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In crystal periodic structure prediction, a general equation is needed to determine the period
vectors (cell edge vectors), especially when crystals are under arbitrary external stress. It has
been derived in Newtonian dynamics years ago, which can be combined with quantum mechanics
by further modeling. Here we derived such an equation in statistical physics, applicable to both
classical physics and quantum physics by itself.

Equations to determine the discrete particle positions
and the period vectors (cell edge vectors h = a,b, c,
forming a right-handed system) of crystals are needed in
the prediction of their structures in equilibrium states.
Since the particles (atoms, ions, electrons) inside crys-
tals always obey Newton’s second law or the Schrodinger
equation, the only unknown is the equation for the pe-
riod vectors, especially when crystals are under general
external stress. It has been derived in the framework
of Newtonian dynamics in recent years[1, 2], which can
be combined with quantum physics by further modeling.
Here we will derive it in statistical physics, applicable to
both classical physics and quantum physics by itself.

As a matter of fact, in statistical physics, the theory for
the same purpose but for crystals under external pressure
P , a special case of stress, has been well established for
many years[3]. Let us start by recalling it briefly.

As crystals are made of periodic arrangements of the
same cells in the three-dimensional space, they can be
studied by focusing on one cell interacting with the rest
cells. Thus, the external pressure actually only acting on
the surfaces of a macroscopic crystal bulk can be equiva-
lently described as the action on the surfaces of a crystal
cell being studied. The work done by the pressure on a
crystal cell is normally written as

dW = −PdV, (1)

where the cell volume V = (a × b) · c is the conjugate
variable of the pressure. Actually this specific work ex-
pression is further based on the idea that the cell is equiv-
alently regarded as being filled with continuous medium.
Then, based on the principles of statistical physics, the
pressure can be determined as equation (2.96) in the sta-
tistical reference book[3]:

P =
1

β

∂ lnZ

∂V
, (2)

where β = 1/(kT ), and Z, k, and T are the partition
function, Boltzmann constant, and temperature respec-
tively. This is essentially the equation of the state of
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an equilibrium crystal under external pressure. In other
words, the crystal cell volume and then the period vec-
tors can be calculated based on this equation for the given
external pressure.

Now let us change the forms of these equations slightly.
As dV = σa · da + σb · db + σc · dc, where σh = ∂V/∂h is
the surface area vector of the cell with respect to h, e.g.
σa = b × c, the above work can also be written as

dW = −(Pσa) · da − (Pσb) · db − (Pσc) · dc, (3)

where dh is now the conjugate variable of the force −Pσh
acting on the cell surface σh. Then, based on the princi-
ples of statistical physics, we have

Pσh =
1

β

∂ lnZ

∂h
(h = a,b, c), (4)

which is in the form of determining the period vectors
specifically. Combining Eq.(2) and Eq.(4) leads to
PV = kT (∂ lnZ/∂V )V = kT (∂ lnZ/∂a) · a

= kT (∂ lnZ/∂b) · b = kT (∂ lnZ/∂c) · c.
This means that the cell shape must be assumed to show
and keep certain symmetries for external pressure in ac-
tual calculation. Under such circumstances, Eq.(4) for
any specific period vector, e.g. h = a, should be equiv-
alent to Eq.(2) and about one-third calculation work of
Eq.(2).

Now let us consider crystals under arbitrary external
stress Υ, a second-rank tensor (3 × 3 matrix), to which
neither Eq.(2) nor Eq.(4) can apply. Since the force act-
ing on the cell surface σh of the equivalent continuous
medium is Υ · σh by the stress and the displacement of
the cell surface is dh, the work done by the stress on the
crystal cell is

dW = (Υ · σa) · da + (Υ · σb) · db + (Υ · σc) · dc, (5)

which becomes Eq.(1) when the stress reduces to the
pressure Υ = −P I with I being an identity tensor. Since,
as shown in Eq.(5), dh is the conjugate variable of the
force Υ · σh acting on the cell surface σh, based on the
principles of statistical physics again, we arrived at

Υ · σh = − 1

β

∂ lnZ

∂h
(h = a,b, c), (6)
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which has the same form on the right side as that in
Eq.(4). However, this is for crystals under external stress.
Eq.(6) also shows that, for given external stress, the pe-
riod vectors can be determined independently with each
other, with no additional restrictions on the cell symme-
try. For the special (pressure) case Υ = −P I, Eq.(6)
reduces to Eq.(4), then reduces to Eq.(2), as it should.

