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Abstract: This paper proposes a novel label ranker network to learn the relationship between labels

to solve ranking and classification problems. The Preference Neural Network (PNN) uses spearman

correlation gradient ascent and two new activation functions, positive smooth staircase (PSS), and

smooth staircase (SS) that accelerate the ranking by creating almost deterministic preference values.

PNN is proposed in two forms, fully connected simple Three layers and Preference Net (PN), where

the latter is the deep ranking form of PNN to learning feature selection using ranking to solve

images classification problem. PN uses a new type of ranker kernel to generate a feature map. PNN

outperforms five previously proposed methods for label ranking, obtaining state-of-the-art results on

label ranking, and PN achieves promising results on CFAR-100 with high computational efficiency.

Keywords: preference learning; deep label ranking; neural network

1. Introduction

PREFERENCE learning (PL) is an extended paradigm in machine learning that induces predictive

preference models from experimental data [1–3]. PL has applications in various research areas such

as knowledge discovery and recommender systems [4]. Objects, instances, and label ranking are the

three main categories of PL domain. Of those, label ranking (LR) is a challenging problem that has

gained importance in information retrieval by search engines [5,6]. Unlike the common problems

of regression and classification [7–13], label ranking involves predicting the relationship between

multiple label orders. For a given instance x from the instance space ①, there is a label L associated

with x, L ∈ π, where π = {λ1, .., λn}, and n is the number of labels. LR is an extension of multi-class

and multi-label classification, where each instance x is assigned an ordering of all the class labels in

the set L. This ordering gives the ranking of the labels for the given x object. This ordering can be

represented by a permutation set π = {1, 2, · · · , n}. The label order has the following three features.

irreflexive where λa ⊁ λa ,transitive where (λa ≻ λb) ∧ (λb ≻ λc) =⇒ λa ≻ λc and asymmetric

λa ≻ λb =⇒ λb ⊁ λa. Label preference takes one of two forms, strict and non-strict order. The strict

label order (λa ≻ λb ≻ λc ≻ λd) can be represented as π = (1, 2, 3, 4) and for non-restricted total

order π = (λa ≻ λb ≃ λc ≻ λd) can be represented as π = (1, 2, 2, 3), where a, b, c, and, d are the label

indexes and λa, λb, λc and λd are the ranking values of these labels.

For the non-continuous permutation space, The order is represented by the relations mentioned

earlier and the ⊥ incomparability binary relation. For example the partial order λa ≻ λb ≻ λd can be

represented as π = (1, 2, 0, 3) where 0 represents an incomparable relation since λc is not comparable

to (λa, λb, λd).

Various label ranking methods have been introduced in recent years [14], such as

decomposition-based methods, statistical methods, similarity, and ensemble-based methods.

Decomposition methods include pairwise comparison [15,16], log-linear models and constraint

classification [17]. The pairwise approach introduced by Hüllermeier [18] divides the label ranking

problem into several binary classification problems to predict the pairs of labels λi ≻ λj or λj ≺ λi for

an input x. Statistical methods includes decision trees [19], instance-based methods (Plackett-Luce) [20]
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and Gaussian mixture model based approaches. For example, Mihajlo uses Gaussian mixture models

to learn soft pairwise label preferences [21].

The artificial neural network (ANN) for ranking was first introduced as (RankNet) by Burge to

solve the problem of object ranking for sorting web documents by a search engine [22]. Rank net uses

gradient descent and probabilistic ranking cost function for each object pair. The multilayer perceptron

for label ranking (MLP-LR) [23] employs a network architecture using a sigmoid activation function to

calculate the error between the actual and expected values of the output labels. However, It uses a

local approach to minimize the individual error per output neuron by subtracting the actual-predicted

value and using Kendall error as a global approach. Neither direction uses a ranking objective function

in backpropagation (BP) or learning steps.

The deep neural network (DNN) is introduced for object ranking to solve document retrieval

problems. RankNet [22], RankBoost [24], and Lambda MART [25], and deep pairwise label ranking

models [26], are convolution neural Network (CNN) approaches for the vector representation of the

query and document-based. CNN is used for image retrieval [27] and label classification for remote

sensing and medical diagnosing [28–35]. A multi-valued activation function has been proposed by

Moraga and Heider [36] to propose a Generalized Multiple–valued Neuron with a differentiable

soft staircase activation function, which is represented by a sum of a set of sigmoidal functions. In

addition, Aizenberg proposed a generalized multiple-valued neuron using a convex shape to support

complex numbers neural network and multi-values numbers [37]. Visual saliency detection using the

Markov chain model is one approach that simulates the human visual system by highlighting the most

important area in an image and calculating superpixels as absorbing nodes [38–40]. However, this

approach needs a saliency optimization on the results and has calculation cost [41,42].

Particle Swarm Optimization in movement detection is based on the concept of variation and

inter-frame difference for feature selection. The swarm algorithms are mainly used in human motion

detection in sports, and it is used based on probabilistic optimization algorithm [43–46] and CNN [47].

Some of the methods mentioned above and their variants have some issues that can be broadly

categorized into three types:

1) The ANN Predictive probability can be enhanced by limiting the output ranking values in the SS

functions to a discrete value instead of a range of values of the rectified linear unit (Relu), Sigmoid,

or Softmax activation functions. The predictive is enhanced by using the SS function slope as a

step function to create discrete values, accelerating the learning by reducing the output values to

accelerate the ranking convergence.
2) The drawback of ranking based on the classification technique ignores the relation between

multiple labels: When the ranking model is constructed using binary classification models, these

methods cannot consider the relationship between labels because the activation functions do not

provide deterministic multiple values. Such ranking based on minimizing pairwise classification

errors differs from maximizing the label ranking’s performance considering all labels. This is

because pairs have multiple models that may reduce ranking unification by increasing ranking

pairs conflicts where there is no ground truth, which has no generalized model to rank all the

labels simultaneously. For example, D = (1, 1, 1) for π = (λa ≻ λb ≻ λc) and D = (1, 1, 1)

for π = (λa ≻ λc ≻ λb) the ranking is unique; however, pairwise classification creates no

ground truth ranking for the pair λb ≻ λc and λc ≻ λb which adds more complexity to the

learning process.
3) Ignoring the relation between features. The convolution kernel has a fixed size that detects one

feature per kernel. Thus, it ignores the relationship between different parts of the image. For

example, CNN detects the face by combining features (the mouth, two eyes, the face oval, and a

nose) with a high probability of classifying the subject without learning the relationship between

these features. For example, the proposed PN kernel start attention to the important features that

have a high number of pixel ranking variation.

The main contribution of the proposed neural network is
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• Solving the label ranking as a machine learning problem.
• Solving the deep learning classification problem by employing computational ranking in feature

selection and learning.

Where PNN has several advantages over existing label ranking methods and CNN classification

approaches.

