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Abstract  We have shown that the use of evolutionary gravitational constants G, the speed of light 

c, and cosmological constant Λ in the Einstein’s field equations leads to a very simple model that 

fits the supernovae Ia data with a single parameter as well as the standard ΛCDM model with two 

parameters, and has the predictive capability superior to the latter. We have shown that at the 

current time G and c both increase as dG/dt = 5.4GH0 and dc/dt = 1.8cH0 with H0 as the Hubble 

constant, and Λ decreases as dΛ/dt = -1.2ΛH0.  Negative finding on the variation of G with time 

derived from the analysis of lunar laser ranging data in several studies has been attributed to the 

fact that these studies did not consider the variation of c simultaneously with G.  

Keywords: cosmology: theory, cosmological parameters – galaxies: distances and redshifts – 

variable physical constants 

1 INTRODUCTION 

Varying physical constant theories have been in existence 

since time immemorial, especially since Dirac (1937, 1938) 

suggested such variation based on his large number 

hypothesis. The most comprehensive review of the subject 

was done by Uzan (2003) followed by his more recent review 

(Uzan 2011). Chiba (2011) has provided an update of the 

observational and experimental status of the constancy of 

physical constants. We therefore will not attempt to cover the 

subject’s current status except to mention a few of direct 

relevance to this work. Magueijo (2000, 2003) is a strong 

proponent of the variable speed of light theories. 

Accordingly, the model developed here will be considered 

generally Lorentz invariant which is true for any theory based 

on varying constants. We will be using the null results of 

Hofmann and Muller’s (2018) attempts to determine the 

variation of gravitational constant 𝐺 by analysing several 

decades of LLR data to establish that when the speed of light 

variation is included, one finds that 𝐺 and 𝑐 vary exactly in 

the proportion of 3 to 1.  

   We will follow Maharaj and Naidoo’s (1993) approach to 

include variable gravitational constant 𝐺 and cosmological 

constatnt Λ in the Einstein’s field equations, and generalize it 

to include the variable speed of light 𝑐, to obtain their 

solution for the Robert-Walker metric in Sec. 2. We will show 

that Λ̇/Λ = −1.2𝐻 and �̇�/𝐻 = −0.6𝐻 where 𝐻 is the Hubble 

parameter.  In Sec. 3 we will establish that �̇�/𝐺 = 5.4𝐻 and

�̇�/𝑐 = 1.8𝐻.  We will derive the expression for distance 

modulus 𝜇 vs. redshift 𝑧 in Sec. 4. Sec. 5 is devoted to state 

the methodology for fitting the supernovae Ia data (Scolnic et 

al. 2018) and apply the same to the new model and compare it 

with the fits obtained with the standard ΛCDM model. In the 

final section, Sec. 6, we will discuss our findings and present 

conclusions. 

   The essence of this work is that the new model implicitly 

includes the cosmological constant (that is varying) and it can 

fit the supernovae Ia data with a single parameter almost as 

well as the ΛCDM model with two parameter, and it has the 

predictive capability superior to the latter. In addition, we not  

only establish that the physical constants vary, we provide 

exactly how much they vary. 

2 EVOLUTIONARY CONSTANTS MODEL 

We will develop our model in the general relativistic domain 

starting from the Robertson-Walker metric with the usual 

coordinates 𝑥𝜇  (𝑐𝑡, 𝑟, 𝜃, 𝜙):

𝑑𝑠2 = 𝑐2𝑑𝑡2 − 𝑎(𝑡)2[
𝑑𝑟2

1−𝑘𝑟2 + 𝑟2(𝑑𝜃2 + sin2 𝜃𝑑𝜙2)].(1)

Here 𝑎(𝑡) is the scale factor and 𝑘 determines the spatial 

geometry of the universe: 𝑘 = −1 (closed), 0 (flat), +1 (open). 

