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A basic and general equation to determine period vectors (cell edge vectors) is necessary in physics,
especially when crystals are under external stress. It has been derived in Newtonian dynamics. Since
statistical physics should also generate such equation, we will provide a derivation. By extending
the normal derivation for crystals under external pressure, regarding crystal cells as being filled with
continuous media, formulating the work done by the external stress on the crystal explicitly, and
deriving the forces on the surfaces of the cells by the external stress, we arrived at the equation for
the period vectors, which is in principle the same as the above mentioned counterpart achieved in
Newtonian dynamics. Everything also restores when the external stress reduces to the special case
of external pressure. It should be applicable when crystals are under different pressures in different
directions, like in piezoelectric and piezomagnetic phenomena.

Equations to determine the discrete particle positions
and the period vectors (cell edge vectors h = a,b, c,
forming a right-handed system) of crystals are needed in
the prediction of their structures in equilibrium states.
Since the inside particles (atoms, ions, electrons) always
obey Newton’s second law or the Schrodinger equation,
the only unknown is the equation for the period vectors,
especially when crystals are under external stress. It has
been derived in the framework of Newtonian dynamics in
recent years[1, 2]. We will derive it in statistical physics
as follows.

First, let us recall the well-established way to do it
for crystals under external pressure P . As the external
pressure only acts on the surfaces of a macroscopic crystal
bulk, this can be equivalently described as the action on
the surfaces of a crystal cell. Then the work done by the
pressure on a crystal cell is normally written as

dW = −PdV, (1)

where the cell volume V = (a × b) · c is the conjugate
variable of the pressure. Actually this work expression
is further based on the idea that the cell is equivalently
regarded as being filled with continuous media. Then
the pressure can be calculated as equation (2.96) in the
statistical reference book[3]:

P =
1

β

∂ lnZ

∂V
, (2)

where β = 1/(kT ), and Z, k, and T are the partition
function, Boltzmann constant, and temperature respec-
tively. This is essentially the general equation of the state
of an equilibrium system under external pressure. As
dV = σa · da + σb · db + σc · dc, where σh = ∂V/∂h is
the surface area vector of the cell with respect to h, e.g.
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σa = b × c, the above work can also be written as

dW = −(Pσa) · da − (Pσb) · db − (Pσc) · dc, (3)

where dh is now the conjugate variable of the force −Pσh
acting on the cell surface σh. Then we have

Pσh =
1

β

∂ lnZ

∂h
(h = a,b, c), (4)

which is in the form of determining the period vectors
specifically. Combining Eq.(2) and Eq.(4) leads to PV =
kT (∂ lnZ/∂V )V = kT (∂ lnZ/∂a) · a = kT (∂ lnZ/∂b) ·
b = kT (∂ lnZ/∂c) · c. This means that the cell shape
must show and keep certain symmetries for external pres-
sure. Under such circumstances, Eq.(4) for any specific
period vector, e.g. h = a, should be equivalent to Eq.(2)
and about one-third calculation work of Eq.(2).

Now let us consider crystals under external stress Υ, a
second-rank tensor (3× 3 matrix). Since the force acting
on the cell surface σh of the equivalent continuous media
is Υ · σh by the stress and the displacement of the cell
surface is dh, the work done by the stress should be

dW = (Υ · σa) · da + (Υ · σb) · db + (Υ · σc) · dc, (5)

which becomes Eq.(1) when the stress reduces to the
pressure Υ = −P I with I being an identity tensor. Since
dh is the conjugate variable of the force Υ · σh acting on
the cell surface σh, we arrived at

Υ · σh = − 1

β

∂ lnZ

∂h
(h = a,b, c), (6)

which has the same form on the right side as that in
Eq.(4). However, this is for crystals under external stress.
Eq.(6) also shows that the period vectors can change in-
dependently of each other, with no additional restric-
tion on the cell shape. For the special (pressure) case
Υ = −P I, Eq.(6) reduces to Eq.(4), then reduces to
Eq.(2), as it should.
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In classical statistics, as in equations (3.45-3.47) in the
reference book[3], the partition function can be factorized
as

Z = ZkZu, (7)

where Zk and Zu are the contributions of the kinetic
energy Ek and potential energy Ep respectively as

Zk =
V N

N !

∫
1

h3N
e−βEk(p)dp, (8)

where N is the number of total particles in the cell and
the integration is over all particles’ momentum spaces,
and

Zu =
1

V N

∫
e−βEp(q)dq, (9)

where the integration is over all particles’ coordinate
spaces. Bringing Eqs.(7, 8, and 9) into Eq.(6), we get

Υ · σh = − 1

V
NkTσh −

1

β

∂ lnZu
∂h

(h = a,b, c). (10)

The last term −∂ lnZu/(β∂h) in this equation is essen-
tially the same as the middle term ∂E/∂h of equation
(16) in our previous work [2], if the same way of deriva-
tion as in the second half of page 135 of the reference
book[3] is taken.

As a result, although the kinetic energy term may be
interpreted differently, all the rest are verified between
the equation achieved in statistical physics here and that

previously derived based on the above mentioned pure
Newtonian dynamics[1, 2]. Both can be further combined
with quantum mechanics and should play roles in study-
ing the very interesting piezoelectric and piezomagnetic
effects.
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