1) PNN uses the smooth staircase SS as an activation function that enhances the predictive

probability over the sigmoid and Softmax due to the step shape that enhances the predictive

probability from a range from -1 to 1 in the sigmoid to almost discrete multi-values.
2) PNN uses gradient ascent to maximize the spearman ranking correlation coefficient. In contrast,

other classification-based methods such as MLP-LR use the absolute difference of root mean

square error (RMS) by calculating the differences between actual and predicted ranking and

other RMS optimization, which may not give the best ranking results.
3) PNN is implemented directly as a label ranker. It uses staircase activation functions to rank all

the labels together in one model. The SS or PSS functions provide multiple output values during

the conversions; however, MLP-LR and RankNet use sigmoid and Relu activation functions. These

activation functions have a binary output. Thus, it ranks all the labels together in one model

instead of pairwise ranking by classification.
4) PN uses a novel approach for learning the feature selection by ranking the pixels and using

different sizes of weighted kernels to scan the image and generate the features map.

The next section explains the Ranker network experiment, problem formulation, and the PNN

components (Activation functions, Objective function, and network structure) that solve the Ranker

problems and comparison between Ranker network and PNN.

2. PNN Components

2.1. Initial Ranker

The proposed PNN is based on an initial experiment to implement a computationally efficient

label ranker network based on the Kendall τ error function and sigmoid activation function using

simple structure as illustrated in Section 4 Figure 6.

The ranker network is a fully connected, three-layer net. The input represents one instance of data

with three inputs, and there are six neurons in the hidden layer and three output neurons representing

the labels’ index. Each neuron represents the ranking value. A small toy data set is used in this

experiment. The ranker uses RMS gradient descent as an error function to measure the difference

between the predicted and actual ranking values. The ranker has Kendall τ as a stopping criterion. The

same ANN structure, number of neurons and learning rate using SS activation function, and spearman

error function and gradient ascent of ρ will be discussed in Section IV. The ranking convergence reaches

τ ≃ 1 after 160 epochs using the Sigmoid function [48]. The sigmoid and ReLU shapes have a slightly

high rate of change of y, and it produces a larger output range of data. Therefore, we consider ranking

performance as one of the disadvantages of sigmoid function in the ranker network.

The ranker network has two main problems.

1) The ranker uses two different error functions, RMS for learning and Kendall τ for stopping

criteria. Kendall τ is not used for learning because it is not continuous or differentiable. Both

functions are not consistent as stopping criteria measure the relative ranking, and RMS does

not, which may lead to incorrect stopping criteria. Enhancing the RMS may not also increase

the error performance, as illustrated in Figure 3 in a comparison between the ranker network.

evaluation using ρ and RMS.
2) The convergence performance takes many iterations to reach the ranking τ ≃ 1 based on the

shape of sigmoid or Relu functions and learning rate as shown in the experiment video link [48]
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due to the slope shape between -1 or 0 and 1. The prediction probability almost equals the values

from -1 or 0 to 1.

2.2. Problem Formulation

For multi-class and multi-label problems, learning the data’s preference relation predicts the class

classification and label ranking. i.e., data instance D ∈ {x1, x2, . . . , xn}. the output labels are predicted

as ranked set labels that have preference relations L = {λy1
, . . . , λyn

}. PNN creates a model that learns

from an input set of ranked data to predict a set of new ranked data. The next section presents the

initial experiment to rank labels using the usual network structure.

2.3. Activation Functions

The usual ANN activation functions have a binary output or range of values based on a threshold.

However, these functions do not produce multiple deterministic values on the y-axis. This paper

proposes new functions to slow the differential rate around ranking values on the y-axis to solve

ranking instability. The proposed functions are designed to be non-linear, monotonic, continuous,

and differentiable using a polynomial of the tanh function. The step width maintains the stability

of the ranking during the forward and backward processes. Moraga [36] introduced a similar

multi-valued function. However, the proposed exponential derivative was not applied to an ANN

implementation. Moraga exponential function is geometrically similar to the step function [49].

However, The newly proposed functions consist of tanh polynomial instead of exponential due to the

difficulty in implementation. The new functions detect consecutive integer values, and the transition

from low to high rank (or vice versa) is fast and does not interfere with threshold detection.

2.3.1. Positive Smooth Staircase (PSS)

As a non-linear and monotonic activation function, a positive smooth staircase (PSS) is represented

as a bounded smooth staircase function starting from x=0 to ∞. Thus, it is not geometrically

symmetrical around the y-axis as shown in Figure 1. PSS is a polynomial of multiple tanh functions and

is therefore differentiable and continuous. The function squashes the output neurons values during

the FF into finite multiple integer values. These values represent the preference values from {0 to n}

where 0 represents the incomparable relation ⊥ and values from 1 to n represent the label ranking.

The activation function is given in Equation (1). PSS is scaled by increasing the step width w

y = −
1

2s

(

n−1

∑
i=0

tanh (c(wi − x))− n

)

(1)

Where n is the number of stair steps equal to the number of labels to rank, w is the step width, and c

is the stair curvature c = 100 and 5 for the sharp and smooth step, respectively. and s is the scaling

factor for reducing the height of each step to range to rank value with decimal place for the regression

problems. s=10 and s=100 for 1 and 2 decimal places, respectively, s is calculated as in Equation (2).

n = Ymaxs (2)

and w is the step width as shown in Equation (3).

2b = w(n − 1) (3)
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Figure 1. PSS activation function where n = 3 and step width w = 1 and c = 100 and 5 in (a,b)

respectively

2.3.2. Smooth Staircase (SS)

The proposed (SS) represents a staircase similar to (PSS). However, SS has a variable boundary

value used as a hyperparameter in the learning process. The derivative of the activation function is

discussed in Section 3 and the performance comparison between SS and PSS is mentioned in Section 5.

The activation function is given in Equation (4).

y = −
1

2s

(

n−1

∑
i=0

tanh (c(b − x − wi))− n

)

(4)

where c is step curvature, n = number of ranked labels, b is the boundary value on the x-axis, and (SS)

lies between −b and b.

Where Ymax is the max. value to rank. i.e., Ymax=3 and values have one decimal place. n =30

The (SS) function has the shape of smooth stair steps, where each step represents an integer number

of label ranking on the y-axis from 0 to ∞ as shown in Figure 1, The SS step is not flat, but it has a

differential slope. The function boundary value on the x-axis is from -b to b Therefore, input values

must be scaled from -b to b. The step width is 1 when n≃ 2b. The convergence rate is based on the step

width. However, it may take less time to converge based on network hyper parameters. Figure 2a,b.

The SS is scaled by increasing the boundary value b
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Figure 2. SS activation function where n = 6, 30 and 20 and boundary b = 1, 30 and 1 and scale factor

for the decimal place is s = 1, 1 and 10 for ranking/classification, extreme label ranking/classification

and regression in (a–c) respectively.

2.4. Ranking Loss Function

Two main error functions have been used for label ranking; Kendall τ [50] and spearman ρ [51].

However, the Kendall τ function lacks continuity and differentiability. Therefore, the spearman ρ

correlation coefficient is used to measure the ranking between output labels. spearman ρ error derivative

is used as a gradient ascent process for BP, and correlation is used as a ranking evaluation function

for convergence stopping criteria. τAvg is the average τ per label divided by the number of instances

m, as shown in line 8 of Algorithm 1. spearman ρ measures the relative ranking correlation between

actual and expected values instead of using the absolute difference of root means square error (RMS)

because gradient descent of RMS may not reduce the ranking error. For example, π1 = (1, 2.1, 2.2) and

π2 = (1, 2.2, 2.1), have a low RMS = 0.081 but a low ranking correlation ρ = 0.5 and τ = 0.3.