In classical statistics, as in equations (3.45-3.47) in the
reference book[3], the partition function can be factorized
as

Z = ZkZu, (7)

where Zk and Zu are the contributions of the kinetic
energy Ek and potential energy Ep respectively as

Zk =
V N

N !

∫
1

h3N
e−βEk(p)dp, (8)

where N is the number of total particles in the cell and
the integration is over all particles’ momentum spaces,
and

Zu =
1

V N

∫
e−βEp(q)dq, (9)

where the integration is over all particles’ coordinate
spaces. Bringing Eqs.(7, 8, and 9) into Eq.(6), we get

Υ · σh = − 1

V
NkTσh −

1

β

∂ lnZu
∂h

(h = a,b, c). (10)

The last term −∂ lnZu/(β∂h) in this equation is essen-
tially the same as the middle term ∂E/∂h of equation
(16) in our previous work [2], if the same way of deriva-
tion as in the second half of page 135 of the reference
book[3] is taken.

As a result, in classical physics, although the kinetic
energy term may be interpreted differently in details, all
the rest are verified between the equation achieved in
statistical physics here and that previously derived based
on the Newtonian dynamics[1, 2].

Since elasticity theory is also about the action of ex-
ternal stress on crystals, it is better to compare it with
this work.

First of all, elasticity theory studies crystals as contin-
uous media essentially, then is not interested in crystal
period vectors in principle. This work uses continuous
media only when formulates the work done by the exter-
nal stress, and tries to derive equation for determining
the period vectors as the sole purpose. Whatever, let us
suppose elasticity theory also studies microscopic struc-
ture of crystals.

Second, elasticity theory normally employs a reference
state under no external stress, in which the period vec-
tors h0 = a0,b0, c0, and all the particle position vectors
ri,0(i = 1, · · · , N) in the center cell are supposed known.
This work only tries to do something in the current state,
completely forgetting all other states. In other words,
this work treats every state independently essentially.

Third, it is well known that elasticity theory almost
always uses the strain u, also a second-rank tensor, to de-
scribe crystal deformation caused by the external stress.
By definition, strain means an assumption that all the pe-
riod vectors and particle position vectors of the current
state under certain external stress are linearly related to
the corresponding ones of the reference state in the same
form:

h = h0 + u · h0 (h = a,b, c), (11)

ri = ri,0 + u · ri,0 (i = 1, · · · , N), (12)

as this rule applies to any point of the crystal. However
this work does not make such an assumption, but re-
gards and uses all the period vectors (h = a,b, c) and the
particle position vectors ri(i = 1, · · · , N) as independent
variables with each other, then any new crystal structure
may be created by external stress and/or temperature.
Typically, external stresses may cause structural phase
transitions in crystals. Again since it is also well-known
about how to determine the particle position vectors ei-
ther by applying Newton’s second law or the Schrodinger
equation, this work only focuses on how to determine the
period vectors.

Furthermore, elasticity theory employs (extended)
Hooke’s law as a basic principle, with some additional
coefficients introduced, which may be determined by ex-
periments. This work does not assume any analytical
relationship between crystal period vectors and the ex-
ternal stress. Actually, Eq.(6) is the relationship be-
tween them, but with no additional coefficients intro-
duced. Then Eq.(6) can be used to calculate the coef-
ficients in Hooke’s law, if the law applies.

In summary, Eq.(6) was derived here for determining
crystal period vectors, then predicting crystal structures,
by formulating the work done by the external stress on
the crystal explicitly and applying the statistical princi-
ples. While the previously derived one in the frame work
of Newtonian dynamics can be combined with quantum
mechanics by further modeling, Eq.(6) applies to both
classical physics and quantum physics by itself.
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