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Abstract: We provide a comprehensive framework for forecasting five minute load using Gaussian 
processes with a positive definite kernel specifically designed for load forecasts. Gaussian processes 
are probabilistic, enabling us to draw samples from a posterior distribution and provide rigorous 
uncertainty estimates to complement the point forecast, an important benefit for forecast consumers. 
As part of the modeling process, we discuss various methods for dimension reduction and explore 
their use in effectively incorporating weather data to the load forecast. We provide guidance for every 
step of the modeling process, from model construction through optimization and model combination. 
We provide results on data from the PJMISO for various periods in 2018. The process is transparent, 
mathematically motivated, and reproducible. The resulting model provides a probability density of 
five-minute forecasts for 24 hours.
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1. Introduction12

Intraday load forecasts are essential tools for decision makers in modern electric power markets.13

Forecasts of between one and thirty minutes, referred to in the literature and electric utility industry14

as very short term load forecasts, are used for generation dispatch, renewable integration, and15

frequency control. Because electricity storage is currently prohibitively expensive, grid operators must16

balance generation and demand at all times. Accurate short term load forecasts can help minimize17

generation costs by providing efficient dispatch instructions to utilities. Understanding short term18

demand minimizes over- and under-generation allowing frequency to be kept near its nominal value.19

Additionally, forecasts of up to 24 hours, known in the literature as short term load forecasts, are used20

by financial traders in power markets to predict the future price of power. An accurate load forecast21

helps traders ascertain which generators will be required to meet the load and at what cost.22

In this paper we introduce a procedure for creating an intraday electric load forecast using23

probabilistic non-parametric models known as Gaussian processes. Our method produces accurate24

predictions as well as uncertainty estimates. We detail a methodology for customizing the Gaussian25

process by identifying an appropriate covariance structure for short term load forecasting. We then26

identify techniques from the machine learning and optimization literature to estimate the parameters27

of the model. Finally, we implement a model combination procedure to create forecasts which are28

more accurate and have better estimates of uncertainty. We report forecast results for PJM, the largest29

deregulated wholesale electricity market in the United States.30

Modelers can choose which framework best suits the needs of the forecast consumers. In [1],31

the authors compare multiple frameworks and suggest that "It is very important for researchers and32

practitioners to understand that a universally best technique simply does not exist". Nevertheless it is33

possible to whittle down the desiderata so that the choice of framework becomes clear for particular34
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forecast applications. Multiple researchers have suggested that traditional point forecasts provided by35

frequentist statistics cannot meet the increasingly sophisticated needs of forecast consumers [1–4].36

Several authors have proposed methods for incorporating uncertainty into the modeling process.37

In [4], the authors use a model combination technique known as quantile regression and use the38

empirical distribution of the residuals to estimate a prediction interval. We use a less ad hoc method39

for estimating the uncertainty by adopting a Bayesian approach, using Gaussian processes as in [3]. In40

[3] the authors make use of an off-the-shelf positive definite kernel to specify the covariance structure41

of their Gaussian process. We extend that approach by designing a custom kernel specific to load42

forecasting, allowing for a richer class of models by specifying known parameters and using the data43

to inform the remaining parameters.44

1.1. Market Background45

Accurate intraday load forecasting ensures that electricity is provided reliably at the lowest46

possible cost. Each percentage point reduction in the mean absolute percentage error (MAPE)1 is47

estimated to reduce the cost of supplying electricity by $1.6 million annually for a 10 GW utility [5]. The48

expansion of deregulated electricity markets [6,7], renewable generation [8,9] and demand response49

programs [10] have increased the importance of accurate intraday load forecasts.50

We focus on forecasting load for PJM, a region covering all or part of 13 states stretching from51

the Mid-Atlantic through Illinois. PJM is served by a regional transmission organization (RTO) that52

coordinates the generation and distribution of electricity. Figure 1 provides a map of the PJM region.53

Intraday load forecasts for PJM are particularly useful for electricity market traders. Western Hub,54

comprised of around 100 electricity buses in western PJM, is the most liquid electricity trading hub in55

the United States. Market participants (generators, load serving entities and financial traders) can buy56

and sell financial contracts tied to electricity prices to hedge their exposure to financial and physical57

transactions. The Commodity Futures Trading Commission (CFTC) has found that trading at Western58

Hub provides a valuable price discovery mechanism for electricity buyers and sellers2. Intercontinental59

Exchange (ICE) reports over 250,000 MW of daily volume in the balance of day (BalDay) Western Hub60

product which trades live during market operations.61

PJM publishes five minute load forecasts up to seven days out. These load forecasts are updated62

every five minutes as new realizations of actual load arrive. Changes in the intraday forecast have63

significant impact on the price of electricity at Western Hub and thus the value of the ICE contract.64

Accurate intraday load forecasts give market participants an advantage in determining the right price65

to pay to hedge their electricity market risk.66

Relatively few intraday demand forecasts provide intuitive expressions of uncertainty.3 We67

contribute to the literature by proposing a method that produces a straightforward measure of68

uncertainty by allowing for draws from the posterior process. Understanding forecast uncertainty is69

particularly important for market participants who use load forecasts to schedule generation [13] or70

trade in financial markets. Different hours may have the same forecasted load levels but very different71

variances. High variance forecasts might encourage grid operators to prepare extra flexible generating72

capacity to come online if needed. Analogously, traders need measures of forecast uncertainty to73

understand the risk that their positions face. Measures of portfolio risk, like value at risk (VaR), require74

some measure of uncertainty. Load forecast uncertainty can also be a key input into electricity price75

forecasts which are widely used in the industry.76

1 See appendix for how the MAPE is calculated.
2 Based on the following 2010 CFTC notice: Orders Finding That the PJM WH Real Time Peak Contract and PJM WH Real Time

Off-Peak Contract Offered for Trading on the IntercontinentalExchange, Inc., Perform a Significant Price Discovery Function
3 [6] is a notable exception. The authors incorporate load uncertainty in developing an energy price forecast. The importance

of decision making under uncertainty has been recognized in the mathematics and computer science communities [11], and
in finance [12] but has not yet found prominence in energy price forecasting in spite of the uncertainty of many of the input
variables for pricing models.
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Figure 1. PJM service area. All colored sections are part of the service area. The Regional Transmission
Organization (RTO) is charged with balancing supply and demand over this region as well as managing
imports and exports of electricity. source: https://www.pjm.com/

2. Methodology77

2.1. Posterior Predictive Process78

Gaussian processes give rise to a class of Bayesian nonparametric models which have garnered79

tremendous attention in the machine learning community. The recent attention belies the fact that80

Gaussian processes, and more broadly kernel methods, have been used in scientific computing81

and numerical analysis for over 70 years. These methods draw on a rich theoretical and practical82

background. The popularity of Gaussian processes is due to the flexibility of modeling in83

infinite-dimensional space, the efficiency with which the data is used, the ease of implementation, and84

the natural handling of uncertainty. These properties make Gaussian processes ideal to forecast load85

for energy trading where accurate point estimates are required and uncertainty (i.e., risk) quantification86

is desirable.87

Consider a matrix of input data X ∈ Rm×d such that X := [x1, . . . , xm]>, and (xi)
m
i=1 ∈ Rd are

column vectors. For this paper the input data consists of temperatures (zi)
m
i=1 ∈ R(d−1)/2, dew points

(wi)
m
i=1 ∈ R(d−1)/2), and a time component (ti)

m
i=1 ∈ R, such that for i = 1, . . . , m,

xi =

 zi
wi
ti

 .