Figure 3 shows the comparison between the initial ranker network and PNN; the ranker network

uses Kendall τ which has lower performance as a stopping criterion compared to PNN spearman

because the stopping criteria are based on the RMS per iteration; however, PNN uses spearman for both

ranking step and stopping criteria.
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Figure 3. Ranker network and PNN evaluation in terms of RMS and spearman correlation error

functions.

The spearman error function is represented by Equation (5)

ρ = 1 −
6 ∑

m
i=1 (yi − yti)

2

m(m2 − 1)
(5)

where yi, yti, i and m represent rank output value, expected rank value, label index and number of

instances, respectively.

2.5. PNN Structure

2.5.1. One Middle Layer

The ANN has multiple hidden layers. However, we propose PNN with a single middle layer

instead of multi-hidden layers because ranking performance is not enhanced by increasing the number

of hidden layers due to fixed multi-valued neuron output, as shown in Figure 4; Seven benchmark

data sets [52] was experimented using SS function using one, two, and three hidden layers with the

following hyper parameters; learning rate (l.r.)=0.05, and each layer has neuron i = 100 and b = 10).

We found that by increasing the number of hidden layers, the ranking performance decreases, and

more iterations are required to reach ρ ≃ 1. The low performance because of the shape of SS produces

multiple deterministic values, which decrease the arbitrarily complex decision regions and degrees of

freedom per extra hidden layer.
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Figure 4. Multiple layer label ranking comparison of benchmark data sets [52] results using the PNN

and SS functions after 100 epochs and learning rate = 0.007.

2.5.2. Preference Neuron

Preference Neuron are a multi-valued neurons uses a PSS or SS as an activation function. Each

function has a single output; however, PN output is graphically drawn by n number of arrow links

that represent the multi-deterministic values. The PN in the middle layer connects to only n output

neurons stp = n + 1; where stp is the number of SS steps. The PN in the output layer represents the

preference value. The middle and output PNs produce a preference value from 0 to ∞ as illustrated

in Figure 5.

Preference Neuron

λn =ϕ4

(

∑k
i=1

ai .wi

)

Input

Weights

a1

w1.

.

ai

wi

.

.

ak

wk

λa

λb

λc

λd

a j
∑k

i=1
ai .wi

ϕ

-3 -2 -1 1 2 3

1

2

3

4

Figure 5. The structure of preference neuron where ϕn=4.

The PNN is fully connected to multiple-valued neurons and a single-hidden layer ANN. The

input layer represents the number of features per data instance. The hidden neurons are equal to or

greater than the number of output neurons, Hn ≥ Ln, to reach error convergence after a finite number

of iterations. The output layer represents the label indexes as neurons, where the labels are displayed

in a fixed order, as shown in Figure 6.
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Figure 6. PNN where ϕn=16, fin = 16 and λout = 16, per ⟨x1, π1⟩, L ∈ {λa, λb, λc, λd} where π1 =

{1, 2, 3, 4, . . . , 16}.

The ANN is scaled up by increasing the hidden layers and neurons; however, increasing the hidden

layers in PNN does not enhance the ranking correlation because it does not arbitrarily increase complex

decision regions and degrees of freedom to solve more complex ranking problems. This limitation is

due to the multi-semi discrete-valued activation function, limiting the output data variation. Therefore,

instead of increasing the hidden layer, PNN is scaling up by increasing the number of neurons in

the middle layer and scaling input data boundary value and increasing the PSS step width and SS

boundaries which are equal to the input data scaling value, which leads to increased data separability.

PNN reaches ranking ρ ≃ 1 after 24 epochs compared to the initial ranker network that reaches

the same result in 200 iterations, The video link demonstrates the ranking convergence as shown

in Figure 7 and video [48]. A summary of the three networks is presented in Table 1.

The output labels represent the ranking values. The differential PSS and SS functions to accelerate

the convergence after a few iterations due to the staircase shape, which achieves stability in learning.

PNN simplifies the calculation of FF and BP, and updates weights into two steps due to single middle

layer architecture. Therefore, the batch weight updating technique is not used in PNN, and pattern

update is used in one step. The network bias is low due to the limited preference neuron output of

data variance; thus it is not calculated. Each neuron uses the SS or PS activation function in FF step,

and calculates the preference number from 1 to n, where n is the number of label classes. During BP.

The processes of FF and BP are executed in two steps until ρAvg ≃ 1 or the number of iterations reaches

(106) as mentioned in the algorithm section.

The SS step width decreases by increasing the number of labels; thus, we increase function

boundary b to increase the step width to ≃ 1 to make the ranking convergence; In addition, a few

complex data sets may need more data separability to enhance the ranking. Therefore, we use the b

value as a hyperparameter to keep the stair width >= 1 and normalize input data from −b to b.
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Figure 7. The structure used in both ranker ANN and PNN where ϕn=3, fin = 3 and λout = 3, per

⟨x1, π1⟩, L ∈ {λa, λb, λc} where π1 = {1, 2, 3}. and comparison of the convergence for both NN’s. The

demo video of convergence of two NN in the link [48].

Table 1 shows a brief comparison between Ranker ANN and PNN.

Table 1. ANN types used in initial experiment.

Type Ranker ANN PNN

Activation Fun. ReLU,Sigmoid PSS, SS

Gradient Descent Ascent

Objective Fun. RMS ρ

Stopping Criteria. τ ρ

The following section describes the data preprocessing steps, feature selections, and components

of PN.

3. PN Components

3.1. Image Preprocessing

3.1.1. Greyscale Conversion

Data scaling as red, green, and blue (RGB) colors is not considered for ranking because PN

measures the preference values between pixels. Thus, The image is converted from RGB color to

Greyscale.

3.1.2. Pixels’ Sorting

Ranking the image from π = {λ1, .., λm} to π = {λ1, .., λk} where the maximum greyscale value

λm = 255 and λk is the maximum ranked pixel value as illustrated in Figure 8a.
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Figure 8. Image pixel sorting for the flattened windows in (a,b) respectively.

3.1.3. Pixels Averaging

Ranking image pixels has an almost low ranking correlation due to noise, scaling, light, and object

movement; therefore, window averaging is proposed by calculating the mean of pixel values of the

small flattened window size of 2x2 of 4 pixels as shown in Figure 9. The overall image ρ of pixels

increased from 0.2 to 0.79 in (a and b), from 0.137 to 0.75 for noisy images in (s and d), and scaled

images from -0.18 to 0.71 in (e and f).

(a) ρ = 0.216 (b) ρ = 0.79

(c) ρ = 0.137 (d) ρ = 0.75

(e) ρ =−0.18 (f) ρ = 0.71

Figure 9. Sample of moving objects in (a,b) without and with averaging by window 2x2. The ranking

of two flattened images are ρ = 0.216 and 0.79 in (a,b), respectively. Sample of moving noisy object in

(c,d) without and with image averaging by a window of 2x2. The ranking of two flattened images are

ρ = 0.137, 0.75 and 0.75 in (c,d) respectively. ranking scaled circle in (e,f), respectively.
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The two approaches, Pixel ranking and Averaging has been tested in remote sensing and faces

images to detect the similarity, and it shows high ranking correlations using different window size as

shown in Figure 10. It detects the high correlation by starting from the large window size = image

size. It reduces the size and scans until it reaches the highest correlation.

