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9 Abstract: Functional mobility assessments (i.e. Timed Up and Go) are commonly used clinical tools
10 for mobility and fall risk screening in the aging population. In this work, we proposed a new Mixed
11 Reality (MR)-based assessment that utilized a Microsoft HoloLens™ headset to automatically lead
12 and track the performance of functional mobility tests, and subsequently evaluated its validity in
13 comparison with reference inertial sensors. Twenty-two healthy adults (10 older, 12 young)
14 participated in this study. An automated functional mobility assessment app was developed based
15 on the HoloLens platform. Mobility performance was recorded with the headset built-in sensor and
16 validated with reference inertial sensor (Opal, APDM) taped on the headset and lower back. Results
17 indicate vertical kinematic measures by HoloLens was in good agreement with the reference sensor
18 (Normalized RMSE ~ 10%). Additionally, the HoloLens-based test completion time was in perfect
19 agreement with clinical standard stopwatch measure. Overall, our preliminary investigation
20 indicates that it is possible to use an MR headset to automatically guide users to complete common
21 mobility tests with good measurement accuracy, thus it has great potential to provide objective and
22 efficient sensor-based mobility assessment.

23 Keywords: Mixed Reality Headset; Mobility Assessment; Wearable Sensor; Fall Risk; Aging
24

25 1. Introduction

26 Falls are the leading cause of injury related death in older adults [1]. Over 1 in 4 older adults will
27  experience a fall in the next year and a significant portion of those that fall will suffer an injury [2],
28 resulting in more than $50 billion annual medical costs [3]. Moreover, although most falls do not end
29  in death or result in significant physical injury, the psychological impact of a fall, such as fear of
30  falling, loss of confidence, often results in anxiety and depression that further decreased quality of
31  life [4]. The risk of falling increase with aging due to multiple risk factors, such as deficits in vision,
32 cognition, muscle strength and mobility [1]. Given the frequency and severe consequences of falls,
33 there is a critical need for early and regular monitoring on individual’s fall risk to reduce falls and
34 fall-related injuries.

35 Indeed, the American Geriatrics Society (AGS) and the Centers for Disease Control and
36  Prevention (CDC) recommends annual fall risk screening for older adults [5, 6]. The most commonly
37  used fall risk screening tests include functional mobility tests such as the five time sit to stand test
38  (STS) [7] and timed up and go test (TUG) [8]. Both tests are valid and reliable clinical tests focusing
39  on assessing lower-limb muscle strength and mobility, which are both critical factors to the overall
40  risk of falling. The STS s a clinical test that asks participants to stand up and sit down from a chair
41  five times as quickly as possible without using the armrest. Whereas the TUG test requires participant
42 stand up from a chair, walks 3m at normal pace, turn around and return to the chair.

43 Even though such standardized tests are relatively easy to conduct, it is still underutilized and
44 not routinely integrated into clinical practice. Partially due to clinicians’ time constraints and
45  competing medical priorities, lack of access to lab-grade advanced testing equipment (such as motion
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capture device, force platform), as well as lack of clinical expertise [9], thus limiting access to fall risk
screening in the community dwelling older adults. Consequently, older adults remain unaware of
their individual fall risk, appropriate fall prevention approaches and at elevated risk of falls.

With the recent advancement in sensing technology, sensor-based fall risk assessment that can
efficiently capture and analyze quantitative mobility data have received a growing interest for its
portability, accessibility and inexpensiveness [9, 10]. More specifically, the use of wearable sensors
(inertial measurement unit, IMU) for mobility-related tracking has been the focus of these work, in
which miniature accelerometers and/or gyroscopes were used to quantify movement
pattern/abnormality by various time and frequency parameters [9, 11].

Two recent systematic reviews on sensor-based fall risk assessment [9, 12] identified over 50
investigations using IMUs for fall risk assessment in older adults. This body of literature highlights
that sensors are capable of accurately quantifying mobility and capable of distinctive in identifying
mobility impairment in high fall risk individuals. Overall it is concluded that wearable sensors are a
viable technology for fall risk assessment. It is worth noting that in most investigations, IMU sensor(s)
was attached to lower back and/or lower limb as stand-alone recording device, and still required
additional personnel to guide the wearer through the assessment protocols.

