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Abstract: This study presents a platform for ex-vivo detection of cancer nodules, addressing 24 
automation of medical diagnoses in surgery and associated histological analyses. The proposed 25 
approach takes advantage of the property of cancer to alter the mechanical and acoustical properties 26 
of tissues, because of changes in stiffness and density. A force sensor and an ultrasound probe were 27 
combined to detect such alterations during force-regulated indentations. To explore the specimens, 28 
regardless of their orientation and shape, a scanned area of the test sample was defined using shape 29 
recognition applying optical background subtraction to the images captured by a camera. The 30 
motorized platform was validated using seven phantom tissues, simulating the mechanical and 31 
acoustical properties of ex-vivo diseased tissues, including stiffer nodules that can be encountered 32 
in pathological conditions during histological analyses. Results demonstrated the platform’s ability 33 
to automatically explore and identify the inclusions in the phantom. Overall, the system was able to 34 
correctly identify up to 90.3% of the inclusions by means of stiffness in combination with ultrasound 35 
measurements, paving pathway towards robotic palpation during intraoperative examinations. 36 

Keywords: cancer nodules detection, phantom, stiffness analysis, ultrasound analysis, visual 37 
analysis, automatic robotic platform, remote support for pathologists. 38 

 39 

1. Introduction 40 
Cancer is an abnormal and uncontrolled cell growth that invades healthy tissues, and that can 41 

spread via metastases to other locations in the body [1]. Various cancer treatments involve chemical 42 
and radiation therapies or surgery [2–4]. Following surgical intervention, biopsy is performed on the 43 
lymph nodes excised from the tissue to properly characterize cancer spread and examine whether it 44 
has developed the ability to spread to other lymph nodules or organs too. The accuracy in estimating 45 
the amount of spread of cancer is extremely important to avoid complications caused by an extensive 46 
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resection of healthy lymph nodes and tissues. Accurate localization of tumors in tissues resected 47 
during surgery can also allow the surgeon to decide and modify in itinere the planned intervention 48 
so to remove malignant tissues missed in pre-operative imaging. Stiffness of human tissue is higher 49 
for tumor nodules with respect to healthy tissues [5–10]. Hence, inspecting the mechanical properties 50 
of cancerous tissues can contribute to the detection of nodules. Intraoperative palpations of the 51 
resected malignant tissue provide essential information about the presence of abnormalities [11]. 52 
Indeed, such investigation is part of the general practice performed by a specialist through manual 53 
palpation to retrieve several information about cancer nodules [12]. The reliable confidence of 54 
medical practitioners to detect tumors is achieved with rigorous training before they reach proper 55 
expertise in examining various organs and detecting abnormalities [13]. The human capability to 56 
detect lumps in the tissues, however, degrades with increasing lump depth, decreased compliance of 57 
the tissue, deformation of the finger pad induced by the lump itself, and the finger indentation 58 
velocity [14,15]. Ultrasound analysis [16] can complement stiffness data because of the different 59 
acoustic properties of cancer nodules, as demonstrated by intraoperative ultrasonography recordings 60 
having reported influence (varying from 2.7% up to 73%) on the surgical procedures that were 61 
preoperatively planned [17–20]. 62 
In this study, we combined stiffness and ultrasound data to aid the intraoperative histological exams 63 
performed on tissues excised during surgery. Such an examination is crucial in case of misdiagnosis 64 
or in case of unforeseeable diagnostic queries that might arise during surgery. Results from the 65 
examination may be used as a guide for surgical resection and decision-making to modify the surgical 66 
procedure (Figure 1)  67 

 68 

 69 
Figure 1: Block diagram of the histological procedure. Grey: traditional manual procedure. Green: semi-70 
automatic procedure as modified by the introduction of the developed platform. 71 

With instrumented tools, automatic classification of tumors in tissues can be addressed by machine 72 
learning techniques: supervised-unsupervised classification, clustering and learnt neural networks 73 
[21,22]. The proposed system aims at reproducing the activity of pathologists in intraoperative tumor 74 
identification using feedback from vision, stiffness [23] and ultrasound measurements [24]. Using a 75 
robotic platform, and machine learning techniques for classification, the focus of this work is to detect 76 
and localize nodules buried in phantoms mimicking the elastic and ultrasound properties of excised 77 
human tissues. Specifically, the experimental evaluation was carried out by means of Agar-based 78 
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phantoms suited to mimic liver, cardiac, brain and soft tissues [25–27], either in their acoustic and 79 
mechanical properties and temperature dependency [28,29]. 80 
The paper is organized as follows. Section II describes the experimental setup, the technical 81 
specifications of the used phantoms, the experimental protocol and data analysis methods. Results 82 
are presented in section III, showing the results of stiffness and ultrasound data analyses both 83 
separately and merging them together. The last section concludes with the discussion of the entire 84 
work and presents potential future investigations. 85 

