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Abstract: Data on the seasonally dry tropical forests of Mexico have been examined in the light of
statistical mechanics. The results suggest a division into two classes of species. There are drifting
populations of a cosmopolitan class capable of existing in most dry forest sites; these have a
statistical distribution previously only observed (globally) for populations of alien species. A high
proportion of species found only at a single site are endemic and these prefer sites comparatively
low in species richness.
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1. Introduction

The techniques of statistical physics have been applied to problems of community structure
with some success, primarily in achieving an understanding of the principles underlying the rather
universal form of the species abundance distribution. This was traced to the rate of change of a
population being proportional to the number of individuals each species contains [1, 2, 3, 4]. A rather
more surprising application is to the distribution of alien species over the globe, where it was found
that the number of species at 1 sites to which they are alien is exponentially distributed with n. At
the same time, the distribution of the number of sites as a function of the number of species present
is consistent with being drawn from an underlying exponential probability distribution. Beyond
that, the number of pairs of sites sharing p species is exponentially distributed with p [5]. The
relationship between these various exponential probability distributions was elucidated in [6]. In [5]
it is speculated that similar principles may apply more generally to community assembly, for there
are examples of the number of species with the number of sites occupied being distributed
exponentially in populations of heteroflagellates and of tree species in the seasonally dry tropical
forests of Mexico. Having clarified in [6] the roles of the alien species exponentials, we have returned
to the dry forests of Mexico, where the data [7] contain not only the exponential distribution of the
number of species with the number of sites (which first drew our attention) but also list the number
of species at each site and beyond that the number of species common to each pair of sites. These
three aspects of the data set require a category of cosmopolitan species, distributed in accord with
the model for alien species, and in addition a category of endemic species found preferentially at
high rank sites, those that are relatively species poor.

2. The underlying model

An exponential distribution of the number of species with the number of sites at which the
species are found can be described using simple statistical mechanics. A given resource is to be
divided into a given number of pieces, the cuts to be made at random. The most probable
configuration is an exponential distribution of the number of pieces with their length. In ecology,
this is known as MacArthur’s broken stick [8], in the statistical mechanics of gases a microcanonical
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ensemble. It is also the maximum entropy solution for a uniform prior. If the same resource is also
divided between the different sites in the same sort of way, the distribution of the number of sites
with the number of species each site contains is, for our particular application, drawn from an
underlying exponential distribution. These exponential distributions are themselves sufficient to
generate the exponential distribution of the number of pairs (and higher multiplets) of sites with the
number of species shared, without any further assumptions [6]. It is worth remarking that the
placing of the cuts could be accomplished statically (as in MacArthur’s broken stick) or dynamically,
with species accepted and rejected from sites and sites growing and contracting in receptivity;
described by the appropriate master equations. The original application of these ideas was to the
statistical mechanics governing the global distribution of alien species, but the data of [7] invite their
application to the structure of the seasonally dry tropical forests of Mexico.

3. Relevant aspects of the data

The data presented in [7] comprise 917 species from 20 different widely scattered sites in
Mexico. Of these, 670 are found at one site only and no species are found at more than 12 sites. The
richest site contains 124 species. The distribution of the number of species s(17) found at n sites agrees
well with an exponential for n > 1 (Fig. 5 of [7], Fig. 1 of the present paper) and the number of pairs
sharing p species in common is consistent with an exponential distribution in p (see Fig. 3, upper
panel).

In s(n)

Figure 1. The natural logarithm of the number of species found at n sites in [7] is plotted against 7.
For n>1 the distribution is consistent with an exponential. Note that the statistics become risible
beyond n ~7. For n=1 there is an excess of ~ 400 above the extrapolated exponential. We argue that
these must be largely endemics.

However, the species richness of the individual sites (Fig. 2, upper panel) is not consistent with
having been drawn from an underlying exponential probability. The most probable receptivity (or
species richness) of a site of rank R is proportional to InR, — InR, where the richest site is rank 1 and
for a simple exponential R, is the number of sites +1, see [6]. For 20 sites and a pure exponential
InR, = 3.04.In Fig 2 (upper panel) we plot the number of species s(R) against InR for the data. Itis
a reasonable approximation to a straight line, but extrapolates to zero species at InR = 4.8. It is
certainly consistent with a truncated exponential, where no site has less than ~40 species and such a
modification can also be handled with the methods of statistical mechanics. However, if there are no
sites with fewer species than ~40, it would seem that there will be fewer pairs of sites with a small
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number of shared species than obtaining for an exponential probability that is not truncated. This is
indeed the case; in Fig. 3 (lower panel) we plot the number of pairs of sites as a function of the
number of species in common, for relative receptivity proportional to 4.8 — InR . This distribution is
grossly different from that of the data shown in Fig. 3 (upper panel) and also that modelled
assuming relative probabilities proportional to 3.04 — InR, shown in Fig. 3 (middle panel). The latter
represents an exponential site probability distribution that is not truncated, yields a distribution of
the number of pairs consistent with an exponential as a function of the number of common species
and agrees with the data. (The way in which the model distributions in Figs. 2 & 3 were generated is
relegated to a discussion in Appendix A.)