An alternative approach to further improve the efficiency of sensor-based assessment is to offer
direct technology interaction with the intended users, such as deliver demonstrations and
instructions, and receive user inputs. Such a system would be able to provide an automated and self-
guided assessment system that requires no additional personnel. To achieve this goal, an ideal device
should be able to communicate with the wearer with both visual and auditory prompt, and allow
user input through natural interactions (gesture, voice, gaze, etc.). Indeed, recent research has
highlighted that smartphone and tablets can provide valid and reliable fall risk assessment to older
adults [13, 14].

Mixed reality head-mounted display (HMD, e.g. Microsoft HoloLens, Fig.1a) systems are also
uniquely fitted for technology-based fall risk assessment. For instance, the HoloLens uses a
transparent display with light projector to provide holograms on the lenses in front of user’s eye that
blend the digital display with physical environments [15]. It contains multiple sensors to scan the
user’s environment which enables the holograms to be placed at a specific location in real world [15].
By using such device in mobility assessment, the user can receive instructions and visual
demonstration, naturally interact with the virtual display through voice command, gesture control
and gaze, and complete mobility tests with full visibility of the surrounding environments. In
addition, the embedded IMU and depth sensor can be used to track the user’s head movement during
balance and mobility tests. Although less commonly used than sensors mounted at lower limb and
lower back for mobility assessment, head movement has been used as approach for mobility
evaluation, based on the notion that head movement is linked to the trunk movement as well as gait-
related oscillations during locomotion [16, 17]. Additionally, given that head stabilization has been
shown as a critical component in maintaining upright posture [16], monitoring head movement may
provide novel insights to the mobility control and fall risk evaluation. These unique features of HMD
have the potential to enable older adults to complete fall risk screening intuitively and autonomously.

Although this Mixed Reality Headset holds promise for enhancing the fall risk assessment in
community dwelling older adult, its validity for objective mobility assessment have not been
investigated. Therefore, the aim of this study is to evaluate the validity of the mixed-reality headset
for automated mobility assessment in young and older adults.

2. Materials and Methods

2.1 Participants

Twenty-two healthy adults (10 older adults -OA, 12 young adults-YA) participated in this study.
The inclusion criteria for participation were age between 18-30 years or 65 years and older, able to
stand 30s unaided, able to walk with or without aid, have normal or corrected to normal hearing and
vision, no history of neuro-muscular or cardiovascular disease, and no history of motion sickness,
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96  chronic neck pain or seizure-related conditions. All procedures were approved by the University of

97  Ilinois at Urbana-Champaign Institutional Review Board, and all participants completed written

98  informed consent prior to participation. Participant testing was performed at 2 sites selected for

99  convenience for the participants. OA were tested at an unoccupied apartment setting at a local
100  retirement community, while YA were tested at the university laboratory setting.

101 2.2 System Setup

102 A customize built Universal Windows Platform application was developed under Unity (2018
103 2.6 personal) and Visual Studio (Microsoft Visual Studio 2017), and deployed on the Microsoft
104  HoloLens head-mounted display operating under the Windows 10 system. The HoloLens features
105  depth cameras for environment scanning and spatial mapping, as well as IMU for position and
106  orientation estimation [15]. The transparent visor and light projector allow user to see high-definition
107  virtual content (hologram) over real world objects (Fig.1b). The field of view from HoloLens was
108  estimated as 30° H and 17.5° V [15]. The system can operate as a stand-alone device that requires
109 neither PC nor smartphone. For this project, the onscreen display was also streamed on a laptop for
110 monitoring participant’s interaction with the system. The HoloLens features multimodal user
111 interaction methods, such as finger pinch, voice command, and estimated gaze fixation, etc. In order
112 to simplify user interaction and allow intuitive control for senior user, we chose to use gaze fixation
113 (orientation estimated) to control the interface, i.e. user will control the system by fixating their gaze
114 on a control button for 1-2 s (Fig 1b, purple circle as gaze cursor, white blocks as control buttons.
115  Video in Supplementary S1). Additionally, to facilitate user onboarding and ensure self-guided test
116  completion, participant watched a standardized tutorial video on a laptop explaining how to put on,
117  adjust and control the headset (Supplementary S2). Participants were encouraged to ask questions
118  before putting on the headset. Details about the user-interface design process and usability
119 investigation will be reported in a separate publication.