The Einstein’s field equations may be written in terms of the 

Einstein tensor 𝐺𝜇𝜈 , metric tensor 𝑔𝜇𝜈, and energy-momentum

tensor 𝑇𝜇𝜈, as:

𝐺𝜇𝜈 + Λ𝑔𝜇𝜈 = −
8𝜋𝐺

𝑐4 𝑇𝜇𝜈. (2) 

When solved for the Robertson-Walker metric, we get the 

following non-trivial equations for the flat universe (𝑘 = 0) of 

interest to us here, with 𝑝 as the pressure and 𝜀 as the energy 

density: 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 10 April 2019                   doi:10.20944/preprints201904.0119.v1

©  2019 by the author(s). Distributed under a Creative Commons CC BY license.

http://dx.doi.org/10.20944/preprints201904.0119.v1
http://creativecommons.org/licenses/by/4.0/


 

2 
 

�̈�

𝑎
+

1

2
(

�̇�

𝑎
)

2

= −
4𝜋𝐺

𝑐2 𝑝 +
1

2
Λ    (3) 

�̇�2

𝑎2 =
8𝜋𝐺

3𝑐2 𝜀 +
1
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Λ     (4) 

If we do not regard 𝐺, 𝑐 and Λ to be constant and define 

𝐾 ≡ 𝐺/𝑐2, we may easily derive the continuity equation by 

taking time derivative of Eq. (4) and substituting in Eq. (3) 

𝜀̇ +
3�̇�

𝑎
(𝜀 + 𝑝) +

�̇�

𝐾
𝜀 +

Λ̇

8𝜋𝐾
= 0.   (5) 

 

It reduces to the standard continuity equation when 𝐾 and Λ are 

held constant.  And since the Einstein’s field equations require 

that the covariant derivative of the energy-momentum tensor 

𝑇𝜇𝜈 be zero, we can interpret Equation (5) as comprising of two 

continuity equations (Maharaj & Naidoo 1993), viz 

 

𝜀̇ +
3�̇�

𝑎
(𝜀 + 𝑝) = 0, and    (6) 

 

8𝜋𝜀�̇� + Λ̇ = 0.     (7) 

 

This separation simplifies the solution of the field equations 

(Eqs. 3 and 4). Eq. (6) yields the standard solution for the 

energy density 𝜀 = 𝜀0𝑎−3(1+𝑤). Here 𝑤 is the equation of state 

parameter defined as 𝑝 ≡ 𝑤𝜀 with 𝑤 = 0 for matter, 1/3 for 

radiation and −1 for Λ.  

   It has been explicitly discussed by Magueijo in several of his 

papers (e.g. Magueijo 2000) that this approach is not generally 

Lorentz invariant albeit relativistic. Moreover, one should 

ideally use Einstein-Hilbert action to obtain correct Einstein’s 

equations with variable 𝐺 and 𝑐. Our approach therefore may be 

considered quasi-phenomenological. 

   Since the universe expansion is determined by 𝐻(𝑡) ≡ �̇�/𝑎, it 

is natural to assume the time dependence of any time dependent 

parameter to be proportional to �̇�/𝑎 – the so called Machian 

scenario (Magueijo 2003).  Let us therefore write  

 
�̇�

𝐾
= 𝑘 (

�̇�

𝑎
), 

Λ̇

Λ
= 𝑙 (

�̇�

𝑎
) and 

�̇�

𝐻
= 𝑚 (

�̇�

𝑎
), i.e.  (8) 

 

𝐾 = 𝐾0𝑎𝑘, Λ = Λ0𝑎𝑙  and 𝐻 = 𝐻0𝑎𝑚.  (9) 

 

Here 𝑘 (not the same as in Eq. (1)) 𝑙 and 𝑚 are the 

proportionality constants, and subscript zero indicates the 

parameter value at current epoch (𝑡 = 𝑡0). With this substitution 

in Eq. (4) we may write 

 
�̇�2

𝑎2 = 𝐻0
2𝑎2𝑚 =

8𝜋

3
(𝐾0𝑎𝑘)𝜀0𝑎−3(1+𝑤) +

1

3
Λ0𝑎𝑙. (10) 

 

Comparing the exponents of a of all the terms, we may write 

2𝑚 = 𝑘 − 3 − 3𝑤 = 𝑙, and with 𝑤 = 0 for matter, we have 

2𝑚 = 𝑘 − 3 = 𝑙. Thus, if we know 𝑘, we know 𝑙 and 𝑚.  

