v1
https://doi.org/10.3390/s19092183


 4 of 12 

 

Based on the CDC fall risk assessment recommendations (Stopping Elderly Accidents, Death & 124 
Injuries - STEADI [6]) and feasibility of head-mount movement tracking, a set of valid and reliable 125 
clinical tests focusing on mobility and muscle strength were selected and integrated in the automated 126 
mobility assessment App. Muscle strength and coordination was assessed with the STS test, whereas 127 
mobility was assessed with TUG test. 128 

2.3 Test Procedure 129 
Participants completed an MR-based mobility assessment as well as a clinical fall risk 130 

assessment. During the MR-based assessment, participants were outfitted with two additional 131 
APDM Opal IMU sensors (APDM, Inc.). One was secured to the top of the HoloLens visor – denoted 132 
as HD sensor and one placed on participant’s lower back via belt – denoted as LB sensor, Fig 1d).  133 
After being fitted with the headset, participants were prompted to complete test sessions in the 134 
following order: 1) STS, 2) TUG. For each test, a video recording with standard demonstration and 135 
instruction was displayed on the headset (Fig. 1b, center display and text instruction). Upon video 136 
completion, participants were provided the option to proceed to test or repeat the demonstration 137 
(Fig. 1b, white blocks). During the test, a 5s count down with audio tone and text of the instruction 138 
was displayed. Test completion button was prompted up after a 15s delay. After test completion, 139 
participants had options to repeat the test if not satisfied with their performance. To ensure identical 140 
test setup between participants, markings were placed on the ground (standing feet placement, chair 141 
location and 3 m walking path). Research personnel offered safety spotting and minimal interaction 142 
with the participant, unless asked by the participant to help. Participant who made errors during test 143 
(i.e. false start, incorrect number of repetitions, etc.) were asked to repeat the test. 144 

After completion of the self-guided mobility assessment, the physiological profile assessment 145 
(PPA) [18] was administered by trained research personnel to evaluate the overall fall risk. The 146 
Montreal Cognitive Assessment (MoCA) [19] and the Activity-specific Balance Confidence (ABC) 147 
scale [20] were also administered to assess participant’s cognitive function and balance confidence, 148 
respectively.  The MoCA test is a validated screening tool for detecting cognitive impairment, 149 
whereas the ABC scale is a validated self-reported questionnaire of confidence in performing various 150 
daily activities without losing balance. The PPA consists of a set of comprehensive tests assessing 151 
vision, lower limb sensation, muscle strength, reaction time and balance that are associated with risk 152 
of falling [18]. 153 

2.4 Data Processing 154 
Due to HoloLens API setup on sensor data access, raw accelerometry/gyroscope data was not 155 

accessible, thus only the processed head position and orientation was available for recording at a 156 
dynamic sampling rate at/around 30Hz (variation due to windows internal clock frequency). Such 157 
data was processed by its internal proprietary sensor fusion algorithm (IMU, depth and 158 
environmental cameras) that output the 3D head spatial coordinate and gravity aligned orientation. 159 
Acceleration and gyroscope data from the Opal sensor was recorded at 128Hz, and gravity corrected 160 
after orientation estimation using an extended Kalman filter provided by APDM. Both HoloLens and 161 
Opal data was segmented and synced to each task, resampled at 30 Hz and low-pass filtered (4th 162 
order Butterworth) with cutoff frequency at 5 Hz [21-23]. 163 

For STS and TUG tests, the gravity corrected vertical (VT) acceleration data from Opal sensors 164 
were  double integrated over time to obtain the vertical displacement, with drift and integration 165 
error corrected using 1) a high pass filter  (4th order Butterworth, 0.1Hz) [23]  and 2) drift 166 
correction under the assumption that participants reach the same height when they make contact 167 
with the chair (zero displacement update-ZDU) [24]. The processed VT displacement from HoloLens 168 
and Opal sensors was then time-aligned using cross correlation analysis (calculating the similarity 169 
and time lag between signal). Finally, time-aligned VT kinematic data (displacement, velocity, and 170 
acceleration) profile were derived from Opal and HoloLens using numerical integration and 171 
differentiation accordingly. The VT data were also used to calculate the following performance 172 
features: 1) STS duration: time between the initiation of first chair rising and the completion of last 173 
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chair descend [21, 22]. 2) STS mean duration of the sitting and standing phase [21, 22]. 3) Maximum 174 
acceleration and velocity during STS. 4) TUG duration: time between the initiation of chair rising and 175 
the completion of chair descend. 5) Maximum acceleration and velocity during TUG. Due to 176 
significant signal drift over time in AP, ML direction using Opal sensor (see discussion), and lack of 177 
viable signal correction method, signal comparison in AP/ML direction was not performed for STS 178 
and TUG tests.  179 