120 Figure 1. Illustration of system setup. (a) HoloLens headset; (b) Onscreen hologram instruction for

OPAL sensors
on lower back and
head
121 Timed Up and Go test (Shaded background, video animation, green font, white control button and
122 purple gaze cursor); (c) Illustration of participant’s starting position; (d) Reference IMU sensors

123 placement.
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124 Based on the CDC fall risk assessment recommendations (Stopping Elderly Accidents, Death &
125 Injuries - STEADI [6]) and feasibility of head-mount movement tracking, a set of valid and reliable
126 clinical tests focusing on mobility and muscle strength were selected and integrated in the automated
127 mobility assessment App. Muscle strength and coordination was assessed with the STS test, whereas
128  mobility was assessed with TUG test.

129 2.3 Test Procedure

130 Participants completed an MR-based mobility assessment as well as a clinical fall risk
131  assessment. During the MR-based assessment, participants were outfitted with two additional
132 APDM Opal IMU sensors (APDM, Inc.). One was secured to the top of the HoloLens visor — denoted
133 as HD sensor and one placed on participant’s lower back via belt — denoted as LB sensor, Fig 1d).
134 After being fitted with the headset, participants were prompted to complete test sessions in the
135  following order: 1) STS, 2) TUG. For each test, a video recording with standard demonstration and
136  instruction was displayed on the headset (Fig. 1b, center display and text instruction). Upon video
137  completion, participants were provided the option to proceed to test or repeat the demonstration
138  (Fig. 1b, white blocks). During the test, a 5s count down with audio tone and text of the instruction
139 was displayed. Test completion button was prompted up after a 15s delay. After test completion,
140  participants had options to repeat the test if not satisfied with their performance. To ensure identical
141 test setup between participants, markings were placed on the ground (standing feet placement, chair
142 location and 3 m walking path). Research personnel offered safety spotting and minimal interaction
143 with the participant, unless asked by the participant to help. Participant who made errors during test
144 (i.e. false start, incorrect number of repetitions, etc.) were asked to repeat the test.

145 After completion of the self-guided mobility assessment, the physiological profile assessment
146  (PPA) [18] was administered by trained research personnel to evaluate the overall fall risk. The
147  Montreal Cognitive Assessment (MoCA) [19] and the Activity-specific Balance Confidence (ABC)
148  scale [20] were also administered to assess participant’s cognitive function and balance confidence,
149 respectively. The MoCA test is a validated screening tool for detecting cognitive impairment,
150  whereas the ABC scale is a validated self-reported questionnaire of confidence in performing various
151  daily activities without losing balance. The PPA consists of a set of comprehensive tests assessing
152 vision, lower limb sensation, muscle strength, reaction time and balance that are associated with risk
153 of falling [18].

154 2.4 Data Processing

155 Due to HoloLens API setup on sensor data access, raw accelerometry/gyroscope data was not
156  accessible, thus only the processed head position and orientation was available for recording at a
157  dynamic sampling rate at/around 30Hz (variation due to windows internal clock frequency). Such
158  data was processed by its internal proprietary sensor fusion algorithm (IMU, depth and
159  environmental cameras) that output the 3D head spatial coordinate and gravity aligned orientation.
160  Acceleration and gyroscope data from the Opal sensor was recorded at 128Hz, and gravity corrected
161  after orientation estimation using an extended Kalman filter provided by APDM. Both HoloLens and
162  Opal data was segmented and synced to each task, resampled at 30 Hz and low-pass filtered (4th
163 order Butterworth) with cutoff frequency at 5 Hz [21-23].

164 For STS and TUG tests, the gravity corrected vertical (VT) acceleration data from Opal sensors
165  were double integrated over time to obtain the vertical displacement, with drift and integration
166  error corrected using 1) a high pass filter (4th order Butterworth, 0.1Hz) [23] and 2) drift
167  correction under the assumption that participants reach the same height when they make contact
168  with the chair (zero displacement update-ZDU) [24]. The processed VT displacement from HoloLens
169  and Opal sensors was then time-aligned using cross correlation analysis (calculating the similarity
170  and time lag between signal). Finally, time-aligned VT kinematic data (displacement, velocity, and
171 acceleration) profile were derived from Opal and HoloLens using numerical integration and
172 differentiation accordingly. The VT data were also used to calculate the following performance
173 features: 1) STS duration: time between the initiation of first chair rising and the completion of last
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174 chair descend [21, 22]. 2) STS mean duration of the sitting and standing phase [21, 22]. 3) Maximum
175  acceleration and velocity during STS. 4) TUG duration: time between the initiation of chair rising and
176  the completion of chair descend. 5) Maximum acceleration and velocity during TUG. Due to
177  significant signal drift over time in AP, ML direction using Opal sensor (see discussion), and lack of
178  viable signal correction method, signal comparison in AP/ML direction was not performed for STS
179  and TUG tests.