   We can now have a closed analytical solution of Eq. (10) as 

follows (since 𝑎(𝑡0) ≡ 1): 

𝑎(𝑡) =
𝑎(𝑡)

𝑎(𝑡0)
= (

𝑡

𝑡0
)

2

3+3𝑤−𝑘
; 

�̇�

𝑎
=

2

3+3𝑤−𝑘
𝑡−1;  (11) 

 

�̈�

�̇�
= (

�̇�

𝑎
) (1 −

3+3𝑤−𝑘

2
) ; and −𝑞 ≡

�̈�𝑎

�̇�2 =
−1−3𝑤+𝑘

2
. (12) 

Here 𝑞 is deceleration parameter that does not depend on time, 

i.e. 𝑞0 = 𝑞. As we know the radiation energy density is 

negligible at present, so we need be concerned with the matter 

only solutions, i.e. with 𝑤 = 0. 

   The deceleration parameter 𝑞0 has been analytically 

determined on the premise that expansion of the universe and 

the tired light phenomena are jointly responsible for the 

observed redshift, especially in the limit of very low redshift
 

(Gupta 2018). One could see it as if the tired light effect is 

superimposed on the Einstein de Sitter’s matter only universe 

rather than the cosmological constant.  By equating the 

expressions for the proper distance of the source of the redshift 

for the two, one gets 𝑞0 = −0.4.  Then from Eq. (12) we get 

𝑘 = 1.8, and also 𝑙 = −1.2, and 𝑚 = −0.6. We thus have from 

Eq. (8) �̇�/𝐾 = 1.8𝐻, Λ̇/Λ = −1.2𝐻 and �̇�/𝐻 = −0.6𝐻. 

       

3 VARYING G AND c FORMULATION 

Having determined the value of 𝑘 = 1.8, and since the Hubble 

parameter is defined as 𝐻 = �̇�/𝑎, we may write from Eqs. (8) 

and (9) 

𝐾 = 𝐾0𝑎1.8, and  
𝐾

𝐾

̇
= 1.8𝐻.   (13) 

We may also write explicitly 

�̇�

𝐾
=

�̇�

𝐺
−

2𝑐̇

𝑐
= 1.8𝐻.    (14) 

Taking 𝐻 at the current time as 𝐻0 ≃ 70 km s−1 Mpc
-1

 (2.27 

× 10−18 s−1) we get 
�̇�

𝐾
= 4.09 × 10−18 s−1 = 1.29 ×

10−10 yr−1.     

   The findings from the Lunar Laser Ranging (LLR) data 

analysis provides the limits on the variation of �̇�/𝐺 (7.1 ± 7.6 

× 10−14) (Hofmann & Müller 2018), which is considered to be 

about three orders of magnitude lower than expected.  However, 

the LLR data analysis is based on the assumption that the speed 

of light is constant and non-evolutionary.  If this constraint is 

dropped then the finding would be very different. 

   As is well known (Merkowitz 2010), a time variation of 𝐺 

should show up as an anomalous evolution of the orbital period 

𝑃 of astronomical bodies expressed by Kepler’s 3rd law: 

𝑃2 =
4𝜋2𝑟3

𝐺𝑀
,     (15) 

where 𝑟 is semi-major axis of the orbit, 𝐺 is the gravitational 

constant and 𝑀 is the mass of the bodies involved in the orbital 

motion considered.  If we take time derivative of Eq. (15), 

divide by 𝑃2 and rearrange, we get 

�̇�

𝐺
=

3�̇�

𝑟
−

2�̇�

𝑃
−

�̇�

𝑀
 .    (16) 

If we write 𝑟 = 𝑐𝑡 then 
�̇�

𝑟
=

1

𝑡
+

𝑐̇

𝑐
 .  We may now rewrite Eq. 

(16) as 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 10 April 2019                   doi:10.20944/preprints201904.0119.v1

http://dx.doi.org/10.20944/preprints201904.0119.v1


 

3 
 

�̇�

𝐺
−

3𝑐̇

𝑐
=

3

𝑡
−

2�̇�

𝑃
−

�̇�

𝑀
 .    (17) 

Since LLR measures the time of flight of the laser photons, it is 

the right hand side of Eq. (17) that is determined from LLR data 

analysis (Hofmann & Müller 2018) to be 7.1 ± 7.6 × 10−14 and 

not the right hand side of Eq. (16). 