2. Materials and Methods 86 

2.1. Platform design  87 
A platform was developed to detect embedded rigid inclusions surrounded by a soft matrix. The 88 

automated system consists of the following components (Figure 2): 89 
i) Three motorized translational stages and one rotational stage allowing to move the sample. 90 

A commercial stage (8MTF-102LS05, STANDA, Vilnius, Lithuania) with 10 cm of travel 91 
range and a resolution of 2.5 µm was used for the X and Y axes, while another translational 92 
stage (8MVT120-25-4247) was used to indent the sample along the Z axis, having a travel 93 
range of 2.5 cm and a resolution of 5 µm. Additionally, a fourth stage was mounted on the 94 
mechatronic platform (8MR190-2-28) in order to enable the rotation of the sample. Such 95 
stage had 360° rotation range with 0.01° resolution. 96 

ii) An ultrasound probe (Sonomed, mod. 2014059, Warsaw, Poland), with 16 MHz central 97 
frequency, a fractional bandwidth equal to 0.25 at -6 dB, used in pulse-echo mode. The 98 
needle-type probe, 3 mm in diameter, was selected for directly contacting and indenting 99 
the sample. A 30 Vpp pulsed excitation was delivered to the probe via a transmitter (US-100 
Key, Lecoeur-Electronique, Chuelles, France) connected to a PC via USB2. The 101 
experimental setup was completed with the ultrasound data acquisition device, NI 102 
FlexRIO (National Instruments Corp., Austin, TX, USA), for acquisitions at high frequency 103 
(1.6 GHz). 104 

iii) A load cell (Nano 43, ATI Industrial Automation, Apex, NC, USA) to collect interaction 105 
forces, up to 18N with 0.004N resolution along normal axis, arising at the interface between 106 
the ultrasound probe and the sample, also used in the control loop of the translation stages 107 
in order to operate force-controlled indentations. The developed software used this force 108 
data to calculate the stiffness and to trigger the high frequency US data collection at the 109 
threshold point of contact (0.2 N). 110 

iv) A waterproof HD-camera (Hero5 Session, GoPro, San Mateo, California, U.S.) with 10 MP 111 
and 4K resolution, integrated to perform the sample shape recognition and to create a 112 
matrix of points to be indented. 113 

v) A stainless-steel disk fixed on the top of the motorized stages for the positioning of the 114 
sample, but also to permit the reflection of the ultrasound signal back to the probe. The 115 
disk had a diameter of 16 cm and a thickness of 1 cm. 116 

The software routines for controlling the platform and the automatic scan of the samples and for 117 
performing data acquisition, as well as the graphical user interfaces were developed in LabVIEW, 118 
LabVIEW Real-Time and LabVIEW FPGA (National Instruments Corp., Austin, TX, USA), while the 119 
data analyses were performed using MATLAB (The MathWorks, Inc., Natick, Massachusetts, United 120 
States). 121 
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 122 
Figure 2: A. Block diagram of the experimental setup. B. Experimental setup showing the different components. 123 

2.2. Phantom of healthy tissue and inclusions 124 

Tests were performed on seven Agar block-shaped phantoms, realized to mimic both the 125 
mechanical and the acoustic properties of diseased human tissues. Each phantom had a soft 126 
surrounding matrix representing the human healthy tissue and hard inclusions embedded inside to 127 
represent tumor nodules. Each fabricated phantom was nominally 60 mm wide, 100 mm long and 15 128 
mm thick, while the buried spherical inclusions had different diameters ranging from 3 mm to 12 mm. 129 
The volume of the phantom was large enough to introduce up to 8 inclusions, 2 per each diameter, in 130 
different X-Y positions with adequate separation distance (Figure 3) in order to execute computer-aided 131 
detection trials.  132 

 133 

 134 
Figure 3: Rendering of the Agar phantom used during the experimental acquisition. The spherical inclusions are 135 
marked in yellow (∅ 12-9-6-3 mm). The volume of the phantom is 100x60x15 mm3. 136 

Agar-based phantoms were prepared using a predefined concentration of Agar in distilled water. 137 
Changing the concentration of Agar resulted in a variation of both the mechanical and acoustic 138 
properties. A concentration of 2 g of Agar in 100 ml of water was used to represent a healthy human 139 
tissue (fabricating a phantom entirely with this concentration results in 1.59 MRayl acoustic impedance, 140 
1457 m/s speed of sound and 0.33 N/mm mechanical impedance). A concentration of 8 g of Agar in 100 141 
ml of water was used for simulating a tumor tissue (fabricating a phantom entirely with this 142 
concentration results in 1.92 MRayl acoustic impedance, 1534 m/s speed of sound and 4.6 N/mm 143 
mechanical impedance). 144 
 145 
 146 
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2.3. Experimental protocol 147 