180 Pairwise signal agreement between HoloLens, HD and LB sensors were analyzed using the
181  normalized root mean squared error (NRMSE — RMSE divided by signal amplitude range), as well
182  as the cross-correlation coefficient (correlation coefficient at zero lag, denoted as Xcor). The NRMSE
183  reports the error as a ratio of the measurement range, with lower values indicates better signal
184  agreement [25]. The Xcor measure the signal similarity of two time series, with higher value (~1)
185  indicates better signal agreement [23]. Mean and 95% confidence interval of NRMSE and Xcor were
186  calculated by the functional test condition (STS, TUG).

187 STS and TUG duration derived from HoloLens measure was compared with manual stopwatch
188 tracking using Bland-Altman limit of agreement analysis [26]. The Bland-Altman limit of agreement
189 s a robust statistical approach to indicate the level of agreement between any two measurements.
190  Since a high correlation between any two methods does not necessarily mean that the two methods
191  are in good agreement, the Bland-Altman technique is utilized in many studies to investigate the
192 presence of absolute agreement between the two technologies.

193 For all derived mobility features from the HoloLens (STS duration, STS mean duration of the
194  sitting and standing phase, Maximum acceleration and velocity during STS, TUG duration,
195  Maximum acceleration and velocity during TUG), group (OA and YA) comparison was also
196  conducted using two-tail student t-test. All data processing and statistical analysis was performed
197  with customized MATLAB program (MathWorks, Inc.)

198 3. Results

199 Table 1. Participant characteristics (mean and standard deviation). * indicates significant group
200 difference (p <0.05)
OA n=8,6F YA n=12, 6F

Age (yrs) * 78.2 (6.1) 24.4 (3.9)

BMI (kg/m?) 23.9 (3.6) 24.5(2.9)

MoCA * 26.2 (2.3) 28.6 (1.7)

ABC 88.8 (13.3) 96.0 (3.7)

MET * 19.9 (1.5) 21.2 (0.6)

RT (ms) * 257.7 (33.6) 217.5 (32.8)

Proprio 3.0(1.2) 3.3(3.5)

KneeMax (kgf) * 25.3 (9.6) 41.9 (8.5)

AP sway (mm) 27.2(9.8) 20.8 (10.9)

ML sway (mm) 33.7 (18.9) 20.5 (12.3)

PPA * 0.9 (0.7) -0.3 (0.7)
201 Two older participants (82 and 91 years old, both male and have significant fall risk -PPA >2)

202 did not complete the self-guided assessment, due to balance/mobility deficits and need for assistance
203  in challenging conditions. Therefore, only 8 OA and 12 YA were included in data analysis.
204  Additionally, 2 OA participants were asked to repeat the test due to performance error (false start,
205  wrong number of sit to stand repetition, etc.). Participants’ demographic characteristics and
206  physiological profile measured by PPA are presented in Table.1. As expected, significant difference
207  in age, cognitive function (MoCA), contrast visual acuity (MET), reaction time, muscle strength, and


http://dx.doi.org/10.20944/preprints201904.0120.v1
https://doi.org/10.3390/s19092183

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 10 April 2019 d0i:10.20944/preprints201904.0120.v1

6 of 12

208  overall risk of falls were observed between OA and YA. It is worth noting only 1 of the remaining 8
209  OA has significant fall risk (PPA > 2).
210 Representative data traces of STS and TUG test from a young participant (27 years old, female)
211  areillustrated in Fig 2. Vertical kinematic data comparison between HoloLens and Opal sensors using
212 NRMSE and Xcor are presented in Table 2. Overall, data recorded from HoloLens (green line in Fig
213 2)isin good agreement with the HD/LB sensors (red/blue line in Fig 2). In general, signal similarity
214  asmeasured by the Xcor is good to excellent (0.740-0.998), with higher Xcor observed in displacement
215 measure (0.965-0.998) in comparison to velocity (0.853-0.979) and acceleration (0.740-0.888). This
216  finding can be explained as the displacement drift was corrected using the ZDU method, whereas
217  velocity and acceleration signal from HD/LB sensors remain slightly affected by the
218  integration/differential error. For STS task, signal agreement as measured by NRMSE were excellent
219  (below 10%) for all measures except displacement comparison between HoloLens and LB sensor
220 (11.88%). Whereas for TUG task, signal agreement was relatively low (close to 20% NRMSE for
221  displacement comparison), likely due to ZDU drift correction only performed 1 time over the entire
222 recording for HD/LB sensor (contrary to drift correction after each sitting cycle in STS task), resulting
223 in more vertical displacement bias (Fig 2e).