   Then, taking the right hand side of Eq. (17) as 0 and 

combining it with Eq. (14), one can solve the two equations and 

get �̇�/𝐺 = 5.4𝐻0 = 3.9 × 10−10 yr−1  and �̇�/𝑐 = 1.8𝐻0 =

1.3 × 10−10 yr−1 .  It should be emphasized that both  �̇�/𝐺 and 

�̇�/𝑐 are positive and thus both of them are increasing with time 

rather than decreasing as is generally believed (Barnes & Dicke 

1961, van Flandern 1975). This may be considered the most 

significant observational finding of cosmological consequences 

just by studying the Earth-Moon system. 

 

4 REDSHIFT VS. DISTANCE MODULUS 

The distance 𝑑 of a light emitting source in a distant galaxy is 

determined from the measurement of its bolometric flux 𝑓 and 

comparing it with a known luminosity 𝐿.  The luminosity 

distance 𝑑𝐿 is defined as  

𝑑𝐿 = √
𝐿

4𝜋𝑓
 .     (18) 

In a flat universe the measured flux could be related to the 

luminosity 𝐿 with an inverse square relation 𝑓 = 𝐿/(4𝜋𝑑2).  

However, this relation needs to be modified to take into account 

the flux losses due to the expansion of the universe through the 

scale factor 𝑎, the redshift 𝑧, and all other phenomena which can 

result in the loss of flux.  Generally accepted flux loss phenomena 

are as follows (Ryden 2017): 

a.  Increase in the wavelength causes the flux loss proportional to 

1/(1 + 𝑧), and 

b. In an expanding universe, an increase in detection time 

between two consecutive photons emitted from a source leads to a 

reduction of flux proportional to 𝑎, i.e. proportional to 1/(1 + 𝑧). 

   Therefore, in an expanding universe the necessary flux 

correction required is proportional to 1/(1 + 𝑧)2. The measured 

bolometric flux 𝑓𝐵 and the luminosity distance 𝑑𝐿 may thus be 

written as: 

𝑓𝐵 = 𝐿/[4𝜋𝑑2(1 + 𝑧)2], and   (19) 

𝑑𝐿 = 𝑑(1 + 𝑧).       (20) 

How does 𝑑 compare with and without varying 𝑐?  Let us first 

consider the case of non-expanding universe.  The distance from 

the point of emission at time 𝑡𝑒 to the point of observation at 

time 𝑡0 may be written as 𝑑𝑐 = ∫ 𝑐 𝑑𝑡
𝑡0

𝑡𝑒
. Therefore for constant 

𝑐 = 𝑐0 

 𝑑𝑐0
= 𝑐0𝑡0(1 −

𝑡𝑒

𝑡0
)    (21) 

When 𝑐 = 𝑐0𝑎1.8, and since 𝑎 = (
𝑡

𝑡0
)

2

1.2
 from Eq. (11), we may 

write 

𝑑𝑐 = 𝑐0 ∫ (
𝑡

𝑡0
)

3

𝑑𝑡
𝑡0

𝑡𝑒
=

𝑐0

𝑡0
3 ∫ 𝑡3𝑑𝑡

𝑡0

𝑡𝑒
=

1

4
𝑐0𝑡0 (1 −

𝑡𝑒
4

𝑡0
4). (22) 

The ratio of the two distances may be considered the 

normalization factor 𝐹 when using the variable 𝑐 in calculating 

the proper distance of a source. Since 𝑎 ≡ 1/(1 + 𝑧), we may 

write for the source of redshift 𝑧 with emission time 𝑡𝑒 

𝑡𝑒

𝑡0
= 𝑎(𝑧)0.6 = (1 + 𝑧)−0.6 , and   (23) 

𝐹(𝑧) = 4[1 − (1 + 𝑧)−0.6]/[1 − (1 + 𝑧)−2.4] (24) 

   Now the proper distance of the source with variable 𝑐 may be 

defined as (Ryden 2017) 

 𝑑𝑃𝑐
= ∫ (

𝑐

𝑎
) 𝑑𝑡

𝑡0

𝑡𝑒
= ∫ (

𝑐0𝑎1.8

𝑎
) 𝑑𝑡

𝑡0

𝑡𝑒
= 𝑐0 ∫ 𝑎0.8 𝑑𝑡

𝑡0

𝑡𝑒
 

 = 𝑐0 ∫ (
𝑡

𝑡0
)