ρ = 0.84ρ = 0.81ρ = 0.6

Figure 10. Detecting the similarity in remote sensing and face recognition by ranking the image pixels

after averaging the pixels using a 2x2 window.

3.2. Feature Selection By Attention

Feature selection for the kernel proceeded by selecting the features with a high group of pixel

ranking variations indicating the importance of the scanned kernel area. This kind of hard attention

makes the selection based on the threshold of pixel ranking values. to reduce the dimension of the

input image.

3.3. Feature Extraction

This paper proposes a new approach for image feature selection based on the preference values

between pixels instead of the convolution of pixels array as implemented in CNN. The PN’s features

are based on ranking computational space. Therefore, the kernel window size is considered a factor

for feature selection.

3.3.1. Pixels Resorting

The flattened window’s values are sorted for each kernel window in the image. The Figure 8b

shows the window size 3X3 range from λk1
= 23 to λk2

= 9. Pixel sorting reduces the data margin,

Thus, it reduces the computational complexity.

3.3.2. Weighted Ranker Kernel

The kernel weights are randomly initialized from -0.05 to 0.05. The kernel learns the features by BP

of its weights to select the best feature. the partial change in the kernel is calculated by differentiating

the spearman correlation as in Equation (6)

dKw = 2 · Imgw − dρ ·
n3 − n

−6
(6)

Different kernel sizes could be used for big images’ size. We use three different kernels to capture the

relations between different features.

3.3.3. Max Pooling

Max. pooling is used to reduce the features map’s size and select the highest correlation values to

feed to the PNN.
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3.4. PN Structure

PN is the deep learning structure of PNN for image classification. It consists of five layers, a

ranking features map and a max. pooling and three PNN layers. PN has one or multiple different

sizes of PNNs connected by one output layer. Each PNN has SS or PSS where ϕn=2 for binary ranking

to map the classification. The number of output neurons is the number of classes. The structure is

shown in Figure 11. PN have one or more ranker kernels with different sizes, Each kernel has one

corresponding PNN. PN uses the weighted kernel ranking to scan the image and extract the features

map of spearman correlation values of the kernel with the scanned ranked image window as ρ(πk, πw)

where πk is the kernel preference values and πw is the scanned window image preference values.

Each kernel scans the image by one step and creates a spearman features list. Max. Pooling is used to

minimize the feature map used as input to PNN.

One 5X5 kernel is used for fashion Mnist data set [53]. Three kernels with sizes (3, 10, and 20) are

used for CFAR-100 [54].
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Figure 11. The PN structure has three kernels and three PNNs where ϕn=2, f1in = 16, f2in = 81, f3in =

169 and λout = 15, per ⟨x1, π1⟩,π ∈ {λ1, λ2, λ3 · · · , λ15}.

3.5. Choosing The Kernel Size

Kernel size is chosen based on the hard attention of the highest group of pixels that has high

ranking variation. The process scans the image sequentially starting from a small size to find the size

with the highest pixels ranking variation. For example for the Mnist dataset where the image has a

size of 28X28, The meaningful features are extracted using kernel sizes 10x10, 15x15, 20x20 and 25x25.
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4. Algorithms

4.1. Baseline Algorithm

Algorithm 1 represents the three functions of the network learning process;

feed-forward (FF), BP, and updating weights (UW). Algorithm 2 represents the

learning flow of PN. Algorithm 3 represents the simplified BP function in two steps.

Algorithm 1: PNN learning flow.

Data: D ∈ {x1, x2, . . . , xd}

Result: π ∈ {λy1
, . . . , λyn

}

Randomly initialize weights ωi,j ∈ {−0.05, 0.05}

repeat

forall ⟨xi, πi⟩ ∈ D do

ai|l−1 = ∑
m
i=1 ϕ

(

ai · ωi

)

|n // FF

PNN BP()

ωinew = ωiold − η · δi //UW

end

until ρAvg = 1 or #iterations ≥ 106;

Algorithm 2: PN Learning flow.

Converting image to greyscale

Flattening image

Pixels sorting

2D Image

Pixels averaging by a 2X2 window

Flattening image

Select one/more kernel sizes.

Random init. Kernel Kωx,y ∈ {−0.05, 0.05}

Random init. PNN ωi,j ∈ {−0.05, 0.05}

repeat
2D Image

Scanned window pixel ranking Imgw

Compute ρ(Imgw, Kw) feature map

Max. Pooling.

Flattening image

PNN FF()

PNN BP()

PNN UW()

Max. Pooling BP()

Ranker kernel BP and UW()
until ρAvg = 1 or #iterations ≥ 106;
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Algorithm 3: PNN BP.

Step 1: for each pni in Output layer do

Erri = ρ = −6 · (2yti−yi)
m(m2−1)

//spearman error

δi = Err · ϕ′

end

Step 2: for each pni in middle layer do
Erri = ∑

m
k=0 ωk · δk

δi = Err · ϕ′

end

4.2. Ranking Visualization

PNN ranking convergence is visualized using the SS function by displaying the normalized

input data points with corresponding actual ranked five labels represented in 5 different colours, The

plotting of input value and SS output values per iteration is shown in Figure 12, which illustrates

the distribution of SS output values against the actual colour values at iterations 0 and 3900 and τ is

enhanced from 0.39 to 0.85.
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Figure 12. Visualizing the ranking of stock dataset [52] has five labels using SS activation function of

stock data set at epoch 0 and 3900 in (a,b) respectively.

4.3. Complexity Analysis

4.3.1. Time Complexity

• FF time complexity corresponds to FF of middle and output layers, and m and n are the number of

nodes in the middle and output layers. Wm and Wo are weighted matrix and SSt is the activation

function of number of instances t. The time complexity in Equation (7)

O(m · o · t) (7)

• BB starts with calculating the error of output layer Eot = ρ′o Deltao = Eot · SS′ and Deltam =

Emt · SS′ then UW

Wm = Wm − Deltam (8)

This time complexity is then multiplied by the number of epochs p

O(p · m · o · t) (9)
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4.3.2. Input Neurons

The number of PN input neurons is represented by Equation (10)

#Input = (Imgw − Kw + 1) · (Imgh − Kh + 1) (10)

where w and h are width and height of kernel and image.

5. Network Evaluation

This section evaluates the PNN against different activation functions and architectures. All

weights are initialized = 0 to compare activation functions and A and B have the same initialized

random weights to evaluate the structure.

5.1. Activation Functions Evaluation

PNN is tested on iris and stock data sets using four activation functions. SS, PSS, ReLU, sigmoid,

and tanh. PNN has one middle layer and the number of hidden neurons (h.n.) is 50, while l.r.= 0.05.

Figure 13 shows the convergence after 500 iterations using four activation functions (SS, PSS, sigmoid,

ReLU and tanh) respectively. We noticed that PSS and SS have a stable rate of ranking convergence

compared to sigmoid, tanh, and ReLU. This stability is due to the stairstep width, which leads each

point to reach the correct ranking during FF and BP in fewer epochs.
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0.2
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ea

rm
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(a) Ranking all labels
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(b) 60% missing labels

Figure 13. PNN activation function comparison using complete labels and 60% missing labels in (a,b),

respectively.