The experimental protocol consisted in an automatic scan of the sample. The procedure was 148 
divided in two steps: 149 

i) visual analysis; 150 
ii) stiffness and ultrasound analysis. 151 

The purpose of the automatic visual analysis was to recognize the shape of the sample by acquiring its 152 
boundaries and to create the indentation matrix, namely the points to be analyzed. Such analysis is 153 
crucial when dealing with real tissues, where the shape and size is unknown or irregular, so that the 154 
scan can be defined automatically. The visual part (Figure 4) consisted in subtracting the background 155 
image from the sample image, thus obtaining the shape, the size and the orientation. Starting from this 156 
new image (Figure 4C), a set of indentation points was created with a 2 mm step along the X-Y axes. 157 

 158 
Figure 4: Visual part: positioning of the sample, boundary detection and creation of the indentation matrix. A. 159 
Background. B. Sample in an arbitrary position. C. Background subtraction. D. Positioning by rotation of the 160 
sample and creation of the indentation matrix. 161 

Once the visual analysis was completed, it was possible to start the acquisition of the compression force 162 
and ultrasound signals. Per each X-Y point of the indentation matrix, the phantom was indented along 163 
the Z axis at constant speed (0.5 mm/s). The compression force was recorded and, at a low threshold 164 
(0.2 N, to avoid damaging the phantom), a trigger signal was generated for ultrasonic pulse 165 
transmission and reflected signal reception for recording (Figure 5). 166 
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 167 
Figure 5: A. Experimental protocol involving indentation of the ultrasound probe under regulation of the contact 168 
force. B. Normal force. C. Z position. D. Ultrasound signal reflected from the steel metal plate. E. Detail of the 169 
propagating ultrasonic pulse shown in panel D. 170 

2.4. Data analysis  171 

The detection and localization of the different inclusions was based on the elaboration of 172 
indentation force (FZ), vertical position (Z) and ultrasound signals. The stiffness parameter k for each 173 
indentation was calculated according to Equation (1). 174 

 175 
k = (∆FZ) ⁄ ∆Z (1) 

                176 
The ultrasound technique used for the detection of the inclusions was based on the reflectometric 177 
method. In fact, we considered more reliable to work with the variation of the signal reflected from the 178 
reference steel plate (which was interfaced with the bottom of the phantom) than considering the very 179 
low-amplitude signal reflected from the inclusion (the reflection coefficient was less than 1%). The 180 
ultrasonic analysis consisted in the processing of the signal detected in each point of the indentation 181 
matrix using the Correlation Index Amplitude (CIA) parameter [30], which was defined in Equation (2) 182 
as : 183 

 184 

CIA = 1 - 
∑ , ∑

∑ , ∑
 (2) 

 185 
In equation (2), Si and Sref denote the signal acquired in each point and the reference signal, respectively. 186 
The reference signal was acquired in a position outside the region with inclusions but inside the tissue-187 
like matrix. The CIA assumed values between 0 and 1. A high CIA indicates the detection of an inclusion 188 
since the two signals become poorly correlated. For each indented point, a colour map was created both 189 
for stiffness and for correlation index amplitude. An unsupervised classifier, called Fuzzy C-mean 190 
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(FCM) clustering, was used to classify each indentation of the scan on the phantom. Such unsupervised 191 
classification system, starting from the elaborated data, enabled the categorization of the point and the 192 
subsequent organization into different clusters. In this way, it was possible to divide the data into two 193 
classes: (a) tumor class, which were the sites classified as inclusions, and (b) healthy class, which were 194 
the sites classified as non-inclusions. From the wrong classification prediction, we obtained the number 195 
of false positive, i.e., soft matrix points classified as inclusions, and the false negative number, i.e., 196 
inclusions classified as soft matrix. Furthermore, new datasets were obtained and classified by merging 197 
the stiffness and the ultrasound data using AND-OR logics. In the AND case, we considered tumor 198 
only the points identified as inclusion in both the datasets simultaneously, thus we expected an increase 199 
in the total number of false negatives. In the OR case, we considered tumour all the points classified as 200 
inclusion in either the stiffness dataset or the ultrasound dataset, thus we expected an increase of the 201 
number of false positives and reduced false negatives. The results of the OR logic are crucial to include 202 
all of the cancerous tissues. Through a confusion matrix, the accuracy and the misclassification rate 203 
were calculated for all the datasets and methods. 204 