4

3
 𝑑𝑡

𝑡0

𝑡𝑒
=

3

7
𝑐0𝑡0[1 − (

𝑡𝑒

𝑡0
)

7

3
]. (25) 

From Eq. (11) 𝐻0 ≡ �̇�/𝑎 = (2/1.2)𝑡0
−1. Therefore, 

𝑑𝑃𝑐
=

1

1.4
(𝑐0/𝐻0)[1 − (1 + 𝑧)−1.4] .  (26) 

Thus the expression for 𝑑 to be substituted in Eq. (20) to 

determine the luminosity distance of the source is 𝑑 = 𝑑𝑃𝑐
𝐹. 

   Since the observed quantity is distance modulus 𝜇 rather than 

the luminosity distance 𝑑𝐿, we will use the relation  

𝜇 = 5 log(𝑑𝐿) + 25,      (27) 

        = 5log (
1

1.4
𝑅0(1 − (1 + 𝑧)−1.4) + 5 log(𝐹(𝑧)) 

+5 log(1 + 𝑧) + 25.  (28) 

 

Here 𝑅0 ≡ 𝑐/𝐻0 and all the distances are in Mpc.   

   We will compare the new model, hereafter referred as VcGΛ 

(variable 𝑐, 𝐺 and Λ) model, with the standard ΛCDM model 

which is the most accepted model for explaining cosmological 

phenomena, and thus may be considered the reference models for 

all the other models.  Ignoring the contribution of radiation 

density at the current epoch, we may write the distance modulus 

𝜇 for redshift 𝑧 in a flat universe for the ΛCDM model as follows 

(Peebles 1993): 

 

𝜇 = 5log [𝑅0 ∫ 𝑑𝑢/√Ω𝑚,0(1 + 𝑢)3 + 1 − Ω𝑚,0]
𝑧

0

 

                                       +5 log(1 + 𝑧) + 25.       (29) 
 

Here Ω0,𝑚 is the current matter density relative to critical density 

and 1 − Ω𝑚,0 ≡ ΩΛ,0 is the current dark energy density relative to 

critical density. 

 

5 SUPERNOVAE Ia z-µ DATA FIT 

We tried the VcGΛ model developed here to see how well it fits 

the best supernovae Ia data as compared to the standard ΛCDM 

model. The data fit is shown in Fig. 1. The VcGΛ model 

requires only one parameter to fit all the data (𝐻0 = 68.90 ±
0.26 km 𝑠−1 Mpc−1) whereas the ΛCDM model requires two 

parameters (𝐻0 = 70.16 ± 0.42 km 𝑠−1 Mpc−1 and Ω𝑚,0 =
0.2854 ± 0.0245).  

   The data used in this work is the so called Pantheon Sample of 

1048 supernovae Ia (Scolnic et al. 2018) in the range of 

0.01 < 𝑧 < 2.3.  To test the fitting and predictive capability of 
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the two models, we divided the data in 6 subsets: a) 𝑧 < 0.5; b) 

𝑧 < 1.0; c) 𝑧 < 1.5; d) 𝑧 > 0.5; and e) 𝑧 > 1.0; and f) 𝑧 > 1.5. 
In addition, we considered the fits for the whole data. The 

models were parameterized with subsets a), b) and c). The 

parameterized models were then tried to fit the data in the 

subsets that contained data with z values higher than in the 

parameterized subset. For example if the models were 

parameterized with data subset a) 𝑧 < 0.5, then the models were 

fitted with the data subsets d) 𝑧 > 0.5, e) 𝑧 > 1.0 and f) 𝑧 > 1.5. 

 
FIG. 1.  Supernovae Ia redshift 𝑧 vs distance modulus µ 
data fit using the VcGΛ model as compared to the fit 

using the ΛCDM model. 