Pairwise signal agreement between HoloLens, HD and LB sensors were analyzed using the 180 
normalized root mean squared error (NRMSE – RMSE divided by signal amplitude range), as well 181 
as the cross-correlation coefficient (correlation coefficient at zero lag, denoted as Xcor). The NRMSE 182 
reports the error as a ratio of the measurement range, with lower values indicates better signal 183 
agreement [25]. The Xcor measure the signal similarity of two time series, with higher value (~1) 184 
indicates better signal agreement [23].  Mean and 95% confidence interval of NRMSE and Xcor were 185 
calculated by the functional test condition (STS, TUG).  186 

STS and TUG duration derived from HoloLens measure was compared with manual stopwatch 187 
tracking using Bland-Altman limit of agreement analysis [26]. The Bland-Altman limit of agreement 188 
is a robust statistical approach to indicate the level of agreement between any two measurements. 189 
Since a high correlation between any two methods does not necessarily mean that the two methods 190 
are in good agreement, the Bland–Altman technique is utilized in many studies to investigate the 191 
presence of absolute agreement between the two technologies.  192 

For all derived mobility features from the HoloLens (STS duration, STS mean duration of the 193 
sitting and standing phase, Maximum acceleration and velocity during STS, TUG duration, 194 
Maximum acceleration and velocity during TUG), group (OA and YA) comparison was also 195 
conducted using two-tail student t-test. All data processing and statistical analysis was performed 196 
with customized MATLAB program (MathWorks, Inc.) 197 

3. Results 198 

Table 1. Participant characteristics (mean and standard deviation). * indicates significant group 199 
difference (p < 0.05) 200 

 OA n=8,6F YA n=12, 6F 

Age (yrs) * 78.2 (6.1) 24.4 (3.9) 

BMI (kg/m2) 23.9 (3.6) 24.5 (2.9) 

MoCA * 26.2 (2.3) 28.6 (1.7) 

ABC  88.8 (13.3) 96.0 (3.7) 

MET * 19.9 (1.5) 21.2 (0.6) 

RT (ms) * 257.7 (33.6) 217.5 (32.8) 

Proprio  3.0 (1.2) 3.3 (3.5) 

KneeMax (kgf) * 25.3 (9.6) 41.9 (8.5) 

AP sway (mm)  27.2 (9.8) 20.8 (10.9) 

ML sway (mm) 33.7 (18.9) 20.5 (12.3) 

PPA * 0.9 (0.7) -0.3 (0.7) 

Two older participants (82 and 91 years old, both male and have significant fall risk -PPA >2) 201 
did not complete the self-guided assessment, due to balance/mobility deficits and need for assistance 202 
in challenging conditions. Therefore, only 8 OA and 12 YA were included in data analysis. 203 
Additionally, 2 OA participants were asked to repeat the test due to performance error (false start, 204 
wrong number of sit to stand repetition, etc.). Participants’ demographic characteristics and 205 
physiological profile measured by PPA are presented in Table.1. As expected, significant difference 206 
in age, cognitive function (MoCA), contrast visual acuity (MET), reaction time, muscle strength, and 207 
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overall risk of falls were observed between OA and YA. It is worth noting only 1 of the remaining 8 208 
OA has significant fall risk (PPA > 2).  209 

Representative data traces of STS and TUG test from a young participant (27 years old, female) 210 
are illustrated in Fig 2. Vertical kinematic data comparison between HoloLens and Opal sensors using 211 
NRMSE and Xcor are presented in Table 2. Overall, data recorded from HoloLens (green line in Fig 212 
2) is in good agreement with the HD/LB sensors (red/blue line in Fig 2). In general, signal similarity 213 
as measured by the Xcor is good to excellent (0.740-0.998), with higher Xcor observed in displacement 214 
measure (0.965-0.998) in comparison to velocity (0.853-0.979) and acceleration (0.740-0.888). This 215 
finding can be explained as the displacement drift was corrected using the ZDU method, whereas 216 
velocity and acceleration signal from HD/LB sensors remain slightly affected by the 217 
integration/differential error. For STS task, signal agreement as measured by NRMSE were excellent 218 
(below 10%) for all measures except displacement comparison between HoloLens and LB sensor 219 
(11.88%). Whereas for TUG task, signal agreement was relatively low (close to 20% NRMSE for 220 
displacement comparison), likely due to ZDU drift correction only performed 1 time over the entire 221 
recording for HD/LB sensor (contrary to drift correction after each sitting cycle in STS task), resulting 222 
in more vertical displacement bias (Fig 2e). 223 