Output data, load, is also observed, y ∈ Rm
+ such that y := [y1, . . . , ym]>. The goal is to predict the

load, fnew ∈ Rmnew
+ , at mnew future times given future inputs Xnew ∈ Rmnew×d := [xm+1, . . . , xm+mnew ]

>.
For Gaussian processes, the posterior distribution of the predictive process relies on the particular
positive definite kernel chosen for the task; the properties of various kernels are discussed in Section 2.3.
For shorthand it is a common abuse of notation to pass the kernel matrix-valued arguments; the
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corresponding output is a kernel matrix (often referred to as the Gram matrix), as discussed in
Appendix A. The posterior process is derived in [14], the result is as follows4:

fnew | Xnew, X, y ∼ N
(

µpost, Γpost

)
, (1)

where µpost is the posterior mean,

µpost = K(Xnew, X)
(

K(X, X) + σ2
nI
)−1

y, (2)

and Γpost is the posterior variance,

Γpost = K(Xnew, Xnew)− K(Xnew, X)
(

K(X, X) + σ2
nI
)−1

K(Xnew, X). (3)

The mean term is also referred to as the maximum a posteriori (MAP) estimate. In our context it is a88

point forecast of the load. Sample realizations can be drawn from the predictive distribution, providing89

a mathematically rigorous and computationally efficient estimate of uncertainty. As a density estimate90

for future load, the posterior distribution can be used downstream in electricity price forecasting and91

modelling the risk associated with generation or trading decisions.92

2.2. Data Processing93

Temperature94

Including weather data in the intraday load forecast raises a number of issues. How many and95

which weather station locations should be used?5 What weather variables should be included? How96

does the use of too few or too many locations affect the quality of prediction? The final question97

is extremely pressing in the domain of prediction. A common approach in the machine learning98

community is to over-parameterize models and allow the information contained in the data to dictate99

which facets come to the forefront. Such an approach is data-inefficient. For example, if there are not100

enough weather stations to provide broad coverage then out of sample forecast accuracy is likely to be101

poor. Such phenomena are explored in the statistical learning theory literature [16].102

An important restriction in intraday load forecasting is that the algorithms must train quickly103

enough to be used in real-time planning. This means the amount of data employed in the model must104

be limited and over-parameterization should be avoided. On the other hand, excluding temperature105

information or hand-picking a small number of stations leads to an under-parameterized model in106

a geographically large market such as PJM. A well-tuned time series model is often adequate for107

prediction, but on the days where a dramatic change in temperature causes loads to spike beyond108

what recent temporal trends would suggest, weather must be included. Those days or hours coincide109

with the most active periods in the market so including information to capture those events is crucial.110

We begin with 32 weather stations located across the PJM region. To avoid over-parameterization111

that comes from including so many input dimensions and the known challenges of using distance112

metrics in high-dimensional spaces [17], we explore several different techniques for dimension113

reduction as outlined in Section 2.6.114

Before modelling we must also ensure the time resolution of the different datasets is consistent.115

The temperature data used for this paper is hourly, while the load data is reported in five minute116

4 It is common to include the noise variance σ2
n directly in the kernel rather than as a separate term. It is a matter of preference,

and has no bearing on the result. We keep the terms separate to make explicit that there is uncertainty and the result is not
an interpolative method.

5 The issue is discussed in [15]. We abstract from it in this paper.
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increments. We deal with this by interpolating hourly data to five-minute data using a piecewise cubic117

Hermite interpolating polynomials as described in [18]. We choose the Hermite spline for several118

reasons: an efficient implementation is available in most scientific programming languages, it is a true119

interpolating polynomial in that its output agrees with the observations, and it enforces first order120

smoothness and monotonicity between observations. These last two properties are realistic in that121

temperatures do not typically have discontinuities in their derivative and observations are sampled122

frequently enough that temperature can be assumed not to oscillate between consecutive observations.123
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Figure 2. Representative interpolation for approximately ten days of temperature data in Philadelphia,
Pennsylvania.

Dew point124

[19] find that incorporating dew points leads to substantial forecast accuracy improvements over125

dry-bulb temperatures alone. We collect hourly dew points from the same weather stations as the126

temperature data. To remain consistent with temperature data, we apply the same dimension reduction127

techniques used for the temperatures.128

Load129

We gather one year of 5-minute market-wide load data for PJMISO. Over the course of the year,
83 ticks, or approximately seven hours of data were not reported by the ISO. As with the weather, and
with similar rationale, we interpolate this missing data using a piecewise cubic Hermite interpolating
polynomial. Furthermore, Gaussian processes are sensitive to scale, so we normalize the load:

y =
yunnormalized − µyunnormalized

σyunnormalized

.

Here µyunnormalized and σyunnormalized , respectively, represent the mean and standard deviation of the130

observed data. The mean and standard deviation are stored in memory to be applied to ‘undo’ the131

scaling on the forecast.132

Time133

The temporal component, tunnormalized ∈ Z+ coincides with the five-minute observations; for
instance, t10unnormalized = 10 corresponds to the 10th observation. Some of the kernels have stability
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issues over long time scales so we linearly rescale the time axis so that 0 < t1 < tm = 10. The factor of
scaling is dependent on the amount of data used to train the model. For example, for m = 10000, t1unnormalized

...
tmunnormalized

 =

 1
...

10000

 and t =
tunnormalized

1000
.

Rescaling has no impact on the prediction beyond improving numerical stability.134

Data sampling135

A known issue with Gaussian processes is that the computation time generally scales cubically136

with the number of observations. In the context of load forecasting, training on one month of 5-minute137

ticks results in 8928 observations which is about the limit of computational feasibility for a modern138

desktop. Substantial efforts have been made in the machine learning community to address the139

scalability problem [20–23], but discussion and implementation of the proposed algorithms are beyond140

the scope of this paper. A simpler approach, common in the numerical analysis community, is to141

sample at appropriate intervals. Empirical and theoretical research has shown that for interpolation,142

errors tend to increase near the boundary of the domain and that the location of observations can have143

a dramatic effect on this error [24, §14.3]. We are extrapolating beyond the boundary of the domain144

so the theoretical results from approximation theory may not apply; nevertheless, it seems intuitive145

that a sampling scheme which works well on the boundary may be more effective than sampling146

observations uniformly at random. Thus, in accordance with wisdom from numerical analysis [24]147

we sample our training data more densely near the boundary of prediction, similar to the placement148

of Chebyshev nodes. Figure 3 provides a visualization of three different methods for sampling: the149

uniform random method samples observations from the training set uniformly at random, Chebyshev150

samples more observations near the prediction boundary, and mesh spacing samples observations on151

a coarse evenly spaced grid (e.g., every three observations).152

Uniform random
Chebyshev
Mesh

Figure 3. Three different observation sampling methods for 30 of 100 hypothetical observations. The
vertical axis is only meant to separate the different spacing methods.