3. Results 205 

All the experimental results presented in this section have been repeated over seven replicas of 206 
the developed phantoms. 207 

3.1. Results from stiffness measurements  208 
An elaboration example of the stiffness analysis, for one of the seven phantoms, is shown in the 209 

top parts of Figure 6. The bottom part of Figure 6A shows the positions of the inclusions inside the 210 
indentation matrix. Since the inclusions were embedded into a soft matrix, their stiffness was 211 
depending not only on the materials properties, but also on the dimensions of the buried inclusions. 212 
The stiffness values indeed increased with the dimension of the inclusions. Stiffness analysis was 213 
clearly capable to detect the bigger inclusions, namely 12 mm and 9 mm. Figure 6B, showing the 214 
results for the whole indentation matrix, confirmed this trend. A visual inspection of the image allows 215 
discriminating big inclusions compared to the soft surrounding matrix. 216 
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 217 
Figure 6: A. (Top) Graph showing stiffness as a function of position, calculated as ΔFz/ΔZ, for the central row. 218 
(Bottom) Graph showing ultrasound signal processing of CIA index. B. (Top) 3D graph showing stiffness across 219 
the whole indentation matrix. (Bottom) 3D graph showing ultrasound signal processing of CIA index. 220 

The results of the identification based on stiffness measurements are shown in Figure 7A, obtained 221 
by the Fuzzy C-mean (FCM) clustering. The results of this unsupervised classification system 222 
confirmed the ability of the stiffness measurement system to recognize all the points belonging to the 223 
big inclusions, thus without false negatives. Such performances were evident from the high number 224 
of true positive (green points) for 12 mm and 9 mm inclusions. However, stiffness analysis was not 225 
able to reliably identify the smallest inclusions, as pointed out by the high number of false negatives 226 
(red points) for 6 mm and 3 mm inclusions (Figure 7A). 227 

 228 
Figure 7: Classification (TP-TN-FP-FN) of all the points of the indentation matrix for the analyses with stiffness 229 
(A) and ultrasound (B) measurements. 230 

3.2. Results from ultrasound measurements 231 

According to the ultrasound data analysis, shown in Figure 6 (bottom part), we can observe in 232 
Figure 6A, that the CIA index increases consistently in correspondence of the inclusions. But, unlike 233 
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the stiffness measurements, higher CIA values were observed also for the smaller inclusions. Thanks 234 
to the high CIA peak recorded for each inclusion, this approach led to the detection of all the 235 
inclusions buried in the phantom. Figure 6B, showing the results for the whole indentation matrix, 236 
confirmed this trend. As for the stiffness measurement part, Figure 7B shows the results of the FCM 237 
clustering, highlighting the ability of the ultrasound system to detect each inclusion. The trend is 238 
visible in Figure 7B where true positives (in green) are present in each inclusion. Remarkably, false 239 
positives (in yellow) and false negatives (in red) were obtained in the area at the boundary between 240 
the inclusion and the soft matrix, confirming the high specificity in identifying the area to focus on 241 
for histological analyses. 242 
 243 

3.3. AND-OR logics to merge stiffness and ultrasound measurements  244 
With the aim to improve the detection performance (true positives vs false negatives), new 245 

datasets were obtained and classified by merging stiffness and ultrasound measurements using 246 
AND-OR logics and the corresponding results are shown in Figure 8. The AND logics (Figure 8A) 247 
turned out in an increase of false negatives and decrease of false positives. The growth of false 248 
negative predictions can lead to the worst-case scenario, since might bring to a loss of identified 249 
tumors. Instead, the OR logics demonstrated to be a safer approach since it turned out in an 250 
acceptable increase of false positives and a consistent decrease of false negatives. As shown in Figure 251 
8B, the OR logics between stiffness and ultrasound measurements was able to correctly discriminate 252 
all the inclusions, even the smaller ones. Such results were achieved thanks to the complementarity 253 
of the two systems. The stiffness analysis was better in localizing bigger inclusions, whereas the 254 
ultrasound analysis was better for the detection of smaller inclusions (compare Figure 7A and Figure 255 
7B).  256 

 257 
Figure 8: Classification (TP-TN-FP-FN) for all the points of the indentation matrix following the AND-OR logics 258 
of stiffness- and ultrasound-based classifications shown in Figure 7. 259 