 224 
Figure 2. Sample kinematic profile from a young participant. Green denotes HoloLens, Red denotes 225 
HD sensor, Blue denotes LB sensor. (a, b) VT acceleration profile from STS and TUG task; (c, d) VT 226 
velocity profile from STS and TUG task; (e, f) VT displacement profile from STS and TUG task.  227 
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Table 2. Kinematic measurement (VT acceleration, velocity, and displacement) agreement between 228 
HoloLens and HD/LB sensors. NRMSE – Normalized Root Mean Squared Error. Xcor – Cross 229 
Correlation Coefficient. All values reported as mean and 95% confidence interval. 230 

HoloLens vs HD 

 A V D 

STS NRMSE 9.60 (8.70,10.51) 4.83(4.22,5.45) 5.58 (4.29, 6.87) 

Xcor 0.888(0.872,0.904) 0.979(0.975,0.983) 0.993 (0.989 0.997) 

TUG NRMSE 10.53 (9.60,11.46) 6.16 (5.57,6.76) 19.56 (17.24,21.87) 

Xcor 0.802 (0.770,0.834) 0.926(0.918,0.934) 0.998 (0.997 0.999) 

HoloLens vs LB 

 A V D 

STS NRMSE 9.77 (8.29,11.25) 8.55 (6.98,10.12) 11.88 (9.72,14.03) 

Xcor 0.765 (0.704,0.827) 0.900(0.851,0.949) 0.965 (0.949,0.982) 

TUG NRMSE 8.48 (7.56,9.41) 7.68 (7.05,8.31) 14.07 (11.86,16.28) 

Xcor 0.740 (0.695,0.786) 0.853 (0.835,0.872) 0.986 (0.978 0.993) 

Figure 3a and 3b shows the Bland-Altman plot for the agreement in STS and TUG completion 231 
time between HoloLens and manual stopwatch recording. The absolute difference between each data 232 
pair is plotted against their mean. The two horizontal lines represent the 95% limits of agreement 233 
(range of error) calculated as 1.96 times the standard deviation from the mean differences between 234 
two methods. The figure illustrates that the mean difference between two methods is less than 0.02 s 235 
for STS and 0.13 s for TUG measure, with range of error within ± 0.8s. 236 

Figure 2. Bland-Altman plot of sensor-derived and stopwatch timed task completion time. (a) 237 
STS completion time; (b) TUG completion time.  238 

  239 
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Table 3 shows the group comparison (OA vs YA) in functional performance outcomes derived 240 
from the HoloLens measures. Overall, there is no significant difference between groups, with 241 
marginal significant difference observed in max velocity in STS and TUG task, reflecting the healthy 242 
nature of the OA samples (only 1 of 8 participants who completed the assessment have significant 243 
fall risk).   244 

Table 3. Group differences of key outcome measures (mean and standard deviation). 245 

Task Outcome Measures OA YA p 

STS Total Time (s) 12.22 (3.61) 12.08 (1.99) 0.922 

Mean Stand Time (s) 0.52 (0.18) 0.64 (0.22) 0.198 

Mean Sitting Time (s) 1.15 (0.55) 1.03 (0.23) 0.575 

Max Acceleration (m/s2) 4.75 (1.81) 6.22 (2.03) 0.108 

Max Velocity (m/s) 1.02 (0.16) 1.20 (0.28) 0.087 

TUG Total Time (s) 10.61 (2.37) 10.56 (1.00) 0.96 

Max Acceleration (m/s2) 3.98 (0.92) 3.97 (0.62) 0.961 

Max Velocity (m/s) 0.69 (0.10) 0.81 (0.15) 0.059 
 246 

4. Discussion 247 
Mixed Reality headset holds great promises for enabling portable, self-guided mobility 248 

assessment that can be undertaken more regularly without clinician oversight, and subsequently 249 
increase the efficiency of current healthcare practice. This investigation is the first to evaluate the 250 
validity of MR headset (HoloLens) for mobility assessment in young and older adults. Given the 251 
unique advantage of multi-modal user interaction methods(visual/audio/gesture/gaze), this device 252 
enables users to initiate and complete a set of valid mobility assessment with step by step guidance, 253 
and record head movement as a mean for objective measure of performance. 254 