2.3. Properties of Positive Definite Kernels153

Equations (1) and (3) make clear that the problem of modeling in a Gaussian process framework154

revolves around the positive definite kernel K, and its kernel matrix K. A brief mathematical155

background on positive definite kernels is provided in the Appendix. Gaussian processes are156

nonparametric models due to the fact that parameters do not appear in the model (see for instance157

equation (1)). This nomenclature is somewhat confusing as the kernel itself is typically parameterized.158

The parameterization of the kernel is important to the modeling process; it allows the analyst to159

impose structure on the covariance (to specify, for instance, periodicity), and allows for intuitive160

interpretations of the model. In the statistics literature, a positive definite kernel is referred to as a161

covariance kernel, emphasizing that K(·, ·) is a covariance function. Evaluating this function at particular162
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arguments, K(xi, xj), provides the covariance between two points xi and xj; performing this operation163

for i = 1, . . . m and j = 1, . . . , m yields the kernel matrix K ∈ Rm×m. The goal is to identify the correct164

covariance structure of the data by selecting an appropriate kernel and parameterizing it correctly.165

Since the choice of kernel and its parameterization determine the properties of the model, making an166

appropriate selection is crucial. In this section we provide examples of the kernels used in our model,167

explain the rationale behind their use, and discuss mathematical properties needed to construct the168

model from these kernels.169

The most obvious structure of the data is the cyclic nature over the course of the day, week, and
year. A discussion of the 7 and 365 day seasonality can be found in [25], where the authors show load
data in the frequency domain to identify the cyclic behavior. Their analysis has intuitive appeal as it
confirms the seasonal structure of power demand one might expect before observing any data. The
periodic kernel, first described in [26], can be used to model seasonality:

KPeriodic(xi, xj) = θ2
1 exp

(
−

2 sin2 (π ∥∥xi − xj
∥∥ /θ2

)
θ2

3

)
, (4)

where θ1, θ2, θ3 are the amplitude, the period, and the length-scale respectively. Figure 4 provides170

examples of periodic kernels of different length-scales, as well as realizations of Gaussian processes171

drawn using the kernels as covariance functions.172
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Figure 4. left: Random simlulations from Gaussian processes with covariances defined by three
different periodic kernels. In all cases the amplitude is 1 and the period is 1. The length-scales are 2, 1,
0.5 for top, middle, and bottom respectively. right: Covariance kernels corresponding to the cases on
the left.

The Gaussian (also known as squared-exponential) kernel is commonly used in the machine
learning literature. It has the form

KGaussian(xi, xj) = θ2
1 exp

(
−
∥∥xi − xj

∥∥2

2θ2
2

)
, (5)

where in this context θ1, θ2 are the amplitude and length-scale parameters. Figure 5 provides insight173

into the effect of the length-scale parameter for the Gaussian kernel. Notice that the samples in all174

cases are smooth even for short length-scales, this is characteristic of the Gaussian kernel.175

The Matérn 5/2 kernel, commonly used in the spatial statistics literature, has the form

KMatérn(xi, xj) = θ2
1

(
1 +

√
5
∥∥xi − xj

∥∥
θ2

+
5
∥∥xi − xj

∥∥2

3θ2
2

)
exp

(
−
√

5
∥∥xi − xj

∥∥
θ2

)
. (6)

Here, θ1, θ2 are the amplitude and length-scale parameters, which are analogous to their counterparts176

in the Gaussian and periodic kernels. The general Matérn kernel can be viewed as a generalization177
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Figure 5. left: Random draws from Gaussian processes with covariances defined by three different
Gaussian kernels. In all cases the amplitude is 1. The length-scales are 2, 1, 0.5 for top, middle, and
bottom respectively. right: Covariance kernels corresponding to the cases on the left.

of the covariance function of the Ornstein-Uhlenbeck (OU) process to higher dimensions [14, §4.2].178

The OU process has been used before to forecast load (see e.g., [27]), though in a different context then179

we use the Matérn here. Figure 6 provides insight into the effect of the length-scale parameter for180

the Matérn 5/2 kernel. Though the right pane of Figure 6 appears almost indistinguishable from the181

corresponding frame of Figure 5, it is apparent in the left pane that draws from Gaussian processes182

with the Matérn kernel are not smooth (though they are twice-differentiable).183
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Figure 6. left: Random draws from Gaussian processes with covariances defined by three different
Matérn 5/2 kernels. In all cases the amplitude is 1. The length-scales are 2, 1, 0.25 for top, middle, and
bottom respectively. right: Covariance kernels corresponding to the cases on the left.

At this point we have introduced several kernels, but the posterior predictive distribution outlined184

in Section 2.1 only identifies a single kernel. The following properties of positive definite kernels allow185

for their combination:186

Remark 1. Let K1, K2 be two positive definite kernels taking arguments from a vector space X . Then for all187

xi, xj ∈ X188

• K(xi, xj) = K1(xi, xj) + K2(xi, xj) is a positive definite kernel and,189

• K(xi, xj) = K1(xi, xj)K2(xi, xj) is a positive definite kernel.190

Furthermore, if K1 takes arguments from X1 (for instance, time), K2 takes arguments from X2 (for instance,191

space). Then, for all ti, tj in X1 and all zi, zj in X2,192

• K

((
zi
ti

)
,

(
zj
tj

))
= K1(ti, tj) + K2(zi, zj) is a positive definite kernel and,193
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• K

((
zi
ti

)
,

(
zj
tj

))
= K1(ti, tj)K2(zi, zj) is a positive definite kernel.194

Proofs of the statements in the above remark are straightforward and can be found in [28, §13.1].195

This remark allows for the combination of all the kernels that have been discussed in a way that is196

intuitive and easy to code. For example, we use the periodic kernel with a Matérn decay on time:197

K(xi, xj) = KPeriodic(xi, xj)KMatern(xi, xj)

= θ2
1 exp

(
−

2 sin2 (π ∥∥xi − xj
∥∥ /θ2

)
θ2

3

)(
1 +

√
5
∥∥xi − xj

∥∥
θ4

+
5
∥∥xi − xj

∥∥2

3θ2
4

)
exp

(
−
√

5
∥∥xi − xj

∥∥
θ4

)
.

(7)

The kernel can be interpreted as follows: the Matérn portion allows for a decay away from strict198

periodicity. This allows the periodic structure to change with time. A small length-scale for θ4199

corresponds to rapid changes in the periodic structure, whereas a long length-scale would suggest that200

the periodicity remains constant over long periods of time. We combine the amplitude parameters of201

each kernel into a single parameter, θ1. Figure 7 demonstrates the effect that varying θ4 of (7) has on202

the kernel, and on realizations of a process using that kernel. Consider that the structure of the top203

realization in the left pane of Figure 7 has clear similarities between successive periods, but after four204

or five periods the differences become more pronounced; this is in contrast to the bottom realization205

for which the similarities after two periods are already difficult to identify.206
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Figure 7. left: Random draws from Gaussian processes with covariances defined by three different
decaying periodic kernels. In all cases the amplitude is 1, the period is 1, and the length-scale of the
periodic kernel is 1. The length-scales of the Matérn kernel are 2, 1, 0.5 for top, middle, and bottom
respectively. right: Covariance kernels corresponding to the cases on the left.

