1 Forebrain cholinergic signaling: Wired and phasic, not tonic, and causing behavior. 2 3 Martin Sarter & Cindy Lustig 4 Dept. Psychology & Neuroscience, University of Michigan, Ann Arbor, MI (USA) 5 6 7 8 9 Running title: Phasic ACh 10 11 12 13 Words counts: abstract 388; main text 4,396 14 15 16 17 Acknowledgements: The authors' research was supported by PHS grants R01DA045063 and P50NS091856. Α preprint 18 of this paper was previously made available (https://www.preprints.org/manuscript/201904.0010/v1). We thank Drs. Peter Dayan (Max Planck 19 Institute for Biological Cybernetics), Howard Gritton (Boston University), William M. Howe (Icahn 20 School of Medicine at Mt. Sinai), and Vinay Parikh (Temple University) for comments on a draft 21 22 of this paper. Competing Financial Interests: The authors declare no competing financial interest. 23 24 Addresses: Martin Sarter, Department of Psychology, University of Michigan, 530 Church Street, 4030 East Hall, Ann Arbor, MI 48109; email: msarter@umich.edu; Cindy Lustig, Department of 25 26 Psychology, University of Michigan, 530 Church Street, 4036 East Hall, Ann Arbor, MI 48109; email: clustig@umich.edu 27 28

Abstract

29

30

31

32 33

34

35

36

37

38 39

40

41

42

43 44

45 46

47

48

49 50

51 52

53

54

55

56

57

58 59

60

61

Previous evidence in support of a slowly acting (scale of 100s of seconds) and volume-transmitted component of cholinergic signaling was based largely on studies using measures of extracellular brain acetylcholine (ACh) levels which required several minutes to generate a single data point and typically employed AChEsterase inhibitors (AChEls) to foster the measurement of ACh. Moreover, collecting such data points in correlation with relatively stable behavioral states has supported the view that extracellular ACh levels vary at a relatively slow rate. Here we argue that forebrain cholinergic signaling is exclusively phasic (milliseconds to perhaps seconds), unlikely to be volume-transmitted, and that previous neurochemical evidence and associated behavioral correlates may be re-interpreted in terms of integrated phasic cholinergic activity and specific behavioral and cognitive operations. The highly potent catalytic enzyme for ACh, AChE, limits the presence of an ambient extracellular ACh level and thus renders it unlikely that ACh influences target regions via relatively slow changes in extracellular ACh concentrations. Real-time amperometric recordings of cholinergic signaling have suggested a specific function of rapid. phasic or transient cholinergic signaling in attentional contexts. Optogenetic studies support a causal relationship between these transients on behavior. Combined electrochemical and neurophysiological recordings revealed that the powerful behavioral control by cholinergic transients involves the generation of high-frequency oscillations. Such oscillations are thought to recruit efferent circuitry to (re)activate dormant task sets. Evidence showing the impact of genetic variations of the capacity of cholinergic synapses likewise can be interpreted in terms of their impact on the ability to sustain generation of repeated phasic cholinergic signals, as opposed to effects on ambient ACh levels. Further, while notions of slowly-changing, sleep stage-associated variations in extracellular ACh levels and their functions are widely accepted, the evidence is in fact limited. An alternative hypothesis offers a role for high-frequency cholinergic transient signaling during REM sleep. By employing a theoretical framework that focuses on the phasic and causative characteristics and functions of cholinergic signaling, results from human cognitive neuroscience studies of cholinergic function may be substantially clarified and simplified. Compared to the current treatment of cholinergic deficits using AChEIs, the conceptualization of forebrain cholinergic signaling as wired, phasic, and causative predicts that drugs that either rescue transient presynaptic signaling or amplify or rescue the postsynaptic impact of phasic signals will be more efficacious in treating age- and dementia-related cognitive and cognitivemotor disorders.

Introduction: ACh as a phasic modulator

Traditional descriptions of the anatomical organization of the basal forebrain cholinergic projections to telencephalic regions emphasize the hallmarks of a neuromodulatory system. These hallmarks include the presence of a relatively small number of soma in the basal forebrain giving rise to a relatively large innervation space, a limited topographical organization of cholinergic projections, a substantial degree of axonal collateralization, and the presence of extrasynaptic, or non-classical, receptors and, by implication, volume-transmission. Consequently, theories of cholinergic function have primarily described it in terms of slowly (over minutes) changing extracellular ACh levels (Yu and Dayan, 2002) and volume transmission (e.g., Lean et al., 2019). By these views, ACh acts in a spatially and temporally diffuse way to influence the excitability of widespread cortical target regions and thus primarily modulates relatively global functions such "arousal". The main goal of this article is to critically probe these traditional descriptions, including our own prior interpretations of the evidence (Sarter and Bruno, 1997).