HoloLens HD LB
TUG

STS

2
acceleration [mis']
acceleration [mis]

VT acceleration

welocity [m/s]

VT velogity
elocity [m/s]
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225 Figure 2. Sample kinematic profile from a young participant. Green denotes HoloLens, Red denotes
226 HD sensor, Blue denotes LB sensor. (a, b) VT acceleration profile from STS and TUG task; (¢, d) VT

227 velocity profile from STS and TUG task; (e, f) VT displacement profile from STS and TUG task.
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228 Table 2. Kinematic measurement (VT acceleration, velocity, and displacement) agreement between
229 HoloLens and HD/LB sensors. NRMSE — Normalized Root Mean Squared Error. Xcor — Cross
230 Correlation Coefficient. All values reported as mean and 95% confidence interval.
HoloLens vs HD
A \4 D
STS | NRMSE 9.60 (8.70,10.51) 4.83(4.22,5.45) 5.58 (4.29, 6.87)
Xcor 0.888(0.872,0.904) 0.979(0.975,0.983) 0.993 (0.989 0.997)
TUG NRMSE 10.53 (9.60,11.46) 6.16 (5.57,6.76) 19.56 (17.24,21.87)
Xcor 0.802 (0.770,0.834) 0.926(0.918,0.934) 0.998 (0.997 0.999)
HoloLens vs LB
A \4 D
STS NRMSE 9.77 (8.29,11.25) 8.55 (6.98,10.12) 11.88 (9.72,14.03)
Xcor 0.765 (0.704,0.827) 0.900(0.851,0.949) 0.965 (0.949,0.982)
TUG NRMSE 8.48 (7.56,9.41) 7.68 (7.05,8.31) 14.07 (11.86,16.28)
Xcor 0.740 (0.695,0.786) 0.853 (0.835,0.872) 0.986 (0.978 0.993)
231 Figure 3a and 3b shows the Bland-Altman plot for the agreement in STS and TUG completion
232 time between HoloLens and manual stopwatch recording. The absolute difference between each data
233 pair is plotted against their mean. The two horizontal lines represent the 95% limits of agreement
234 (range of error) calculated as 1.96 times the standard deviation from the mean differences between
235  two methods. The figure illustrates that the mean difference between two methods is less than 0.02 s
236  for STS and 0.13 s for TUG measure, with range of error within + 0.8s.
a) Completion time STS b) Completion time TUG
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237 Figure 2. Bland-Altman plot of sensor-derived and stopwatch timed task completion time. (a)
238  STS completion time; (b) TUG completion time.

239
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240 Table 3 shows the group comparison (OA vs YA) in functional performance outcomes derived
241  from the HoloLens measures. Overall, there is no significant difference between groups, with
242 marginal significant difference observed in max velocity in STS and TUG task, reflecting the healthy
243 nature of the OA samples (only 1 of 8 participants who completed the assessment have significant
244 fall risk).

245 Table 3. Group differences of key outcome measures (mean and standard deviation).
Task | Outcome Measures OA YA p
STS | Total Time (s) 12.22 (3.61) | 12.08 (1.99) 0.922
Mean Stand Time (s) 0.52 (0.18) | 0.64 (0.22) 0.198
Mean Sitting Time (s) 1.15(0.55) | 1.03 (0.23) 0.575
Max Acceleration (m/s?) | 4.75 (1.81) | 6.22(2.03) 0.108
Max Velocity (m/s) 1.02 (0.16) | 1.20(0.28) 0.087
TUG | Total Time (s) 10.61 (2.37) | 10.56 (1.00) 0.96
Max Acceleration (m/s?) | 3.98 (0.92) | 3.97 (0.62) 0.961
Max Velocity (m/s) 0.69 (0.10) | 0.81 (0.15) 0.059
246

247 4. Discussion

248 Mixed Reality headset holds great promises for enabling portable, self-guided mobility
249  assessment that can be undertaken more regularly without clinician oversight, and subsequently
250  increase the efficiency of current healthcare practice. This investigation is the first to evaluate the
251  validity of MR headset (HoloLens) for mobility assessment in young and older adults. Given the
252 unique advantage of multi-modal user interaction methods(visual/audio/gesture/gaze), this device
253 enables users to initiate and complete a set of valid mobility assessment with step by step guidance,
254  and record head movement as a mean for objective measure of performance.