2.4. Creating a Composite Kernel for Load Forecasts207

To showcase the properties of this method, and to give insight into how one might go about208

creating a composite kernel using domain expertise, we step through the construction of one such209

kernel in this section. At each step we discuss the desired phenomena that we would like to capture210

with the structure of the latest model. We also provide figures to help interpret the effect the changes211

have on the resulting predictions. The purpose of this section is to demonstrate how practitioners and212

researchers can create kernels which incorporate their own understanding of the ways load can vary213

with the forecast inputs. For illustrative purposes we use the same training/test data for every step in214

this process.215

We train each model on PJMISO data beginning on September 17, 2018 and ending on October216

26, 2018. We then predict load for October 27, 2018. The point estimate prediction is the posterior217
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mean of the Gaussian process. We also draw 1000 samples from the posterior distribution to illustrate218

the uncertainty of the model. Parameters which are not set manually are estimated via maximum219

likelihood as described in Section 2.5. The parameter σ2
n is not associated with any kernel, but reflects220

the magnitude of the noise, and is required for regularizing the kernel as shown in equations (1) and221

(3).222

We begin with two kernels meant to capture the periodicity. As discussed in Section 2.3, there is
known daily and weekly seasonality to the data, so we fix the parameters that control the period. The
kernel is thus,

K(ti, tj) = θ0
(
K1(ti, tj) + K2(ti, tj)

)
, (8)

where θ0 is the amplitude of the composite kernel. The parameters are provided in Table 1.223

Identifier Kernel Parameters Fixed Parameters Arguments

K1 Periodic θ1, θ2, θ3 θ2 = 288 Time (R)
K2 Periodic θ4, θ5, θ6 θ5 = 2016 Time (R)

Noise σ2
n R+

K Composite θ0 R+

Table 1. The parameters of the composite kernel described by equation (8)

Figure 8 shows that the daily and weekly periodicity capture a substantial portion of the variation224

in load. As expected, a purely periodic structure is not sufficient to accurately predict future load.225

Nevertheless, capturing the weekly and daily periodicity is an important first step for creating an226

accurate model. The estimated uncertainty is too low, likely because the model is not flexible enough227

to capture all the variation in load. We next develop a kernel that specifies a more realistic model to228

address this problem.229
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Figure 8. Backcasted and forecasted load using a composite kernel with daily and weekly periodicity.
Dashed vertical line indicates the transition from training data to test data.

Studying the structure of the forecasted and actual data in Figure 8 suggests that a decay away
from exact periodicity is desirable. One way to achieve this is via the kernel described in (7). In
particular, we want to allow consecutive days to co-vary more strongly than nonconsecutive days, and
similarly for weeks. This structure is described in equation (9) and Table 2

K(ti, tj) = θ0
(
K1(ti, tj)K3(ti, tj) + K2(ti, tj)K4(ti, tj)

)
. (9)
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Identifier Kernel Parameters Fixed Parameters Arguments

K1 Periodic θ1, θ2, θ3 θ2 = 288 Time (R)
K2 Periodic θ4, θ5, θ6 θ5 = 2016 Time (R)
K3 Gaussian θ7, θ8 Time (R)
K4 Gaussian θ9, θ10 Time (R)

Noise σ2
n R+

K Composite θ0 R+

Table 2. The parameters of the composite kernel described by equation (9)

Relaxing the strict periodic structure gives the model the flexibility required to capture the shape230

of the load curve. The noise term regularizes as needed to avoid overfitting. The training set is nearly231

perfectly predicted, but the model seems to generalize adequately suggesting the regularization is232

working. Figure 9 shows that the decaying periodic model better-captures the structure of the load the233

uncertainty is more realistic. The predicted uncertainty is too high which we address by adding more234

structure to the model.235
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Figure 9. Backcasted and forecasted load using a composite kernel with a decay away from strict daily
and weekly periodicity. Dashed vertical line signifies the transition from training data to test data.

The model appears to explain the temporal trends in the training data. For example, note the236

distinct dip and rise in the test predictions around the morning peak, characteristic of an autumn237

load curve. The discrepancy between the forecast and actual values on the test set may be due to the238

inability of a strictly time series model to capture all of the intricacies of power demand on the electric239

grid.240

A reasonable next step is to incorporate temperature information. We do this with a tensor product
over time to allow for a decay of the relevance of information as time passes. The resulting kernel is
described by equation (10) with the parameters outlined in Table 3. The temperature data is modeled
with a single Gaussian kernel which gives changes in temperature at every location equal weight. More
sophisticated methods for handling the high-dimensional temperature data are discussed in Section 2.6.
Figure 10 shows the results of using the kernel to predict only on the test set. The simulations shown
in Figure 10 are more accurate than those shown in Figure 9. The errors are smaller and the uncertainty
appears more reasonable. Clearly some phenomena are not picked up by the model. There remains
a persistent error of approximately 5000MW throughout the day. A more rigorous evaluation of the
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performance and a more thorough analysis of the forecast error and uncertainty for more complex
models is provided in Section 3.

K(xi, xj) := K

((
zi
ti

)
,

(
zj
tj

))
= θ0

(
K1(ti, tj)K3(ti, tj) + K2(ti, tj)K4(ti, tj) +

(
K5(ti, tj) + K6(ti, tj)

)
K7(zi, zj)

)
.

(10)
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Figure 10. Forecasted load using a composite kernel with a decay away from strict daily and weekly
periodicity, as well as a temperature component.

Identifier Kernel Parameters Fixed Parameters Arguments

K1 Periodic θ1, θ2, θ3 θ2 = 288 Time (R)
K2 Periodic θ4, θ5, θ6 θ5 = 2016 Time (R)
K3 Gaussian θ7, θ8 Time (R)
K4 Gaussian θ9, θ10 Time (R)
K5 Periodic θ11, θ12, θ13 θ12 = 288 Time (R)
K6 Periodic θ14, θ15, θ16 θ15 = 2016 Time (R)
K7 Matérn θ17, θ18 Temperature (Rp)

Noise σ2
n R+

K Composite θ0 R+

Table 3. The parameters of the composite kernel described by equation (10)

The model used in Section 3 is the result of creating a composite kernel using the procedure241

described in this section. The final kernel includes additional structure meant to capture phenomena242

not discussed in this section. In contrast to many modern machine learning techniques, we develop243

this structure consistent with domain specific knowledge as described above. The ability to incorporate244

this type of knowledge makes Gaussian processes are among the most powerful tools available to245

researchers with subject expertise. The benefits of Gaussian processes are likely smaller for situations246

where the modeler has little domain specific knowledge.247
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2.5. Parameter Estimation248

Once the kernel has been specified, the values of the parameters of the model must be determined.
We use maximum likelihood estimation, a popular and mathematically sound method for parameter
estimation. The log marginal likelihood of a Gaussian process is

log p(y | X, θ, σ2
n) = −

1
2

y>
(

K(X, X) + σ2
nI
)−1

y− 1
2

log det
(

K(X, X) + σ2
nI
)
− m

2
log 2π, (11)

where the parameter vector θ is implicit in the kernel. The observed data is fixed, so the goal is to249

choose the parameters which are most likely to have resulted in the observed data. Equation (11) has a250

convenient interpretation that helps explain why Gaussian processes are useful for modeling complex251

phenomena: the first term is the data-fit, encapsulating how well the kernel evaluated at the inputs252

represents the outputs. The second term is a penalty on the complexity of the model, depending only253

on the covariance function and the inputs. The third term is a normalization constant. Maximum254

likelihood estimation of the Gaussian process occurs over the hyperparameters θ and the complexity255

penalty inherently regularizes the solution.256

Likelihood maximization is an optimization problem that can be tackled in a variety of ways. Due257

to the high-dimensionality of the problem, a grid search is too time consuming. For the forecasts in258

Section 3, we use a generalization of gradient descent called stochastic subspace descent, as described259

in [29] and defined in Algorithms 1 and 2.260

Algorithm 1 Generate a scaled Haar distributed matrix (based on [30])

Inputs:

`, d . Dimensions of desired matrix, d > `

Outputs:

P ∈ Rd×` such that:

P>P = d
` I`

E PP> = Id

columns of P are orthogonal

Initialize X ∈ Rd×`

Set Xi,j ∼ N (0, 1)

Calculate QR decomposition of X = QR

Let ΛΛΛ =


R1,1/ |R1,1|

. . .