5.1.1. PSS and SS Evaluation

As shown in Figure 13, PSS reaches convergence and remains stable for a long number of iterations

compared to SS. However, SS has better ρ than PSS. This good performance of SS is due to the reason:

• The symmetry of SS function on the x axis. The SS shape handles both positive and negative

normalized data. It reduces the number of iterations to reach the correct ranking values.

To have the same performance for SS and PSS, the input data should be scaled from 0 to step width X

#steps and from -b to b for PSS and SS respectively.

5.1.2. Missing Labels Evaluation

Activation functions are evaluated by removing a random number of labels per instance. PNN

marked the missing label as -1; PNN neglects error calculation during BP, δ = 0. Thus, the missing

label weights remain constants per learning iteration. The missing label approach is applied to the

data set by 20% and 60% of the training data. The ranking performance decreases when the number of
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missing labels increases. However, SS and PSS have more stable convergence than other functions.

This evaluation is performed on the iris data set, as shown in Figure 13.

5.1.3. Statistical Test

The PNN results were evaluated using receiver operating characteristic (ROC) curves. The true

positive and negative for each rank are evaluated per label of wine dataset as shown in Figure 14. The

confusion matrix on wine and glass DS are shown in Figure 15 where τ = 0.947, 0.84, Accuracy = 0.935

and 0.8 in (a) and (b) respectively.

Figure 14. ROC of three labels ranking on the wine data set using PNN h.n=100 and 50 epochs.
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Precision 0.972 0.85 1.0

Recall 0.972 0.972 0.861

F1 Score 0.972 0.909 0.925
(a)

Precision 0.729 0.627 0.54 0.56 0.757 1.0

Recall 0.813 0.744 0.627 0.651 0.581 0.604

F1 Score 0.769 0.680 0.580 0.602 0.657 0.753
(b)

Figure 15. The confusion matrix of testing the wine, glass data sets where τ = 0.947, 0.84, Accuracy =

0.935 and 0.8 in (a,b) respectively.

5.1.4. Dropout Regularization

Dropout is applied as a regularization approach to enhance the PNN ranking stability by reducing

over-fitting. We drop out the weights that have a probability of less than 0.5. these dropped weights

are removed from FF, BP, and UW steps. The comparison between dropout and non-dropout of PNN

are shown in Figure 16. The gap between the training model and ten-fold cross-validation curves has

been reduced using dropout regularization using hyperparameters (l.r.=0.05, h.n.=100) on the iris data

set. The dropout technique is used with all the data ranking results in the next section.
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Figure 16. Training and validation performance without and with dropout regulation approach in (a,b)

respectively.

The following section is the evaluation of ranking experiments using label benchmark data sets.

6. Experiments

This section describes the classification and label ranking benchmark data sets, the results using

PN and PNN, and a comparison with existing classification and ranking methods.

6.1. Data Sets

6.1.1. Image Classification Data Sets

PN is evaluated using CFAR-100 [54] and Fashion-MNIST [55] data sets.

6.1.2. Label Ranking Data sets

PNN is experimented with using three different types of benchmark data sets to evaluate the

multi-label ranking performance. The first type of data set focuses on exception preference mining [56],

and the ‘algae’ data set is the first type that highlights the indifference preferences problem, where

labels have repeated preference value [57]. German elections 2005, 2009, and modified sushi are

considered new and restricted preference data sets. The second type is real-world data related to

biological science [18]. The third type of data set is semi-synthetic (SS) taken from the KEBI Data

Repository at the Philipps University of Marburg [52]. All data sets do not have ranking ground truth,

and all labels have a continuous permutation space of relations between labels. Table 2 summarizes

the main characteristics of the data sets.
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Table 2. Benchmark data sets for label ranking; preference mining [57], real-world data sets [58] and

semi-synthetic (s-s) [52].

Type DS Cat. #Inst. #Attr. #lbl.

M
in

in
g

algae chemical stat. 317 11 7
german.2005 user pref. 413 31 5
german.2009 user pref. 413 31 5

sushi user pref. 5000 13 7
top7movies user pref. 602 7 7

R
ea

l

cold biology 2,465 24 4
diau biology 2,465 24 7
dtt biology 2,465 24 4

heat biology 2,465 24 6
spo biology 2,465 24 11

S
em

i-
S

y
n

th
es

iz
ed

authorship A 841 70 4
bodyfat B 252 7 7

calhousing B 20,640 4 4
cpu-small B 8192 6 5
elevators B 16,599 9 9

fried B 40,769 9 5
glass A 214 9 6

housing B 506 6 6
iris A 150 4 3

pendigits A 10,992 16 10
segment A 2310 18 7

stock B 950 5 5
vehicle A 846 18 4
vowel A 528 10 11
wine A 178 13 3

wisconsin B 194 16 16

6.2. Results

6.2.1. Image Classification Results

PN has 3 kernel sizes of 5,10 and 20 and is tested on the CFAR-100 [54] data set and 1 kernel with

a size 5 for Fashion-MNIST data set [55]. Table 3 shows the results compared to other convolutions

networks.
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Table 3. Comparison of classification on CIFAR-100 [54] and Fashion-Mnist data set [55] using different

convolution models

DS Model Baseline MixUp

C
IF

A
R

-1
00

ResNet [59] 72.22 78.9
WRN [60] 78.26 82.5
Dense [61] 81.73 83.23

EfficientNetV2-M [62] 92.2 -
EffNet-L2 (SAM) [63] 96.08 -

CvT [64] 94.39 -
PrefNet 80.6 -

F
as

h
io

n
-M

N
IS

T

MLP 0.871 -
RandomForest 0.873 -

LogisticRegression 0.842 -
SVC 0.897 -

SGDClassifier 0.81 -
LSTM [65] 0.8757 -
DART [66] 0.965 -

PrefNet 0.91 -

6.2.2. Label Ranking Results

PNN is evaluated by restricted and non-restricted label ranking data sets. The results are

derived using spearman ρ and converted to Kendall τ coefficient for comparison with other approaches.

For data validation, we used 10-fold cross-validation. To avoid the over-fitting problem, We used

hyperparameters, i.e., l.r.= (0.0008,0.0005,0.005, 0.05, 0.1) hidden neuron = no.inputs+(5, 10, 50, 100,

200,300,400,450) neurons and scaling boundaries from 1 to 250) are chosen within each cross-validation

fold by using the best l.r. on each fold and calculating the average τ of ten folds. Grid searching is

used to obtain the best hyperparameter. For type B, we use three output groups and l.r.=0.001 and

wb = 0.01.

6.2.3. Benchmark Results

Table 4 summarizes PNN ranking performance of 16 strict label ranking data sets by l.r. and

m.n. The results are compared with the four methods for label ranking; supervised clustering [58],

supervised decision tree [52], MLP label ranking [23], and label ranking tree forest (LRT) [67]. Each

method’s results are generated by ten-fold cross-validation. The comparison selects only the best

approach for each method.