255 Overall, our preliminary investigation indicates that it is possible to use a mixed reality headset
256  to automatically guide both young and old user to complete common functional mobility tests (TUG
257  and STS) with good measurement accuracy in comparison to industry standard inertial sensors. More
258  specifically, by comparing the vertical kinematic measures (displacement, velocity, and acceleration)
259  derived from the HoloLens and Opal sensors, we found good to excellent signal agreement for the
260  majority of STS and TUG measures (Xcor 0.74-0.99, NRMSE ~10%), with better signal agreement
261  observed in STS task, as each sit-to-stand cycle allows for displacement calibration adjustment (Zero
262  Displacement Update) [24]. For sensor signal comparison in TUG task, however, due to the
263  integration and drift error associated with IMU sensor and lack of viable calibration during the
264  walking period (10s or longer), the vertical displacement derived from IMU sensors was biased in
265  comparison to HoloLens output (Fig.2e), resulting unsatisfactory NRMSE measures (14.07-19.56%).
266  Moreover, because of HoloLens utilized both depth sensor and IMU sensor to derive the
267  displacement measure (the depth sensor on HoloLens is similar to the Kinect sensor, which has been
268  extensively validated for accuracy in kinematic measure [27, 28]), we would expect the HoloLens
269  output in displacement measure is more trustworthy than IMU derived displacement measure.
270  Although AP displacement comparison between sensors was not analyzed statistically (due to lack
271  of viable drift correction method for IMU sensors), our exploratory investigation found that only
272  HoloLens AP displacement measure matches the standard 3m walking distance utilized in the TUG,
273 whereas the IMU derived AP displacement measure severely underestimate the walking distance
274  (evident by the displacement measure in AP direction as shown in Fig. 3).

275
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276 Figure 3. Sample AP displacement in TUG task. Red denotes HD sensor, Blue denotes LB sensor.

277  Note only HoloLens AP displacement measure correctly match the 3m walking path utilized in
278  TUG task.

279 Additionally, the sensor-derived completion time of STS and TUG was also compared with
280  current gold standard manual stopwatch method using Bland-Altman agreement plot. Excellent
281  agreement with stopwatch timing was found for both STS and TUG completion time, with HoloLens
282  measure demonstrate less than 0.2s in measurement bias and less than 0.8s in range of error).

283 Because of the relatively healthy nature of the OA participant who completed the test without
284  any assist (only 1 OA participant has significant fall risk, PPA >2), no group difference for sensor-
285  derived performance measure was found between YA and OA, with only marginal difference
286  observed in maximum ascending velocity in STS and TUG task. The two excluded OA participants
287  who have significant fall risk, however, could not complete the STS and TUG task without requiring
288  physical assist, indicating the stand-alone HoloLens device and self-guided functional mobility tests
289  may not be suitable for those who already have severe mobility deficits.

290 We acknowledge certain limitations for this investigation, most of which related to the
291  pioneering use a novel technology. First, due to the lack of optical motion tracking equipment for
292 portable/community testing, industry standard IMUs were utilized for this validation study.
293 Therefore, due to IMU’s inherent integration/drift error and the limited data access to HoloLens
294  displacement data, horizontal (AP/ML) kinematic measurement comparison was not conducted.
295  Secondly, the relatively small sample size, and healthy nature of OA participants who can complete
296  the functional tests without any assist, preclude the investigation to detect the diagnostic power of
297  using head-mount device for fall risk/mobility deficit screening in older adults. Therefore, future
298  studies should incorporate optical motion tracking and larger heterogeneous samples to investigate
299  the use of HoloLens for fall risk screening.