As an alternative, we discuss the evidence in support of the view that ACh mediates neuromodulatory effects based on highly phasic and probably largely synaptic signaling. This reconceptualization of ACh signaling as phasic, synaptic, and behaviorally causal fosters the integration of diverse levels of analysis of cholinergic functions in rodents, non-human primates and humans, the development of computational models, and more effective approaches to the psychopharmacological development of pro-cholinergic treatments.

Anatomical foundations of locally-specific cholinergic signaling

Contemporary neuroanatomical research has revealed a heretofore unexpected degree of anatomical and functional parcellation of basal forebrain cholinergic neurons and a highly topographical organization of the basal forebrain cholinergic projection system, including complex relationships between basal forebrain afferent and efferent projection patterns (Zaborszky et al., 2008; Zaborszky et al., 2015b; Zaborszky et al., 2015a; Gielow and Zaborszky, 2017; Huppé-Gourgues et al., 2018; Lean et al., 2019). Combined with a limited degree of axonal collateralization (Price and Stern, 1983), this evidence suggests a neuronal projection system that can support regionally discrete cholinergic stimulation (see also Chavez and Zaborszky, 2017). The presence of neuronal subpopulations and topographic projections also supports proposals about cholinergic modules which can selectively impact information processing in individual cortical areas and layers (see also Tingley et al., 2015).

94

95

96

97

98

99

100 101

102

103

104

105

106

107

108

109

110

111

112

113

114

115116

117

118119

120

121

122

123124

125

The relatively high density of cholinergic contacts, relative to axonal lengths and neuron number (Mechawar et al., 2000), would seem to significantly limit the spatial selectivity of cholinergic function. However, further differentiation of cholinergic actions may be derived from the presence of target area-specific organization of microcircuits, involving diverse and regionally-specific populations of interneurons (e.g., Xiang et al., 1998; Chen et al., 2015; Eggermann and Feldmeyer, 2009). Moreover, evidence indicating neuronal activity-dependent cholinergic modulation of dendritic computation (e.g., Williams and Fletcher, 2018), and region-specific wiring of cholinergic terminals, in part via heteroreceptors expressed at cholinergic terminals (Parikh et al., 2010; Parikh et al., 2008; Lambe et al., 2003; Poorthuis et al., 2013), offer additional mechanisms for differentiated, locally-specific cholinergic signaling. Thus, evidence at both the system and microcircuit level combine to render the view that ACh acts uniformly across large regions to, for example, "enhance cortical arousal", increasingly obsolete.

The catalytic power of acetylcholinesterase (AChE) supports spatially and temporally constrained cholinergic signaling

The catalytic power of AChE has been called "amazing" and "a hallmark of an evolutionarily perfect enzyme" (Quinn, 1987). Indeed, the rate of ACh hydrolysis is limited by the rate of ACh diffusion to the active site, rather than by how quickly AChE can break it down (Botti et al., 1999; Hasinoff, 1982; Antosiewicz et al., 1995). AChE is present in the dendrites, perikarya, axons, and synaptic clefts (Blotnick-Rubin and Anglister, 2018). Thus, proposals suggesting extra-synaptic presence of "ambient" extracellular ACh levels, capable of reaching targets across tens of micrometers of extracellular space (Descarries, 1998), require mechanisms that limit the synaptic hydrolysis of ACh. Such an escape from hydrolysis has been proposed for ACh released from synapses with relatively large pre- to post-synaptic distances, based on the view that AChE is largely bound to presynaptic membranes (Dobbertin et al., 2009). However, the role of neuronally released, soluble forms of AChE (Andres et al., 1990; Appleyard, 1992) in terminating ACh action in vivo would also need to be considered. The finding that knockout of AChE in mice increased brain basal ACh levels from nanomolar to micromolar concentrations, but yielded only relatively minor functional impairments (Farar et al., 2012), may also be considered evidence against an essential role of AChE in terminating cholinergic signaling. However, little remains known about the compensatory role of other esterases capable of hydrolyzing ACh (but see Hartmann et al., 2007). Importantly, prior discussions in support of an ambient extracellular ACh level have relied largely on morphological evidence; what is needed are in vivo demonstrations that newly released ACh can escape hydrolysis.