During the experiment, it was found that ranking performance increases by increasing the number

of central neurons up to a maximum of 20 times the number of features. As shown in Table 6, The

real datasets are ranked using PNN with dropout regulation due to complexity and over-fitting. The

dropout requires increasing the number of epochs to reach high accuracy. All the results are held using

a single hidden layer with various hidden neurons (100 to 450) and SS activation function. The Kendall

τ error converges and reaches close to 1 after 2000 iterations, as shown in Figure 17.
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Figure 17. Ranking performance comparison of PNN with other approaches.

Table 4 compares PNN with similar approaches used for label ranking. These approaches are;

Decision trees [58], MLP-LR [23] and label ranking trees forest LRT [67]. In this comparison, we choose

the method that has the best results for each approach.

Table 4. PNN performance comparison with various approaches: supervised clustering [58], supervised

decision tree [52], MLP label ranking [23] and label ranking tree forest (LRT) [67].

Label Ranking Methods

DS S.Clust. DT MLP-LR LRT PNN

authorship 0.854 0.936(IBLR) 0.889(LA) 0.882 0.918

bodyfat 0.09 0.281(CC) 0.075(CA) 0.117 0.5591

calhousing 0.28 0.351(IBLR) 0.130(SSGA) 0.324 0.34

cpu-small 0.274 0.50(IBLR) 0.357(CA) 0.447 0.46

elevators 0.332 0.768(CC) 0.687(LA) 0.760 0.73

fried 0.176 0.99(CC) 0.660(CA) 0.890 0.91

glass 0.766 0.883(LRT) 0.818(LA) 0.883 0.8175

housing 0.246 0.797(LRT) 0.574(CA) 0.797 0.712

iris 0.814 0.966(IBLR) 0.911(LA) 0.947 0.917

pendigits 0.422 0.944(IBLR) 0.752(CA) 0.935 0.86

segment 0.572 0.959(IBLR) 0.842(CA) 0.949 0.916

stock 0.566 0.927(IBLR) 0.745(CA) 0.895 0.834

vehicle 0.738 0.862(IBLR) 0.801(LA) 0.827 0.754

vowel 0.49 0.90(IBLR) 0.545(CA) 0.794 0.85

wine 0.898 0.949(IBLR) 0.931(LA) 0.882 0.90

wisconsin 0.09 0.629(CC) 0.235(CA) 0.343 0.612

Average 0.475 0.79 0.621 0.730 0.755

6.2.4. Preference Mining Results

The ranking performance of the new preference mining data set is represented in Table 2. Two

hundred fifty hidden neurons are used To enhance the ranking performance of the algae data set’s

repeated label values. However, restricted labels ranking data sets of the same type, i.e., (German

elections and sushi), did not require a high number of hidden neurons and incurred less computational

cost.

Experiments on the real-world biological data set were conducted using supervised clustering

(SC) [58], Table 5 presents the comparison between PNN and supervised clustering on biological real

world data in terms of LossLR as given in Equation (11).

τ = 1 − 2 · LossLR (11)
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where τ is Kendall τ ranking error and LossLR is the ranking loss function.

SS function with 16 steps is used to rank Wisconsin data set with 16 labels. By increasing the

number of steps in the interval and scaling up the features between -100 and 100, The step width is

small. To enhance ranking performance, the data set has many labels. The number of hidden neurons

is increased to exceed τ = 0.5.

Table 5. Comparison between PNN and supervised clustered on biological real world data in terms of

LossLR.

Biological real world data

DS S.Clustering PNN

cold 0.198 0.11

diau 0.304 0.255

dtt 0.124 0.01

heat 0.072 0.013

spo 0.118 0.014

Average 0.1632 0.0804

Table 6. PNN label ranking performance in terms of τ coefficient, learning step and the number of

middle layer neurons (#m.n). The training per fold and testing time is given in the last two columns.

‘s’, ‘m’, ‘h’ denote seconds, minutes and hours, respectively.

Type DS Avg. τ #m.n. l.r. #Iterations. Dropout Scaling. Training t. Testing t.

R
ea

l

cold 0.4 10 0.0008 2000 yes -4:4 2.8h 1.2s
diau 0.466 400 0.0005 2500 yes -2:2 2.9h 4s
dtt 0.60 400 0.0001 5000 yes -4:4 5.7h 1.88s

heat 0.876 450 0.0005 5000 yes -2:2 6.2h 1.18s
spo 0.8 300 0.0005 5000 yes -4:4 7.4h 0.98s

German2005 0.8 300 0.0005 1000 no -4:4 35.15m 0.0879s
German2009 0.67 300 0.0005 500 no -4:4 7.087m 0.105s

S
em

i-
S

y
n

th
es

iz
ed

authorship 0.931 200 0.0008 200 no -4:4 3.82m 0.34s
bodyfat 0.559 100 0.0005 2500 yes -2:2 16.92m 0.44s

calhousing 0.34 200 0.0007 1000 no -2:2 5.03h 4.127s
cpu-small 0.46 200 0.005 1000 no -2:2 2.089h 1.717
elevators 0.73 20 0.003 100 no -2:2 27.03m 3.7s

fried 0.89 100 0.005 100 no -2:2 1.02h 8.45s
glass 0.948 100 0.005 100 no -3:3 14.8s 0.04s

housing 0.7615 25 0.005 100 no -3:3 37.21s 0.1s
iris 0.956 100 0.005 100 no -3:3 29.39s 0.066s

pendigits 0.86 100 0.005 100 no -3:3 34.6m 5.69s
segment 0.956 20 0.007 100 no -3:3 440.8s 0.94s

stock 0.868 100 0.005 100 no -3:3 142.48s 0.87s
vehicle 0.869 100 0.005 100 no -3:3 91s 0.2s
vowel 0.85 100 0.005 100 no -3:3 88.37s 0.312s
wine 0.90 100 0.005 100 no -3:3 19.19s 0.063s

wisconsin 0.61 300 0.0005 2500 yes -4:4 13.56m 0.1332s

6.3. Computational Platform

PNN and PN is implemented from scratch without the Tensorflow API and developed using

Numba API to speed the execution on the GPU and use Cuda 10.1 and Tensorflow-GPU 2.3 for GPU

execution and executed at the University of Technology Sydney High-Performance Computing cluster

based on Linux RedHat 7.7, which has an NVIDIA Quadro GV100 and memory of 32 G.B. For a

non-GPU version of PNN is located at GitHub Repository [68].
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6.4. Discussion and Future Work

It can be noticed from Table 2 that PN is performing better than ResNet [59] and WRN [60].

Different types of architectures of PN could be used to enhance the results and reach state-of-the-art in

terms of image classification [69–71]. It can be noticed from Table 3 that PNN outperforms on SS data

sets with τAvg = 0.8, whereas other methods such as, supervised clustering, decision tree, MLP-ranker

and LRT, have results τAvg = 0.79, 0.73, 0.62, 0.475, respectively. Also, the performance of PNN is

almost 50% better than supervised clustering in terms of ranking loss function LossLR on real-world

biological data set, as shown in Table 5. The superiority of PNN is used for classification and ranking

problems. The ranking is used in input data as a feature selection criteria is a novel approach for deep

learning.