300 Supplementary Materials: The following are available online, Video S1: Demonstration recording of the MR-
301 based TUG task. Video S2: Tutorial video shown to user on how to put on and adjust the headset.
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311  Appendix A
312 List of abbreviations
313 IMU - Inertial Measurement Unit
314 HMD - Head-mounted Display
315 MR - Mixed Reality
316 MoCA- Montreal Cognitive Assessment,
317 ABC- Activity-specific Balance Scale
318 STS - Five time Sit to Stand test
319 TUG - Timed Up and Go test
320 PPA - Physiological Profile Assessment
321 RT - Reaction Time
322 MET - Melbourne Edge Test
323 Proprio- Proprioception
324 KneeMax — Maximal isometric knee extension force
325 AP — Anterior Posterior
326 ML — Medial Lateral
327 VT - Vertical
328 OA - Older Adults
329 YA - Young Adults
330 HD - Head IMU sensor
331 LB - Lower Back IMU sensor
332 A — Acceleration
333 V - Velocity
334 D - Displacement
335 NRMSE - Normalized Root Mean Squared Error
336 Xcor — Cross Correlation Coefficient
337 ZDU - Zero Displacement Update
338
339  References
340 1. Rubenstein, L. Z., Falls in older people: epidemiology, risk factors and strategies for prevention. Age
341 and ageing 2006, 35, (suppl_2), ii37-ii41.
342 2. Bergen, G., Falls and fall injuries among adults aged> 65 years— United States, 2014. MMWR. Morbidity
343 and mortality weekly report 2016, 65.
344 3. Florence, C. S.; Bergen, G.; Atherly, A.; Burns, E.; Stevens, J.; Drake, C., Medical costs of fatal and
345 nonfatal falls in older adults. Journal of the American Geriatrics Society 2018, 66, (4), 693-698.
346 4. Ory, M. G.; Schechtman, K. B.; Miller, J. P.; Hadley, E. C.; Fiatarone, M. A.; Province, M. A.; Arfken, C.
347 L.; Morgan, D.; Weiss, S.; Kaplan, M., Frailty and injuries in later life: the FICSIT trials. Journal of the
348 American Geriatrics Society 1993, 41, (3), 283-296.
349 5. Panel on Prevention of Falls in Older Persons, A. G. S.; Society, B. G., Summary of the updated
350 American Geriatrics Society/British Geriatrics Society clinical practice guideline for prevention of falls
351 in older persons. Journal of the American Geriatrics Society 2011, 59, (1), 148-157.
352 6. Stevens, J. A.; Phelan, E. A., Development of STEADI: a fall prevention resource for health care
353 providers. Health promotion practice 2013, 14, (5), 706-714.
354 7. Buatois, S.; Miljkovic, D.; Manckoundia, P.; Gueguen, R.; Miget, P.; Vangon, G.; Perrin, P.; Benetos, A.,
355 Five times sit to stand test is a predictor of recurrent falls in healthy community-living subjects aged 65

356 and older. Journal of the American Geriatrics Society 2008, 56, (8), 1575-1577.


http://dx.doi.org/10.20944/preprints201904.0120.v1
https://doi.org/10.3390/s19092183

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 10 April 2019 d0i:10.20944/preprints201904.0120.v1