R`,`/
∣∣R`,`

∣∣


P =

√
d
`QΛΛΛ

Algorithm 2 is called by passing a random initialization of the parameters as well as a step-size,261

and a parameter ` which dictates the rank of the subspace that is used for the descent. The generic262

function f (·) that Algorithm 2 minimizes is specified by equation (11).263

This particular optimization routine is designed for high-dimensional problems with expensive264

function evaluations and gradients that are difficult or impossible to evaluate. Stochastic subspace265

descent uses finite differences to compute directional derivatives of low-dimensional random266

projections of the gradient in order to reduce the computational burden of calculating the gradient.267
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Algorithm 2 Stochastic subspace descent

Inputs:
α, ` . step size, subspace rank

Initialize:
θ0

for k = 1, 2, . . . do
Generate P by Algorithm 1
θk = θk−1 − αPP>∇ f (θk−1)

end for

The subroutine in Algorithm 1 defines a random matrix that is used to determine which directional268

derivatives to compute. Automatic differentiation software such as autograd for Python [31] can269

speed up the implementation by removing the need for finite differences, or for simpler kernels, the270

gradients can be calculated by hand. For complex kernels this may not be feasible so for generality271

and programming ease we use a zeroth-order method.272

An important attribute of stochastic subspace descent is that the routine avoids getting caught in273

saddle points which is a typical problem in high-dimensional, non-convex optimization as discussed in274

[32]. Despite the fact that this algorithm avoids saddle points, there is no guarantee that the likelihood275

surface is convex for any particular set of data and associated parameterization. Non-convexity implies276

that there may be local maxima with suboptimal likelihood that are far from the global maximum in277

parameter space. To address this concern we perform multiple restarts of the optimization routine278

with the parameters initialized randomly over the domain.279

2.6. Dimension Reduction280

Using a separate kernel to model the weather effects of every location for both temperature281

and dew point is inefficient as it causes the parameter space to be higher dimensional (and thus,282

more difficult to optimize over) than necessary. There are several existing methods for reducing the283

dimension of the parameter space while retaining information. In this section we introduce four such284

techniques, each with its own merits. Because there is no preferred dimension reduction technique for285

forecasting, we assess the performance of these methods discussed using the data described in Section286

2.4.287

Random sampling288

This method is the most naïve, but perhaps the most common, and certainly the easiest to289

implement. From the available weather stations a random subset is chosen according to some290

probability distribution, typically the discrete uniform distribution. An obvious downside to using291

the uniform distribution is that weather readings from the largest cities are given no preference in292

the selection. This fails to incorporate the fact that populous cities contribute more to demand than293

rural areas, and that the impact of weather in large cities has a more pronounced effect on demand.294

Furthermore, sampling uniformly may lead to drastically different results from one trial to the next. A295

simple, albeit tedious fix which we do not pursue in this paper is to select locations for inclusion in296

proportion to their population. In Section 3, we use a discrete uniform probability distribution to select297

three random locations to be used.298

Truncated singular value decomposition299

Another approach that is not specific to Gaussian processes is to use a truncated singular value300

decomposition (tSVD). This approach is possible due to the inherent spatial structure of temperature301

data, and is motivated by the following theorem due to Carl Eckart and Gale Young which can be302

found with proof in [33].303
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Theorem 1 (Eckart–Young). Let the SVD of A ∈ Rm×n be UΣV>. Let r < rank(A) and

A(r) =
r

∑
i=1

σiuuuivvvTi

denote the rank r truncated SVD of A where ui, vi represent the ith column of U, and V respectively, and σi is
the ith diagonal element of Σ. Then

min
rank(B)=r

‖A− B‖2 =
∥∥∥A−A(r)

∥∥∥
2
= σr+1(A).

Theorem 1 says that the optimal (in the sense of L2 distance) low rank approximation of the304

original data is exactly the truncated singular value decomposition, and the approximation error is305

exactly the first omitted singular value (which are ordered from largest to smallest). The implication306

of Theorem 1 for reducing the dimensionality of temperature data is striking; since there is strong307

spatial structure for a particular region it is possible to collapse the dimension while retaining much308

of the information. Just as importantly we know exactly how much information is lost by such an309

approximation. In this way, we are able to incorporate the important temperature information while310

maintaining a reasonable model size and avoiding overfitting. Table 4 shows the percentage of variance311

retained by several low rank approximations for various durations. A single dimension of the data312

contains up to 90% of the information. In our tests we use a rank 3 approximation. Since we began with313

32 weather stations, this represents a reduction in parameter space of over 90% with almost complete314

fidelity to the variation in the original data.315

Training set length Rank 1 approximation Rank 5 approximation Rank 15 approximation

5 days 90.4 96.0 98.6
10 days 90.0 95.2 98.2
20 days 87.2 93.4 97.5
40 days 86.0 92.6 97.0

Table 4. Each cell denotes the percentage of variation captured by the corresponding low rank
approximation and training set. These results are specific to the times and the weather stations used
and provide general guidance on the trade off between dimension reduction and information loss.

A potential problem with using a truncated SVD is that the actual load plays no role in the316

determination of the resulting low rank subspace. If extraneous locations are included in the data317

set, information from them will be used in the dimension reduced model. An important practical318

consequence is that weather information from across the country can be provided to the model,319

allowing for flexibility with regard to which market is being predicted. This can provide substantial320

savings in development time as forecasts for different markets can quickly be provided by changing321

the load data that is passed in, without any other changes to the code.322

Automatic relevance determination kernel323

The automatic relevance determination (ARD) kernel introduced in [34] and [35] is a popular tool324

for dimension reduction in Gaussian processes as the dimension reduction takes place as part of the325

modeling phase. Any radial kernel, that is, any kernel for which the values rely solely on distance326

but not direction, can be made into an ARD kernel. We show the Gaussian ARD kernel here. Recall327

(zi)
m
i=1 ∈ R(d−1)/2 are vectors of temperatures at (d− 1)/2 locations. For simplicity we demonstrate328

using only temperatures, though in the models we use both temperature and dew point. So,329

KARD(zi, zj) = σ2
1 exp

(
−1

2
(zi − zj)

>Θ−1(zi − zj)

)
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where Θ = diag(θ2) is a diagonal matrix and θ ∈ R(d−1)/2 with each entry corresponding to the330

length-scale along the associated dimension. Since these parameters are learned during the likelihood331

maximization phase, no pre- or post-processing is required as part of the dimension reduction step.332

If irrelevant features are included in the model, the length-scale corresponding to those features will333

become very large indicating that the covariance is independent of those features, effectively removing334

them from the prediction.335

There are d parameters to this kernel, so if there are hundreds or thousands of locations being336

used it may not be a feasible option. As d grows the likelihood function is more likely to become337

non-convex. Even the 32 dimensions of weather in our model required multiple restarts to ensure a338

global solution.339

Rich covariance dimension reduction340

A potential shortcoming of the ARD kernel is that the matrix Θ is diagonal, enforcing341

axis-alignment of the kernel. Temperatures have a correlation structure that could be exploited342

with a richer covariance structure to Θ. This structure, introduced in [36] can be loosely considered as343

a hybrid between the ARD kernel and a truncated SVD approach. Consider the kernel344