Encoding the labels’ preference relation to numeric values and ranking the output labels

simultaneously in one model is an advanced step over pairwise label ranking based on classification.

PNN could be used to solve new preference mining problems. One of these problems is incomparability

between labels, where Label ranking has incomparable relation ⊥, i.e., ranking space (λa ≻ λb⊥λc) is

encoded to (1, 2, -1) and (λa ≻ λb)⊥(λc ≻ λd) is encoded to (1, 2, -1, -2). PNN could be used to solve

new problem of non-strict partial orders ranking, i.e., ranking space (λa ≻ λb ⪰ λc) is encoded to (1, 2,

3) or (1, 2, 2). Future research may enhance PN by adding kernel size and SS parameters as part of

the deep learning to choose the best kernel size and SS step width, which could enhance the image

attention. Modifying PNN architecture by adding bias and solving noisy label ranking problems.

7. Conclusions

This paper proposed a novel method to rank a complete multi-label space in output labels

and features extraction in both simple and deep learning.PN is a new research direction for image

recognition based on new kernel and pixel calculations. PNN and PN are native ranker networks for

image classification and label ranking problems that uses SS or PSS to rank the multi-label per instance.

This neural network’s novelty is a new kernel mechanism, activation, and objective functions. This

approach takes less computational time with a single middle layer. It is indexing multi-labels as output

neurons with preference values. The neuron output structure can be mapped to integer ranking value;

thus, PNN accelerates the ranking learning by assigning the rank value to more than one output layer

to reinforce updating the random weights. PNN is implemented using python programming language

3.6 [68], and activation functions are modelled using wolframe Mathematica software [72]. A video

demo that shows the ranking learning process using toy data is available to download [48].

Acknowledgments: This work was supported in part by the Australian Research Council (ARC) under discovery
grants DP180100656 and DP210101093. The research was also sponsored in part by the US Office of Naval Research
Global under Cooperative Agreement Number ONRG - NICOP - N62909-19-1-2058 and AFOSR – DST Australian
Autonomy Initiative agreement ID10134. We also thank the NSW Defence Innovation Network and NSW State
Government of Australia for financial support in part of this research through grant PP21-22.03.02.

References

1. J. Frnkranz and E. Hüllermeier, Preference Learning, 1st ed. Berlin, Heidelberg: Springer-Verlag, 2010.

2. R. Brafman and C. Domshlak, “Preference handling - an introductory tutorial,” pp. 58–86, 2009.

3. G. Adomavicius and A. Tuzhilin., “Toward the next generation of recommender systems: a survey of the

state-of-the-art and possible extensions,” pp. 734–749, 2005.

4. M. Montaner and B. López, “A taxonomy of recommender agents on the internet.” pp. 285–330, 2003.

5. F. Aiolli, “A preference model for structured supervised learning tasks,” pp. 557–560, 2005.

6. K. Crammer and Y. Singer, “Pranking with ranking,” pp. 641–647, 2002.

7. Q. Ni, J. Guo, W. Wu, and H. Wang, “Influence-based community partition with sandwich method for social

networks,” IEEE Transactions on Computational Social Systems, pp. 1–12, 2022.

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 19 April 2023                   doi:10.20944/preprints201904.0091.v5

https://doi.org/10.20944/preprints201904.0091.v5


26 of 28

8. H. Wang, Q. Gao, H. Li, H. Wang, L. Yan, and G. Liu, “A Structural Evolution-Based Anomaly Detection

Method for Generalized Evolving Social Networks,” The Computer Journal, vol. 65, no. 5, pp. 1189–1199, 12

2020.

9. C.-Q. Huang, F. Jiang, Q.-H. Huang, X.-Z. Wang, Z.-M. Han, and W.-Y. Huang, “Dual-graph attention

convolution network for 3-d point cloud classification,” IEEE Transactions on Neural Networks and Learning

Systems, pp. 1–13, 2022.

10. H. Wang, Z. Cui, R. Liu, L. Fang, and Y. Sha, “A multi-type transferable method for missing link prediction

in heterogeneous social networks,” IEEE Transactions on Knowledge and Data Engineering, pp. 1–13, 2022.

11. F. Guo, W. Zhou, Q. Lu, and C. Zhang, “Path extension similarity link prediction method based on matrix

algebra in directed networks,” Computer Communications, vol. 187, pp. 83–92, 2022.

12. X. Qin, Z. Liu, Y. Liu, S. Liu, B. Yang, L. Yin, M. Liu, and W. Zheng, “User ocean personality model

construction method using a bp neural network,” Electronics, vol. 11, no. 19, 2022.

13. L. Liu, S. Zhang, L. Zhang, G. Pan, and J. Yu, “Multi-uuv maneuvering counter-game for dynamic target

scenario based on fractional-order recurrent neural network,” IEEE Transactions on Cybernetics, pp. 1–14,

2022.

14. Y. Zhou, Y. Liu, J. Yang, X. He, and L. Liu, “A taxonomy of label ranking algorithms,” JCP, vol. 9, pp. 557–565,

2014.

15. J. Furnkranz and E. Hüllermeier, “Pairwise preference learning and ranking in machine learning,” pp.

145–156, 2003.

16. J. Fürnkranz and E. Hüllermeier, “Preference learning,” 2010.

17. S. Har-Peled, D. Roth, and D. Zimak, “Constraint classification: A new approach to multiclass classification,”

2002.

18. E. Hüllermeier, J. Furnkranz, W. Cheng, and K. Brinker, “Label ranking by learning pairwise preferences,”

pp. 1897–1916, 2008.

19. J. Furnkranz and E. Hüllermeier, “Decision tree modeling for ranking data,” pp. 83–106, 2011.

20. W. Cheng and E. Hüllermeier, “Instance-based label ranking using the mallows model,” pp. 143–157, 2008.

21. G. Mihajlo, D. Nemanja, and V. Slobodan, “Learning from pairwise preference data using gaussian mixture

model,” 2014.

22. T. S. Chris Burges, “Learning to rank using gradient descent,” pp. 58–86, 2005.

23. G. Ribeiro, W. Duivesteijn, C. Soares, and A. Knobbe, “Multilayer perceptron for label ranking,” in Proceedings

of the 22nd International Conference on Artificial Neural Networks and Machine Learning - Volume Part II, ser.

ICANN’12. Springer, 2012, p. 25–32.

24. Y. Freund, R. Iyer, R. E. Schapire, and Y. Singer, “An efficient boosting algorithm for combining preferences,”

J. Mach. Learn. Res., vol. 4, no. null, p. 933–969, Dec. 2003.

25. Q. Wu, C. J. Burges, K. M. Svore, and J. Gao, “Adapting boosting for information retrieval measures,” vol. 13,

no. 3, p. 254–270, Jun. 2010. [Online]. Available: https://doi.org/10.1007/s10791-009-9112-1

26. Y. Jian, J. Xiao, Y. Cao, A. Khan, and J. Zhu, “Deep pairwise ranking with multi-label information for

cross-modal retrieval,” in 2019 IEEE International Conference on Multimedia and Expo (ICME), 2019, pp.

1810–1815.

27. J. Li, W. Y. Ng Wing, T. Xing, S. Kwong, and H. Wang, “Weighted multi-deep ranking supervised hashing for

efficient image retrieval,” International Journal of Machine Learning and Cybernetics, vol. 11, no. 4, pp. 883–897,

2020.