   The Matlab curve fitting tool was used to fit the data by 

minimizing 𝜒2 and the latter was used for determining the 

corresponding 𝜒2 probability 𝑃 (Press et al. 1992).  Here 𝜒2 is 

the weighted summed square of residual of 𝜇: 

 

𝜒2 = ∑ 𝑤𝑖[𝜇(𝑧𝑖; 𝑅0, 𝑝1, 𝑝2 … ) − 𝜇𝑜𝑏𝑠,𝑖]
2𝑁

𝑖=1 ,  (30) 

 

where 𝑁 is the number of data points, 𝑤𝑖  is the weight of the 𝑖th 

data point 𝜇𝑜𝑏𝑠,𝑖 determined from the measurement error 𝜎𝜇𝑂𝑏𝑠,𝑖
 in 

the observed distance modulus 𝜇𝑜𝑏𝑠,𝑖 using the relation 𝑤𝑖 =

1/𝜎𝜇𝑂𝑏𝑠,𝑖
2 , and 𝜇(𝑧𝑖; 𝑅0, 𝑝1 , 𝑝2 … ) is the model calculated 

distance modulus dependent on parameters 𝑅0 and all other 

model dependent parameter 𝑝1 , 𝑝2 , etc.  As an example, for the 

ΛCDM models considered here 𝑝1 ≡ Ω𝑚,0 and there is no other 

unknown parameter. 

   We then quantified the goodness-of-fit of a model by 

calculating the 𝜒2 probability for a model whose 𝜒2 has been 

determined by fitting the observed data with known 

measurement error as above.  This probability 𝑃 for a 

𝜒2 distribution with 𝑛 degrees of freedom (DOF), the latter 

being the number of data points less the number of fitted 

parameters, is given by: 

 

𝑃(𝜒2, 𝑛) = (
1

Γ(
𝑛

2
)
) ∫ 𝑒−𝑢𝑢

𝑛

2
−1𝑑𝑢

∞

𝜒2

2

 ,  (31)  

where Γ is the well know gamma function that is generalization of 

the factorial function to complex and non-integer numbers.  

Lower the value of 𝜒2 better is the fit, but the real test of the 

goodness-of-fit is the 𝜒2 probability 𝑃; higher the value of 𝑃 for a 

model, better is the model’s fit to the data.  We used an online 

 

TABLE I.  Parameterizing and prediction table for the two models.  This table shows how well a model is able to fit the 

data that is not used to determine the model parameters.  The unit of R0 is Mpc and of H0 is km s-1 Mpc-1.  P% is the χ2 

probability in percent that is used to assess the best model for each category; higher the χ2 probability 𝑃 better is the model 

fit to the data.  R2 is the square of the correlation between the response values and the predicted response values. RMSE 

is the root mean square error.  Highest P% value in each category is shown in bold and the cell highlighted. 
 