KRC(zi, zj) = σ2
1 exp

(
−1

2
(W(zi − zj))

>W(zi − zj)

)
where W ∈ Rr×((d−1)/2) and r < (d− 1)/2 is the desired rank of the kernel. Consider that W>W ∈345

R((d−1)/2)×((d−1)/2) is rank r, and writing it as such we recover a form similar to the ARD kernel. As in346

the ARD kernel, the entries of W are learned during the optimization phase so that the only parameter347

that must be specified by the user is r, the desired rank. Similar to the truncated SVD the result is a348

low rank subspace of the original input data, but this method considers the relationship between load349

and the temperature at each individual location. Though this is the most flexible option described,350

its primary weakness is that r× ((d− 1)/2) + 1 parameters must be learned, requiring a tremendous351

amount of data.352

We evaluate different dimension reduction techniques on a subset of the data to choose which to353

pursue for the remainder of the analysis. We use the same training and test set for each trial in this354

section. The data used to determine the parameters of the model are Chebyshev samples of 1/12 of the355

possible observations beginning September 17, 2018 and ending October 26, 2018, with three random356

initializations used to ensure that optimization does not terminate at spurious local minima. We test357

the learned model on data from October 27, 2018 to November 4, 2018 with an updated forecast every358

15 minutes. Table 5 shows the results.359

The random subsets model appears to predict well, but its performance is deceptive. The weather360

stations provided are all within the geographic region of PJM; in a more general setting where load361

forecasts are meant to be generated for multiple markets with little oversight, the model would not362

perform well. Furthermore, the performance of random subset models may vary drastically from363

one run to the next as different locations are selected. Thus, despite its promising performance in364

Table 5, we do not explore random subset methods further in this paper. The rich covariance structure365

appears to have overfit the data set and fits the test data poorly. This is likely due to the relatively366

high ratio of parameters to training observations. Using more observations would likely mitigate367

the apparent overfitting. The rich covariance structure dramatically underestimates the uncertainty.368

The performance of the tSVD model is surprising given its nice theoretical properties. Further testing369

would be required to determine if its relative under-performance is standard. In the remainder of this370

document we use the ARD model for dimension reduction.371

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 4 April 2019                   doi:10.20944/preprints201904.0058.v1

Peer-reviewed version available at Energies 2019, 12, 1833; doi:10.3390/en12101833

http://dx.doi.org/10.20944/preprints201904.0058.v1
https://doi.org/10.3390/en12101833


17 of 26

Quantity Random subsets (RS) truncated SVD (tSVD) ARD Rich Covariance (RC)

30 minute MAPE 0.25 0.27 0.26 0.27
5 hour MAPE 1.35 1.98 1.80 2.65

12 hour MAPE 2.32 3.08 2.55 4.32
24 hour MAPE 2.93 3.42 2.96 4.75

99% credible interval coverage 98.2 96.5 94.3 98.5
95% credible interval coverage 97.0 89.6 89.1 97.1
90% credible interval coverage 93.8 85.7 85.2 95.7
10% credible interval coverage 13.9 23.1 22.3 4.3
5% credible interval coverage 8.0 19.7 17.0 2.9
1% credible interval coverage 3.0 11.4 9.9 1.4

Table 5. Results for the four methods described in Section 2.6, averaged over 576 forecasts (new
forecasts every 15 minutes for 6 days). The credible interval coverage is a Monte Carlo approximation
to the true coverage. It represents the percentage of data points in the test period that fall below the
corresponding credible interval using 1000 samples from the posterior distribution. The kernels used
for the models in Table 5 are described in Appendix C.

2.7. Model Combination372

Ensemble methods, which combine multiple models to create a single more expressive model,373

have been common in the machine learning community for many years.6 Recently such methods374

have been applied successfully to load forecasting; in a paper analyzing the prestigious M4 load375

forecasting competition ([38]) model combination is touted as one of the most important tools376

available to practitioners. Done correctly, models can be created and combined without substantial377

additional computational overhead. This is due to the parallel nature of many ensembles and is true378

of our proposed method. Several strategies exist for combining models, particularly in the Bayesian379

framework which allows for a natural weighting of different models by the model evidence [39, §3.4],380

which in our case is expressed by (11). Extensive research has been conducted into the combination381

of Gaussian process models, a comparison of various methods is provided in [22]. In this paper we382

propose using the Generalized Product of Experts (GPoE) method originally described in [40].383

The standard product of experts (PoE) framework [41] can take advantage of the Gaussian nature384

of the posterior process. We recall the posterior density from (1) with an additional subscript to denote385

the model index386

fj,new | Xnew, X, y ∼ N
(

µj, Γj

)
.

The product of Gaussian densities remains Gaussian, up to a constant:

f | Xnew, X, y ∝
M

∏
j=1

fj,new | Xnew, X, y,

where M is the number of models to be combined. The density of the PoE model is387

f | Xnew, X, y = N (µ, Γ)

= N

( M

∑
j=1

Γ−1
j

)−1( M

∑
j=1

Γ−1
j µj

)
,

(
M

∑
j=1

Γ−1
j

)−1
 . (12)

6 See [37] for an early review in the context of classification.
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Though (12) may look complicated, it has a simple interpretation. We can re-write the mean as388

µ = ∑j Wjµj, where Wj = Γ(Γ−1
j ) is a weight matrix for the jth model, corresponding to the inverse of389

the uncertainty of that model. That is, models for which the uncertainty is high are down-weighted390

compared to those with low uncertainty. The variance Γ can readily be seen as the inverse of the sum391

of the constituent precision matrices Γ−1
j .392

It is apparent that models with low uncertainty will dominate Γ, and cause the variance of the393

PoE model to be relatively small. This is because if
∥∥Γj
∥∥ is small then

∥∥∥Γ−1
j

∥∥∥ will be large, dominating394

the variance of the other models in the sum. The GPoE framework is designed to ameliorate this by395

allocating additional weight to those models for which the data is most informative to the model.396

The details of the algorithm, including how we measure the informativeness of data to a model, are397

available in the Appendix B.7398

There is a trade-off to model combination. On the one hand it is straightforward to implement,399

provides empirically and provably better estimates (see e.g. [37] for a straightforward explanation in400

the context of classification), and has enormous practical value as demonstrated in the M4 competition.401

The cost of these benefits is that there is no longer a single kernel to provide interpretability. Since the402

method for combining the models is to take a product of the densities, the kernels of the individual403

models get lost in the mix, turning the GPoE model into a black box. Depending on the application,404

interpretability may or may not be a relevant consideration. The ability to combine models in this way405

provides the data analyst the opportunity to make a decision based on the requirements placed on the406

forecast.407

3. Results408

We find that combining models via the GPoE method described in Section 2.7 creates more409

accurate predictions. In this section we train the models on the 40 days leading up to test time,410

sampling 1/12 of the possible observations using Chebyshev sampling. We perform six random411

initializations for the parameters of each model then train two different models: one with an emphasis412

on the effect of weather, and the other with an emphasis on the periodic structure. The kernels for each413

model are defined in Appendix D. In total, we obtain 12 model/parameter combinations and combine414

the resulting predictive distributions using the GPoE framework. We create a 24 hour prediction415

from the GPoE distribution. We use the same parameters, step forward fifteen minutes, re-train the416

model with the additional fifteen minutes of data, and again forecast forward 24 hours. This process417

of creating a new prediction every fifteen minutes is repeated for six days (representing seven total418

days of forecasts) for a total of (6 days * 24 hours/day * 4 forecasts/hour) = 576 forecasts. Parameter419

estimation is by far the most time-consuming portion of this exercise, so the parameters are only420

learned once at the beginning of the six day forecasting period. Though we do not notice severe421

degradation in the forecast from the beginning to the end of the period (see Figure 12), we recommend422

re-parameterizing the model at least every week. For comparisons sake, we provide results for the423