Overall, our preliminary investigation indicates that it is possible to use a mixed reality headset 255 
to automatically guide both young and old user to complete common functional mobility tests (TUG 256 
and STS) with good measurement accuracy in comparison to industry standard inertial sensors. More 257 
specifically, by comparing the vertical kinematic measures (displacement, velocity, and acceleration) 258 
derived from the HoloLens and Opal sensors, we found good to excellent signal agreement for the 259 
majority of STS and TUG measures (Xcor 0.74-0.99, NRMSE ~10%), with better signal agreement 260 
observed in STS task, as each sit-to-stand cycle allows for displacement calibration adjustment (Zero 261 
Displacement Update) [24]. For sensor signal comparison in TUG task, however, due to the 262 
integration and drift error associated with IMU sensor and lack of viable calibration during the 263 
walking period (10s or longer), the vertical displacement derived from IMU sensors was biased in 264 
comparison to HoloLens output (Fig.2e), resulting unsatisfactory NRMSE measures (14.07-19.56%). 265 
Moreover, because of HoloLens utilized both depth sensor and IMU sensor to derive the 266 
displacement measure (the depth sensor on HoloLens is similar to the Kinect sensor, which has been 267 
extensively validated for accuracy in kinematic measure [27, 28]), we would expect the HoloLens 268 
output in displacement measure is more trustworthy than IMU derived displacement measure. 269 
Although AP displacement comparison between sensors was not analyzed statistically (due to lack 270 
of viable drift correction method for IMU sensors), our exploratory investigation found that only 271 
HoloLens AP displacement measure matches the standard 3m walking distance utilized in the TUG, 272 
whereas the IMU derived AP displacement measure severely underestimate the walking distance 273 
(evident by the displacement measure in AP direction as shown in Fig. 3). 274 
  275 
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Figure 3. Sample AP displacement in TUG task. Red denotes HD sensor, Blue denotes LB sensor. 276 
Note only HoloLens AP displacement measure correctly match the 3m walking path utilized in 277 
TUG task.  278 

Additionally, the sensor-derived completion time of STS and TUG was also compared with 279 
current gold standard manual stopwatch method using Bland-Altman agreement plot. Excellent 280 
agreement with stopwatch timing was found for both STS and TUG completion time, with HoloLens 281 
measure demonstrate less than 0.2s in measurement bias and less than 0.8s in range of error).  282 

Because of the relatively healthy nature of the OA participant who completed the test without 283 
any assist (only 1 OA participant has significant fall risk, PPA >2), no group difference for sensor-284 
derived performance measure was found between YA and OA, with only marginal difference 285 
observed in maximum ascending velocity in STS and TUG task. The two excluded OA participants 286 
who have significant fall risk, however, could not complete the STS and TUG task without requiring 287 
physical assist, indicating the stand-alone HoloLens device and self-guided functional mobility tests 288 
may not be suitable for those who already have severe mobility deficits.  289 

We acknowledge certain limitations for this investigation, most of which related to the 290 
pioneering use a novel technology. First, due to the lack of optical motion tracking equipment for 291 
portable/community testing, industry standard IMUs were utilized for this validation study. 292 
Therefore, due to IMU’s inherent integration/drift error and the limited data access to HoloLens 293 
displacement data, horizontal (AP/ML) kinematic measurement comparison was not conducted.  294 
Secondly, the relatively small sample size, and healthy nature of OA participants who can complete 295 
the functional tests without any assist, preclude the investigation to detect the diagnostic power of 296 
using head-mount device for fall risk/mobility deficit screening in older adults. Therefore, future 297 
studies should incorporate optical motion tracking and larger heterogeneous samples to investigate 298 
the use of HoloLens for fall risk screening.  299 
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Appendix A 311 
List of abbreviations 312 
IMU – Inertial Measurement Unit 313 
HMD – Head-mounted Display 314 
MR – Mixed Reality 315 
MoCA- Montreal Cognitive Assessment,  316 
ABC- Activity-specific Balance Scale 317 
STS - Five time Sit to Stand test 318 
TUG – Timed Up and Go test 319 
PPA – Physiological Profile Assessment 320 
RT – Reaction Time 321 
MET – Melbourne Edge Test 322 
Proprio- Proprioception  323 
KneeMax – Maximal isometric knee extension force 324 
AP – Anterior Posterior 325 
ML – Medial Lateral 326 
VT - Vertical 327 
OA - Older Adults 328 
YA – Young Adults 329 
HD – Head IMU sensor 330 
LB – Lower Back IMU sensor 331 
A – Acceleration 332 
V – Velocity 333 
D – Displacement 334 
NRMSE – Normalized Root Mean Squared Error 335 
Xcor – Cross Correlation Coefficient 336 
ZDU – Zero Displacement Update 337 

  338 
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