11 of 12
357 8. Shumway-Cook, A.; Brauer, S.; Woollacott, M., Predicting the probability for falls in community-
358 dwelling older adults using the Timed Up & Go Test. Physical therapy 2000, 80, (9), 896-903.
359 9. Sun, R.; Sosnoff, J. ]J., Novel sensing technology in fall risk assessment in older adults: a systematic
360 review. BMC geriatrics 2018, 18, (1), 14.
361 10. Shany, T.; Wang, K; Liu, Y.; Lovell, N. H,; Redmond, S. ]., Are we stumbling in our quest to find the
362 best predictor? Over-optimism in sensor-based models for predicting falls in older adults. Healthcare
363 technology letters 2015, 2, (4), 79-88.
364 11. Shany, T.; Redmond, S.; Marschollek, M.; Lovell, N., Assessing fall risk using wearable sensors: a
365 practical discussion. Zeitschrift fiir Gerontologie und Geriatrie 2012, 45, (8), 694-706.
366 12. Howcroft, J.; Kofman, J.; Lemaire, E. D., Review of fall risk assessment in geriatric populations using
367 inertial sensors. Journal of neuroengineering and rehabilitation 2013, 10, (1), 91.
368 13. Hsieh, K. L.; Fanning, J. T.; Rogers, W. A.; Wood, T. A.; Sosnoff, J. J., A Fall Risk mHealth App for Older
369 Adults: Development and Usability Study. JMIR Aging 2018, 1, (2), €11569.
370 14. Hsieh, K. L.; Roach, K. L.; Wajda, D. A.; Sosnoff, J. J., Smartphone technology can measure postural
371 stability and discriminate fall risk in older adults. Gait & posture 2019, 67, 160-165.
372 15. Kress, B. C.; Cummings, W. J. In 11-1: Invited Paper: Towards the Ultimate Mixed Reality Experience:
373 HoloLens Display Architecture Choices, SID Symposium Digest of Technical Papers, 2017; Wiley Online
374 Library: 2017; pp 127-131.
375 16. Menz, H. B.; Lord, S. R; Fitzpatrick, R. C., Acceleration patterns of the head and pelvis when walking
376 on level and irregular surfaces. Gait & posture 2003, 18, (1), 35-46.
377 17. Psarakis, M.; Greene, D. A.; Cole, M. H,; Lord, S. R.; Hoang, P.; Brodie, M., Wearable technology reveals
378 gait compensations, unstable walking patterns and fatigue in people with multiple sclerosis.
379 Physiological Measurement 2018, 39, (7), 075004.
380 18. Lord, S. R.; Menz, H. B.; Tiedemann, A., A physiological profile approach to falls risk assessment and
381 prevention. Physical therapy 2003, 83, (3), 237-252.
382 19. Nasreddine, Z. S.; Phillips, N. A.; Bédirian, V.; Charbonneau, S.; Whitehead, V.; Collin, I.; Cummings,
383 J. L.; Chertkow, H., The Montreal Cognitive Assessment, MoCA: a brief screening tool for mild
384 cognitive impairment. Journal of the American Geriatrics Society 2005, 53, (4), 695-699.
385 20. Powell, L. E,; Myers, A. M., The activities-specific balance confidence (ABC) scale. The Journals of
386 Gerontology Series A: Biological Sciences and Medical Sciences 1995, 50, (1), M28-M34.
387 21. Ejupi, A.; Brodie, M.; Gschwind, Y. ],; Lord, S. R.; Zagler, W. L.; Delbaere, K., Kinect-based five-times-
388 sit-to-stand test for clinical and in-home assessment of fall risk in older people. Gerontology 2016, 62, (1),
389 118-124.
390 22. Sun, R.; Aldunate, R. G.; Paramathayalan, V. R.; Ratnam, R.; Jain, S.; Morrow, D. G.; Sosnoff, J. J.,
391 Preliminary evaluation of a self-guided fall risk assessment tool for older adults. Archives of gerontology
392 and geriatrics 2019.
393 23. Sun, R.; Moon, Y.; McGinnis, R. S.; Seagers, K.; Motl, R. W.; Sheth, N.; Wright, ]. A.; Ghaffari, R.; Patel,
394 S.; Sosnoff, J. J., Assessment of postural sway in individuals with multiple sclerosis using a novel
395 wearable inertial sensor. Digital Biomarkers 2018, 2, (1), 1-10.
396 24. Millor, N.; Lecumberri, P.; Gémez, M.; Martinez-Ramirez, A.; Izquierdo, M., Drift-free position
397 estimation for periodic movements using inertial units. IEEE journal of biomedical and health informatics

398 2014, 18, (4), 1131-1137.


http://dx.doi.org/10.20944/preprints201904.0120.v1
https://doi.org/10.3390/s19092183

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 10 April 2019 d0i:10.20944/preprints201904.0120.v1

399
400
401
402
403
404
405
406
407

25.

26.

27.

28.

12 of 12

Walgaard, S.; Faber, G. S.; van Lummel, R. C.; van Dieén, J. H.; Kingma, I., The validity of assessing
temporal events, sub-phases and trunk kinematics of the sit-to-walk movement in older adults using a
single inertial sensor. Journal of Biomechanics 2016, 49, (9), 1933-1937.

Bland, J. M.; Altman, D., Statistical methods for assessing agreement between two methods of clinical
measurement. The lancet 1986, 327, (8476), 307-310.

Clark, R. A.; Bower, K. ].; Mentiplay, B. F.; Paterson, K.; Pua, Y.-H., Concurrent validity of the Microsoft
Kinect for assessment of spatiotemporal gait variables. Journal of biomechanics 2013, 46, (15), 2722-2725.
Clark, R. A.; Pua, Y.-H.; Fortin, K,; Ritchie, C.; Webster, K. E.; Denehy, L.; Bryant, A. L., Validity of the
Microsoft Kinect for assessment of postural control. Gait & posture 2012, 36, (3), 372-377.


http://dx.doi.org/10.20944/preprints201904.0120.v1
https://doi.org/10.3390/s19092183