28. Z. Ji, B. Cui, H. Li, Y.-G. Jiang, T. Xiang, T. Hospedales, and Y. Fu, “Deep ranking for image zero-shot

multi-label classification,” IEEE transactions on image processing : a publication of the IEEE Signal Processing

Society, May 14 2020.

29. A. K. Cherian and E. Poovammal, “Classification of remote sensing images using cnn,” IOP Conference Series:

Materials Science and Engineering, vol. 1130, 2021.

30. A. Robert Singh and S. Athisayamani, “Survival prediction based on brain tumor classification using

convolutional neural network with channel preference,” in Data Engineering and Intelligent Computing,

V. Bhateja, L. Khin Wee, J. C.-W. Lin, S. C. Satapathy, and T. M. Rajesh, Eds. Singapore: Springer Nature

Singapore, 2022, pp. 259–269.

31. Z. Lv, L. Qiao, J. Li, and H. Song, “Deep-learning-enabled security issues in the internet of things,” IEEE

Internet of Things Journal, vol. 8, no. 12, pp. 9531–9538, 2021.

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 19 April 2023                   doi:10.20944/preprints201904.0091.v5

https://doi.org/10.1007/s10791-009-9112-1
https://doi.org/10.20944/preprints201904.0091.v5


27 of 28

32. Z. Lv, Z. Yu, S. Xie, and A. Alamri, “Deep learning-based smart predictive evaluation for interactive

multimedia-enabled smart healthcare,” ACM Trans. Multimedia Comput. Commun. Appl., vol. 18, no. 1s, jan

2022.

33. J. Xu, S. Pan, P. Z. H. Sun, S. Hyeong Park, and K. Guo, “Human-factors-in-driving-loop: Driver identification

and verification via a deep learning approach using psychological behavioral data,” IEEE Transactions on

Intelligent Transportation Systems, vol. 24, no. 3, pp. 3383–3394, 2023.

34. C. Zhan, Z. Dai, M. R. Soltanian, and F. P. J. de Barros, “Data-worth analysis for heterogeneous subsurface

structure identification with a stochastic deep learning framework,” Water Resources Research, vol. 58, no. 11,

p. e2022WR033241, 2022.

35. S. Pare, H. Mittal, M. Sajid, J. C. Bansal, A. Saxena, T. Jan, W. Pedrycz, and M. Prasad, “Remote sensing

imagery segmentation: A hybrid approach,” Remote Sensing, vol. 13, no. 22, 2021. [Online]. Available:

https://www.mdpi.com/2072-4292/13/22/4604

36. C. Moraga and R. Heider, “"New lamps for old!" (generalized multiple-valued neurons),” in Proceedings 1999

29th IEEE International Symposium on Multiple-Valued Logic (Cat. No. 99CB36329). IEEE, 1999, pp. 36–41.

37. I. Aizenberg, N. Aizenberg, and J. P. Vandewalle, Multi-Valued and Universal Binary Neurons: Theory, Learning

and Applications. Norwell, MA, USA: Kluwer Academic Publishers, 2000.

38. W. Zhou, Y. Lv, J. Lei, and L. Yu, “Global and local-contrast guides content-aware fusion for rgb-d saliency

prediction,” IEEE Transactions on Systems, Man, and Cybernetics: Systems, vol. 51, no. 6, pp. 3641–3649, 2021.

39. B. Xie, S. Li, M. Li, C. H. Liu, G. Huang, and G. Wang, “Sepico: Semantic-guided pixel contrast for domain

adaptive semantic segmentation,” IEEE Transactions on Pattern Analysis and Machine Intelligence, pp. 1–17,

2023.

40. X. Zhang, D. Huang, H. Li, Y. Zhang, Y. Xia, and J. Liu, “Self-training maximum classifier discrepancy for

eeg emotion recognition,” CAAI Transactions on Intelligence Technology, vol. n/a, no. n/a.

41. F. Jiang, B. Kong, J. Li, K. Dashtipour, and M. Gogate, “Robust visual saliency optimization based on

bidirectional markov chains,” Cognitive Computation, pp. 1–12, 2020.

42. A. K. Gupta, A. Seal, M. Prasad, and P. Khanna, “Salient object detection techniques in computer vision—a

survey,” Entropy, vol. 22, 2020.

43. H. Lei, T. Lei, and T. Yue-nian, “Sports image detection based on particle swarm optimization algorithm,”

Microprocess. Microsystems, vol. 80, p. 103345, 2021.

44. K. Zhang, Z. Wang, G. Chen, L. Zhang, Y. Yang, C. Yao, J. Wang, and J. Yao, “Training effective deep

reinforcement learning agents for real-time life-cycle production optimization,” Journal of Petroleum Science

and Engineering, vol. 208, p. 109766, 2022.

45. M. Liu, Q. Gu, B. Yang, Z. Yin, S. Liu, L. Yin, and W. Zheng, “Kinematics model optimization algorithm for

six degrees of freedom parallel platform,” Applied Sciences, vol. 13, no. 5, 2023.

46. G. Zhou, R. Zhang, and S. Huang, “Generalized buffering algorithm,” IEEE Access, vol. 9, pp. 27 140–27 157,

2021.

47. R. Zhang, “Sports action recognition based on particle swarm optimization neural networks,” Wireless

Communications and Mobile Computing, 2022.

48. A. Elgharabawy, “Preference neural network convergence performance,” Video file, 2020. [Online]. Available:

https://drive.google.com/drive/folders/1yxuqYoQ3Kiuch-2sLeVe2ocMj12QVsRM?usp=sharing

49. G. Bologna, “Rule extraction from a multilayer perceptron with staircase activation functions,” 2000.

50. M. Kendall, “Rank correlation methods,” 1948.

51. C. Spearman, “The proof and measurement of association between two things,” The American Journal of

Psychology, vol. 15, no. 1, pp. 72–101, 1904. [Online]. Available: http://www.jstor.org/stable/1412159

52. W. Cheng, J. Hühn, and E. Hüllermeier, “Decision tree and instance-based learning for label ranking,” in

Proceedings of the 26th Annual International Conference on Machine Learning, ser. ICML ’09. ACM, 2009, p.

161–168.

53. Y. LeCun and C. Cortes, “MNIST handwritten digit database,” 2010. [Online]. Available: http://yann.lecun.

com/exdb/mnist/

54. A. Krizhevsky, “Learning multiple layers of features from tiny images,” Tech. Rep., 2009.

55. H. Xiao, K. Rasul, and R. Vollgraf, “Fashion-mnist: a novel image dataset for benchmarking machine learning

algorithms,” 2017. [Online]. Available: http://arxiv.org/abs/1708.07747

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 19 April 2023                   doi:10.20944/preprints201904.0091.v5

https://www.mdpi.com/2072-4292/13/22/4604
https://drive.google.com/drive/folders/1yxuqYoQ3Kiuch-2sLeVe2ocMj12QVsRM?usp=sharing
http://www.jstor.org/stable/1412159
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
http://arxiv.org/abs/1708.07747
https://doi.org/10.20944/preprints201904.0091.v5


28 of 28
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