GPoE model as well as the single best model, without any combination. Here best is the one model, out424

of the twelve created, most informed by the data at the time of prediction as described in Appendix B.425

Table 6 provides a breakdown of the results for test data from two weeks in 2018.426

7 See [40] for a more detailed discussion.
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Quantity Feb 28-Mar 7 Oct 27-Nov 4 Feb 28-Mar 7 Oct 27-Nov 4

30 minute MAPE 0.25 0.24 0.26 0.25
5 hour MAPE 1.34 1.35 1.49 1.57

12 hour MAPE 2.21 1.89 2.62 1.86
24 hour MAPE 2.58 2.21 3.20 2.22

99% credible interval coverage 96.0 96.2 95.4 98.2
95% credible interval coverage 90.8 90.8 93.1 94.4
90% credible interval coverage 86.9 85.5 89.8 89.5
10% credible interval coverage 13.9 10.1 12.7 7.3
5% credible interval coverage 8.0 6.7 9.0 3.8
1% credible interval coverage 3.0 3.9 4.7 1.5

Table 6. Results for the GPoE and uncombined models. The first two data columns correspond to
the error GPoE model, the second correspond to the single best model for each forecast. The credible
interval coverage is a Monte Carlo approximation to the true coverage. It represents the percentage of
data points in the test period that fall below the corresponding credible interval using 1000 samples
from the posterior distribution.

The forecast themselves provide more insight than can be captured by the table. In Figure 11 we427

provide each of the forecasts from the autumn test set. Though it may appear as though there is high428

uncertainty in the models, recall that there are 1000 simulations so the top and bottom gray lines are429

approximately 0.1% credible intervals.430
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Figure 11. Load forecast examples. left: October 28, 2018. right: October 29, 2018

A time series view of the error can assist in diagnosing whether the parameters ought to be431

updated. A noticeable increase in errors between forecasts may signal that a new parameterization is432

required. Figure 12 displays the evolution of the errors in successive forecasts for each of the models433

and test sets. For visual clarity we only display the 30 minute and 12 hour error.434

The model combination approach does not appear to be uniformly better than using the single435

best model. It does appear to improve results on the higher-load difficult spring period, but this436

could be an artifact of the small sample. Our tentative recommendation is use best single model if437

interpretability is important, otherwise use the model combination. Interpretation of the model can be438

conducted either by looking at the individual parameters, or by examining a slice of the Gram matrix439

as in Figure 13.440

Figure 13 can be analyzed in the same way as Figure 5. Only the relative magnitude of the kernel441

values is important, so ticks on the left vertical axis are omitted. As expected, the test data co-varies442

most strongly with recently observed training data. The daily periodic structure is easy to identify,443

though the weekly periodicity is more difficult to pick out. There are jumps in the covaraiance around444

9/25, 9/29, and 10/14; this is due to weather similarity between the test set and those days. The kernel445

used on the temperature component of this model is the ARD kernel that was described in Section 2.6.446

Recall that it has the ability to determine the relevance of its arguments. The implication is that the447
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Figure 13. Values for the first row of K(Xnew, X).

weather on 9/25, 9/29, 10/14 is similar to the weather on 10/27 (the test set) in ways that are relevant to448

the load. We notice that days with higher covariance appear to be low-load days, indicating that 10/27449

is expected to also be low load. The kernel can also be viewed in terms of its constituents, as in Figure450

14.451

Figure 14 can be interpreted as follows: K is the sum of the individual kernels. Though K may be452

difficult to interpret, each of its pieces is designed specifically for a purpose, as discussed in Section453

2.4, and is readily interpretable. In particular, K1 is the daily periodicity with a decay term. K2 is the454

weekly periodicity with a decay term. K3 is the periodic effect of temperature. K4 is the periodic effect455

of dew point. K5 is the recent effect of temperature and dew point. This particular kernel is used456

in the model which puts an emphasis on weather, and is defined rigorously in Appendix D. We see,457

for instance, that temperature and dew point play a similar rôle, though dew point is slightly more458

influential. The daily periodicity contributes very little, likely due to the fact that it is captured by the459

periodic nature of the weather. Recency has a large effect that appears to collapse after about five days,460

but the weekly periodic structure appears to be important and decays very slowly as we look back on461

the training set.462
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4. Discussion463

We describe a Gaussian process approach to modeling short term load using a positive definite464

kernel designed explicitly for such a purpose. We apply this model to data from PJMISO to forecast465

between 5 minutes and 24 hours from the last observed datum. We discuss the use of weather466

information, and propose several mechanisms for dimension reduction to keep the models from467

growing too large. We describe methods that can be easily interpreted, as well as black-box models468

that result from combining the result of several Gaussian processes. To test the robustness of the model469

to changes in the system we provide results for different times of the year. The density predictions470

provided by our proposed methodology allow users to accurately assess uncertainty which is important471

for load forecasts where prediction errors can be particularly costly.472

There are several directions future work could take:473

• In [42], the authors show that correctly accounting for holidays has a drastic positive impact474

both on holiday forecasts and on non-holiday periods. While beyond the scope of this analysis,475

Gaussian processes do allow for indicators.476

• A major shortcoming of this work, and indeed of naïve implementations of Gaussian processes in477

general, is that equation (1) requires the inversion of a dense m×m matrix, an O(m3) operation.478

Because of this, a typical desktop computer at the time of writing would have difficulty training479

the model we propose on datasets with more than about 10,000 observations, roughly one month480

of data at five minute frequency. This problem of scalability has been thoroughly discussed in the481

literature, and many solutions have been proposed (see e.g., [20–23]).482

• In [43, §4.2], the authors discuss the value of density forecasts for electricity price modeling and483

lament the scarcity of such models. It would be interesting to couple the uncertainty provided by484

this load forecast with a probabilistic LMP forecast which makes use of that uncertainty, similar485

to the premise of [6]. This could be useful in real-time generator scheduling as discussed in [13].486

• While the work presented here is on short term load forecasts with high frequency, it is likely that487

similar techniques would work on a coarser mesh; that is, medium term load forecasts of one day488

to two weeks with hourly or daily observations. Such a forecast would find use in both financial489

markets and power plant and line maintenance scheduling decisions.490

• In Section 3 we present several choices and interpretations for the kernel. The kernels were chosen491

based on an intuitive understanding for the phenomena we wanted to represent, but they are492

not the only options available. More work could be done to fine tune the kernel for this problem,493

either by incorporating more domain knowledge or with a purely data-driven approach as in [44].494

• The kernels discussed in this paper all rely solely upon the distance between the arguments495

without regard to their actual value. They are called stationary kernels and have advantageous496
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properties such as computational efficiency and Bochner’s theorem to prove positive definiteness497

[24]. However, they also yield models which are second-order stationary, a property which is498

not ideal in load forecasting. There are kernels which are designed specifically to address this499

shortcoming. One such example is the kernel discussed in [45] which is non-stationary and500

anisotropic, created explicitly to model temporal processes for which predictions begin after the501

last observation and the covariance between equidistant points may vary with time. The practical502

consequence of incorporating such structure is that the uncertainty can increase with the distance503

between the forecasted time and the last observation.504

• Theoretically the model combination technique scales without additional computational time,505

provided enough cores are available to parallelize the computations. We performed six random506

restarts on two different models but the predictions could be made more accurate by including507

additional models. In [22], for example, up to 32,768 models were combined.508
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Appendix A. Kernels519

Definition A1 (Gram matrix). Let X be a non-empty set. Given a function K : X × X → R, and data
(xi)

m
i=1 ∈ X , the m×m matrix K with elements

Ki,j := K(xi, xj)

is said to be the Gram matrix of K with respect to x1, . . . , xm.520

Before discussing positive definite functions we must define positive definiteness in a linear521

algebraic sense.522

Definition A2. A matrix K ∈ Rm×m is said to be positive definite if for all αi ∈ R

∑
i,j

αiαjKi,j ≥ 0.