Action / Item ΛCDM VcGΛ ΛCDM VcGΛ ΛCDM VcGΛ ΛCDM VcGΛ

Parameterized

  R0 4259±34 4337±18 4269±27 4351±17 4271±26 4352±17 4273±26 4351±16

  Ωm,0 0.2601±0.0457 NA 0.2793±0.0261 NA 0.2818±0.0249 NA 0.2845±0.0245 NA

  H0 70.39±0.56 69.13±0.29 70.23±0.44 68.90±0.27 70.19±0.42 68.89±0.27 70.16±0.42 68.90±0.25

  χ2 863.5 889.4 1018 1060 1033 1074 1036 1076

  DOF 830 831 1023 1024 1040 1041 1046 1047

  P% 20.39 7.83 53.82 21.15 55.53 23.26 58.11 26.02

  R
2

0.9961 0.9960 0.9969 0.9968 0.9970 0.9969 0.9970 0.9969

  RMSE 1.020 1.035 0.9977 1.017 0.9965 1.016 0.9951 1.014

Model Fit

  χ2 176.9 190

  DOF

  P% 97.59 89.84

  R
2

0.9605 0.9575

  RMSE 0.905 0.938

Model Fit

  χ2 19.54 17.01 17.59 16.75

  DOF

  P% 66.94 80.43 77.93 82.13

  R
2

0.8741 0.8904 0.8867 0.8921

  RMSE 0.9216 0.86 0.8746 0.8533

Model Fit

  χ2 4.090 1.946 3.167 1.983 3.076 1.986

  DOF

  P% 66.44 92.45 78.76 92.12 79.92 92.09

  R
2

0.5993 0.8093 0.6897 0.8057 0.6986 0.8054

  RMSE 0.8256 0.5696 0.7265 0.5749 0.716 0.5754

NOT APPLICABLE SINCE 

THIS DATASET INCLUDES 

THE DATASET USED TO 

PARAMETERIZE THE MODEL

23

6 NOT APPLICABLE SINCE 

THIS DATASET INCLUDES 

THE DATASET USED TO 

PARAMETERIZE THE MODEL

Dataset z>1.0; 23 points

Dataset z>1.5; 6 points

Model dataset all; 1048 points

Dataset z>0.5; 216 points

NOT APPLICABLE SINCE 

THIS DATASET INCLUDES 

THE DATASET USED TO 

PARAMETERIZE THE MODEL

NOT APPLICABLE SINCE 

THIS DATASET INCLUDES 

THE DATASET USED TO 

PARAMETERIZE THE MODEL

NOT APPLICABLE SINCE 

THIS DATASET INCLUDES 

THE DATASET USED TO 

PARAMETERIZE THE MODEL

Model dataset z<0.5; 832 points Model dataset z<1.0; 1025 points Model dataset z<1.5; 1042 points

Dataset z>0.5; 216 points Dataset z>0.5; 216 points

NOT APPLICABLE SINCE 

THIS DATASET INCLUDES 

THE DATASET USED TO 

PARAMETERIZE THE MODEL

Dataset z>0.5; 216 points

216
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calculator to determine 𝑃 from the input of 𝜒2 and DOF 

(Walker 2018).  Our primary findings are presented in Table 

I. The unit of the Hubble distance 𝑅0 is Mpc and of the 

Hubble constant 𝐻0 is km s
-1

 Mpc
-1

.  The table is divided in 

four categories vertically and four categories horizontally.  

Vertical division is based on the parameterizing data subset 

indicated in the second row and discussed above.  The 

parameters determined for each model are in the first 

horizontal category. The remaining horizontal categories 

show the goodness-of-fit parameters for higher redshift 

subsets than used for parameterizing the models. Thus this 

table shows the relative predictive capability of the two 

models.  The model cells with the highest probability in each 

category are shown in bold and highlighted. 

 

6 DISCUSSION AND CONCLUSION 

   As should be expected, the two parameter ΛCDM 

model is able to fit any data set better than the one 

parameter VcGΛ model. What is unexpected is that when 

parameterized with a relatively low redshift data the 

VcGΛ model is able to fit the higher redshift data better 

than the ΛCDM model.  This shows that the second 

parameter in the latter, while trying to fit a limited 

dataset as best as possible, compromises the model fit for 

data not used for parameterizing.  This means that the 

ΛCDM model does not have as good a predictive 

capability (i.e. the capability to fit the data that is not 

included for determining the model parameters) as the 

VcGΛ model despite having twice as many parameters as 

the VcGΛ model. In addition the VcGΛ model has the 

analytical expression for the distance 𝜇 unlike the ΛCDM 

model which must be evaluated numerically. 

   One would notice that while 𝑅0 (and hence 𝐻0) values 

are relatively stable with the parameterizing dataset 

containing higher and higher redshift values, varying no 

more than 0.35%, while the variation in the Ω𝑚,0 is up to 

9.4%, i.e. 27 time higher. This confirms that Ω𝑚,0 

parameter, and hence Λ through ΩΛ,0, is an artificially 

introduced parameter to fit the data rather than being 

fundamental to the ΛCDM model.  In contrast Λ is an 

integral part of the VcGΛ model.  Since 𝐾 (≡ 𝐺/𝑐2) and 

Λ are related through Eq. (7), one could easily derive that 

the Λ term contributes 60% for the VcGΛ model against 

70% for the ΛCDM model. 

   We have established that the supernovae 1a data is 

compatible with the variable constants proposition. This 

is contrary to the findings of Mould and Uddin (2014) 

who considered only the variation of 𝐺 in their work. We 

believe most of the negative findings on the variation of 

physical constants are possibly due to one considering 

the variation of a constant in isolation rather than 

holistically for all the constants involved. We have 

established that the physical constants not only vary but 

also how much they vary: �̇�/𝑐 = 1.8𝐻, �̇�/𝐺 = 5.4𝐻, 

Λ̇/Λ = −1.2𝐻 and �̇�/𝐻 = −0.6𝐻. Also, from the null 

results on the variation of the fine structure constant 

(Gohar 2017, Rosenband et al. 2008) we can show that 

ħ̇/ħ = 1.8𝐻.  We urge that they be used in union rather 

than in isolation. 
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