This behavior was further confirmed by the confusion matrices obtained with the seven 260 
experimented phantoms and with all the identification techniques, i.e., based on just stiffness 261 
measurements, just ultrasound, and with the AND-OR logics (Figure 9). 262 
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 263 
Figure 9: Confusion Matrix with classification based on A. Stiffness measurements. B. Ultrasound 264 
measurements. C. Stiffness OR ultrasound measurements. D. Stiffness AND ultrasound measurements. 265 

4. Discussion 266 
In this work we present a platform aiming at identifying cancer nodules in ex-vivo tissues. Such 267 

tool, oriented towards the automation of diagnostic procedures during surgery, has the scope of 268 
increasing the effectiveness of histopathological evaluations. Such exams need to be performed as 269 
correctly as possible because the report may lead in a modification of the surgical procedure. The 270 
human capability to detect these lumps with characteristic dimension of few mm, depends on the 271 
pathologist expertise and tactile capabilities. To achieve this goal, the presented platform combines 272 
three different measurements, such as camera vision, stiffness calculations via force-position sensing 273 
and ultrasound recordings to perform an automatic scan and evaluation of the indented tissue. In 274 
this paper the tests were performed in a laboratory environment using seven Agar phantoms that 275 
mimicked the mechanical and acoustic properties of human ex-vivo tissues. The phantoms integrated 276 
eight spherical inclusions with different diameters (from 3 mm up to 12 mm) to reproduce tumors 277 
inside healthy tissues. The results, for all phantoms, summarized in the confusion matrices, 278 
demonstrated the ability of the platform to automatically identify the inclusions, particularly when 279 
complementing stiffness with ultrasound measurements via OR logics. In particular, as reported in 280 
the confusion matrix, the tactile analysis presents valuable classification results in detecting the 281 
inclusions as reflected from the 78.73% of TP and 90.26% of TN. Moreover, it shows a low percentage 282 
of FP and FN, 9.74% and 21.27%, respectively. We observe that the tactile analysis provides 283 
satisfactory shape recognition and tumor detection for inclusions up to 6 mm in diameter. On the 284 
other hand, it missed the smaller inclusions that were buried deeper into the softer matrix. The 285 
ultrasound analysis can be a very good guiding tool for localization and detection of tumors, 286 
including the smaller ones, because the ultrasound resolution is much higher than the size of the 287 
inclusion and the difference in the acoustic impedance along z axis is sufficient to generate an 288 
amplitude variation than can be detected from noise. The ultrasound data presents high amount of 289 
TN of 92.41% and a low FP of 7.59%. However, the ultrasound alone shows a high number of FN of 290 
43.72%. To improve the performance, the classified datasets were logically merged using the OR and 291 
AND logic. As expected, the results of OR logic gave evidence of a higher rate of inclusions 292 
recognition (i.e. 90.3% of TP and 84.56% TN), while maintaining low error rates (i.e. 9.68% FN and 293 
15.44% FP). Interestingly, the AND logic localizes the bigger inclusions with an increased TN rate of 294 
98.10%and reduced the FP rate to 1.90%, but the TP rate of 44.70% and FN rate of 55.30% missed the 295 
correct shape and smaller tumors entirely. 296 
In addition, we found that the ultrasound method was also sensitive to the presence of air bubbles 297 
formed in the agar inclusions and modified the amplitude of the reflected signal from the bottom 298 
interface. Tactile data, however, were not sensitive to these air bubbles inside the inclusions, 299 
reproducing their shape a more faithfully in the OR logic. Within the present work, we adopted a 300 
scan resolution with step of 2 mm inspired by the 16 MHz needle probe diameter (i.e. 3 mm). To keep 301 
a balance between the scan speed and area, we decided to scan with step of 2 mm. Lesser resolution 302 
values lead to insufficient data points in the scanned area, while higher values would introduce 303 
unaffordable scan time and oversampling. 304 
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The phantoms we used were the simplistic versions of the biological tissues. Hence, further 305 
developments will address the experimentation of the robotic platform on ex-vivo tissues. After this 306 
validation step, we can envisage that the sensorized platform placed in the operating theatre, will 307 
enable the pathologist to access data remotely with the purpose of assisting the surgeon in adapting 308 
the procedures during surgery. Information obtained from the platform can also be used to provide 309 
haptic feedback to the pathologist by means of wearable interfaces [31–34]. The analysis of vision 310 
data, now used only for detecting the boundary of the tissue and thus to define the indentation 311 
matrix, can be improved to provide a visual report too. Such a new procedure will target the 312 
extraction of several features from the pictures of both healthy and tumorous tissues to learn their 313 
differences via artificial intelligence methods and thus complement stiffness and ultrasound 314 
measurements. Finally, the results will be translated in an electronic report and integrated with the 315 
management software (e.g., HL7) of the healthcare system. 316 
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