The conundrum presented by these data can be summarised rather simply. The distributions in
Fig. 2 upper and lower panels agree, but do not agree with Fig. 2, middle panel. However, the
distributions in Fig. 3 upper and middle panels agree but do not agree with Fig. 3, lower panel.
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Figure 2. The number of species s(R) at sites of rank R plotted against InR. Upper panel: The data
in [7], where the highest rank sites have occupancy ~40 species. Middle panel: The distribution for
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94 an underlying exponential for cosmopolitan species; the highest rank sites would have negligible
95 population. Lower panel: The distribution assuming that sites have receptivity for cosmopolitans
96 similar to the data.
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100 Figure 3. The number of pairs of sites as a function of the number of species in common. Only species
101 found at two or more sites contribute. Upper panel: The data of [7]. Middle panel: The model
102 distribution for cosmopolitan receptivities determined by a simple exponential underlying
103 probability; cf Fig. 2. Lower panel: The distribution assuming that the cosmopolitan species are
104 governed by a truncated distribution, as in the lower panel of Fig. 2. The data in Fig. 3 upper panel

105 agree with the middle panel but not with the lower.
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3. Disentangling the conundrum

The distribution of s(n) with n, shown in Fig. 1, is consistent with an exponential for n >1.
Extrapolating back to n =1 gives 270 species at just one site, yet in the data there are 670. Thus 400 of
these cannot be part of the exponential distribution characteristic of cosmopolitans. At the same time
it should be remembered that only species for #>1 appear in the distribution of pairs. This suggests
that the distribution of site receptivity with rank be divided into two classes: for cosmopolitans an
exponential that is not truncated, with receptivity tending to zero as R - R, (where R,~21), but for
endemics a different distribution, given at least approximately by the difference between the upper
and middle panels of Fig. 2. This difference is significantly greater than zero for InR = 1.5 and
grows with increasing rank. The sum of endemics over all ranks must add up to 400 species. This
could be achieved by letting all sites have the same receptivity (~20) but the difference is better
represented by letting sites of rank R have receptivity approximately 2R, so that the site of rank 20
has receptivity 40 for endemics. High rank sites are of low species richness; this pattern corresponds
to endemic receptivity greatest for those sites poor in cosmopolitan species.

It should of course be noted that, with only 917 species in the data sample, the statistics are
barely adequate to establish the division into the two classes of cosmopolitan and endemic species;
there is no hope of finding finer structure. It is, however, intriguing that the distribution of
receptivities for endemics is such that the overall distribution of receptivities is consistent with being
drawn from a (truncated) exponential.

4. Discussion and conclusions

The data of [7] make available the distribution of the number of species with the number of sites
at which they are found, the number of species found at each site and the number of pairs of sites as
a function of the number of species shared. These distributions are consistent with cosmopolitan
species (those capable of existing in more than one site) being distributed according to a statistical
mechanics of division of some resource at random and the number of species at sites of any given
rank being drawn from an underlying exponential reflecting division among sites of that same
resource. This is a second example of the structures first revealed, for alien species, in [5] and treated
most completely in [6]. (Note: the reader familiar with [5] and [6] may recall that the population
distribution over sites is consistent with being drawn from an underlying exponential distribution
that is not truncated. In those data all species are alien to all sites; there are no endemics.)

From the point of view of community assembly and population dynamics, the surprising
feature is that the rate at which a given species loses or gains a site must be independent of the
number already occupied. Similarly the rate at which a site gains or loses receptivity (in a dynamical
interpretation) for cosmopolitan species must be independent of that receptivity. In the language of
Maximum Entropy, these correspond to uniform priors.

Beyond that, there is evidence for a different dynamic operating in this environment. There are
also endemic species, each incapable of surviving outside of a single site. The distribution of the
number of endemic species over sites is markedly different from the receptivities for the
cosmopolitans. So far as one can extract anything further from these data, there seems to be an
anti-correlation between receptivities for cosmopolitans and for the endemic species. Thus this study
has further illuminated the application of statistical mechanics to population dynamics and
community assembly and also suggested an ecologically interesting aspect of interactions between
endemic and cosmopolitan species, perhaps a form of biotic resistance.

Conflicts of Interest: The authors declare no conflict of interest

Appendix A

The underlying idea is that the distribution of the number of species with the number of sites at
which they are found is an exponential generated by subdividing some underlying resource and that
the distribution of the number of sites as a function of their rank is drawn from an underlying
exponential generated by subdividing that same resource along a different axis. Envisage a grid with
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species identifiers on one axis and site identifiers along the other. If a given species is found at a
given site, that intersection has value 1. If a given species is not at that given site, that intersection
has value zero. The sum of all elements represents the resource and was called the footprint in [6].
The grid must be populated according to some scheme that generates the exponential s(n) and
receptivities or rank abundance consistent with having been drawn from an underlying exponential
distribution. Once the grid has been so populated the number of pairs of sites as a function of the
number of species in common is easily generated by interrogating the grid.

There are various ways of populating the grid, listed in [6]. For the purposes of this note, we
have populated the grid in the following way. First, for a given exponential distribution of s(n) the
species are allocated numbers such that the first s(1) species are to be assigned to one site only, the
next s(2) are to be assigned to two sites only and so on. This step is trivial; less trivial is how the
species are assigned to particular sites. The sites we label by rank and in assigning a given species to
a site, the recipe is very simple. Each site of rank R has relative probability InR, — InR and a species
is allocated to an empty site at random, according to the appropriately normalised probabilities. For
the case of a pure exponential underlying the populations of 20 sites, InR, has value 3.04 (In21) and
this value was used to generate Figs. 2 and 3, middle panels. The data we are discussing (Fig. 2,
upper panel) suggest a truncated exponential with InR, ~4.8; hence Figs. 2 and 3, lower panels.
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