The Gram matrix is merely a particular instantiation of the function K. The next definition523

suggests that if all such matrices of the function are positive definite, then K is a positive definite524

kernel.525

Definition A3. Let X be a non-empty set. A function K : X × X → R which for all m ∈ N and all526

(xi)
m
i=1 ∈ X gives rise to a positive definite Gram matrix is called a positive definite kernel.527

The properties given by Remark 1 follow directly from these definitions. In particular, see [28,528

§13.1] for proofs.529
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Appendix B. Generalized Product of Experts530

As discussed in Section 2.7, equation (12) has a tendency to underestimate the variance. We531

address this issue by allocating more weight to models which are strongly influenced by the data,532

and less to those for which the prior and posterior distributions are similar. In this framework, (12)533

becomes534

f | Xnew, X, y = N (µ, Γ)

= N

( M

∑
j=1

αjΓ
−1
j

)−1( M

∑
j=1

αjΓ
−1
j µj

)
,

(
αj

M

∑
j=1

Γ−1
j

)−1
 ,

where αj is the change in entropy between the prior and the posterior variance for the jth model. That535

is,536

αj = log det
(
Kj(Xnew, Xnew)

)
− log det

(
Γj
)

,

where we recall that the prior variance is merely the kernel function of the jth model evaluated at537

the test points. The αj are normalized to sum to one. Strong priors have a tendency to induce low538

prior variance, artificially lowering the overall variance of the final model in the PoE framework. The539

weights αj express a preference for those models for which the data is the determining factor in the540

posterior variance, rather than the prior. In Section 3 we use arg maxj(αj) as the best model by setting541

the model with the highest value of αj to have weight one, and the remaining models to have weight 0.542

Appendix C. Kernels for Dimension Reduction543

KRS


 zi

wi
ti

 ,

 zj
wj
tj


 = KMatérn1(ti, tj)KPeriodic1(ti, tj) + KMatérn2(ti, tj)KPeriodic2(ti, tj)

+
(
KPeriodic3(ti, tj) + KPeriodic4(ti, tj)

)
(KGaussian1(z1,i, z1,j)

+ KGaussian2(z2,i, z2,j) + KGaussian3(z3,i, z3,j) + KGaussian4(w1,i, w1,j)

+ KGaussian5(w2,i, w2,j) + KGaussian6(w3,i, w3,j)),

where Kperiodic1
, Kperiodic3

each have a fixed period of 24 hours, Kperiodic2
, Kperiodic4

each have a fixed544

period 7 days. All other parameters are learned via maximum likelihood estimation as described in545

Section 2.5. The vectors z1,i, z2,i, z3,i correspond to the ith temperature observation at the first, second,546

and third randomly selected location. The vectors w1,i, w2,i, w3,i are the ith dew point observation at547

the same three locations.548

KtSVD


 z̃i

w̃i
ti

 ,

 z̃j
w̃j
tj


 = KMatérn1(ti, tj)KPeriodic1(ti, tj) + KMatérn2(ti, tj)KPeriodic2(ti, tj)

+
(
KPeriodic3(ti, tj) + KPeriodic4(ti, tj)

)
(KGaussian1(z̃1,i, z̃1,j)

+ KGaussian2(z̃2,i, z̃2,j) + KGaussian3(z̃3,i, z̃3,j) + KGaussian4(w̃1,i, w̃1,j)

+ KGaussian5(w̃2,i, w̃2,j) + KGaussian6(w̃3,i, w̃3,j)).

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 4 April 2019                   doi:10.20944/preprints201904.0058.v1

Peer-reviewed version available at Energies 2019, 12, 1833; doi:10.3390/en12101833

http://dx.doi.org/10.20944/preprints201904.0058.v1
https://doi.org/10.3390/en12101833


24 of 26

Though the form of this kernel is identical to KRS, in this case the z̃ and w̃ correspond to the first,549

second, and third eigenvectors provided by the truncated SVD rather than randomly selected locations.550

Due to this change, a different parameterization is learned.551

KARD


 zi

wi
ti

 ,

 zj
wj
tj


 = KMatérn1(ti, tj)KPeriodic1(ti, tj) + KMatérn2(ti, tj)KPeriodic2(ti, tj)

+
(
KPeriodic3(ti, tj) + KPeriodic4(ti, tj)

) (
KARD1(zi, zj) + KARD1(wi, wj)

)
.

It is important to note that temperature and dew point share the same ARD kernel: KARD1 . This is to552

reflect the fact that a location relevant for temperature should also be relevant for dew point, effectively553

halving the number of parameters required to model temperature effects.554

KDR


 zi

wi
ti

 ,

 zj
wj
tj


 = KMatérn1(ti, tj)KPeriodic1(ti, tj) + KMatérn2(ti, tj)KPeriodic2(ti, tj)

+
(
KPeriodic3(ti, tj) + KPeriodic4(ti, tj)

) (
KDR1(zi, zj) + KDR1(wi, wj)

)
.

Once again, temperature and dew point share the same kernel. In this instance it is particularly555

important, as each rank-3 DR kernel at 32 locations requires learning 96 parameters.556

Appendix D. Kernels for Final Models557

Two different kernels are used to create the models that are combined by the GPoE framework of558

Section 2.7. One kernel places a heavy emphasis on the weather:559

KWeather


 zi

wi
ti

 ,

 zj
wj
tj


 = KMatérn1(ti, tj)KPeriodic1(ti, tj) + KMatérn2(ti, tj)KPeriodic2(ti, tj)

+
(
KPeriodic3(ti, tj) + KPeriodic4(ti, tj)

) (
KARD1(zi, zj) + KARD1(wi, wj)

)
+ KMatérn3(ti, tj)

(
KARD1(zi, zj) + KARD1(wi, wj)

)
.

The other kernel places a heavy emphasis on the periodic structure of load:560

KPeriod


 zi

wi
ti

 ,

 zj
wj
tj


 = KMatérn1(ti, tj)KPeriodic1(ti, tj) + KMatérn2(ti, tj)KPeriodic2(ti, tj)

+
(
KPeriodic3(ti, tj) + KPeriodic4(ti, tj)

) (
KARD1(zi, zj) + KARD1(wi, wj)

)
+ KMatérn3(ti, tj) + KPeriodic5(ti, tj).

In both kernels, KPeriodic1 and KPeriodic3 have a fixed period of one day, KPeriodic2 and KPeriodic4561

have a fixed period of one week. Additionally, in the kernel which relies more heavily on the periodic562

structure, KMatérn3 has a fixed length-scale of 1 day. The remainder of the parameters are estimated by563

maximum likelihood as described in Section 2.5.564
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