127

128

129130

131132

133134

135

136

137

138

139

140

141

142143

144

145

146147

148149

150

151

152

153154

155

156

157158

We conducted one such test by measuring extracellular choline generation - a main product of ACh hydrolysis - with choline-sensitive electrodes. In addition, we (co-)immobilized AChE on these electrodes to hydrolize ACh that potentially escaped, that is, was not hydrolyzed by, endogenous AChE (Giuliano et al., 2008). In vitro, these electrodes were able to detect "spared" extra-synaptic ACh at low femtomolar concentrations. In the cortex in vivo, we injected KCl into the vicinity of the electrodes to produce depolarization-evoked, relatively large increases of ACh release to optimize the possibility that a portion of such ACh might escape the endogenous AChE. However, even in such conditions, choline currents did not indicate that a portion of ACh "escaped" the endogenous AChE. In other words, these experiments did not reveal the presence of ACh spared by endogenous AChE. Related to the presence or absence of ambient extracellular ACh levels, the presence or absence of classical cholinergic synapses (in cortex) has remained in dispute (Umbriaco et al., 1994; Descarries and Mechawar, 2000; Smiley et al., 1997; Turrini et al., 2001). However, if ACh indeed is nearly completely hydrolyzed by endogenous AChE, a significant degree of volume transmission would appear unlikely. Although burst firing patterns of basal forebrain cholinergic neurons may support increases in ACh release that continue for several seconds (e.g., Unal et al., 2012; Manns et al., 2000; Lee et al., 2005), for ACh to exert relatively distant effects, akin to effects of monoamines across several millimeters (Schneider et al., 1994; Puopolo et al., 2005), it would be necessary to demonstrate additional regulatory constraints of the efficacy of AChE. Conclusive experiments that could reject the presence of volume transmission do not appear straight forward, and raising such a binary question may not be very useful (see also Sarter et al., 2009). However, as discussed above, the cholinergic synapse seems exquisitely equipped to limit the spatial range of cholinergic signaling (see also Dunant and Gisiger, 2017). The recent demonstration that electrical stimulation yielded a very limited spread of activated (fluorescent)

Slow ACh - methodological artifact? New insights from amperometric recordings

G-protein-coupled ACh receptors (Jing et al., 2018) is consistent with this view.

The view that levels of cholinergic neurotransmission vary across minutes has been supported by attributing relatively long-lasting (several minutes) arousal states to different extracellular ACh levels (e.g., Marrosu et al., 1995; Kametani and Kawamura, 1990). However, to a substantial degree, this view has been driven by the limited temporal resolution of previously predominant methods for monitoring changes in extracellular ACh levels. Using microdialysis to collect ACh from the extracellular space typically yields samples containing pM to low nM concentrations which are close to the detection limit of traditional analytical methods. Thus, it has been necessary

159 to collect samples over several minutes. Moreover, such collections typically occurred while an 160 AChEI was reverse-dialyzed to artificially increase levels of recoverable ACh¹. In other words, 161 ACh levels were long considered to vary at the scale of minutes because that was the scale at which they could be measured. 162 This view is challenged by experiments using newer methods that allow real-time monitoring of 163 164 ACh release. Using amperometric measures of evoked choline currents, which reflect newly 165 released and hydrolyzed ACh (Parikh and Sarter, 2006), we observed phasic, or "transient" 166 cholinergic activity in the prefrontal cortex of rats performing a signal detection task. Such 167 transients reliably predicted "switch hits" - correct signal detections following either a long temporal delay or a perceived nonsignal trial (i.e., after a correct rejection or miss (Parikh et al., 168 169 2007; Howe et al., 2013; Howe et al., 2017). These transients did not occur for other trial types, 170 including correct rejections, misses, or hits following other hits (there were too few false alarms 171 to analyze). 172 Critically, optogenetic studies (Gritton et al., 2016) demonstrated that cholinergic transients cause 173 behavior: Optogenetic inhibition of such transients during signal trials reduced hits, but did not 174 affect correct rejections, similar to the effects of cholinergic lesions (McGaughy et al., 1996). Moreover, optogenetic generation of cholinergic transients during cued trials, which therefore 175 coincided with, or substituted the occasional absence of, endogenously-generated transients, 176 177 increased detection rates (or hits). However, the most conclusive evidence for the causal power 178 of cholinergic transients comes from the effects of optogenetically-generated cholinergic transients during non-cue (or blank) trials - in which normally no such transients are observed. 179 180 Evoked transients in such trials drastically increased the rate of false alarms (incorrect reports of a signal) from around 20% to nearly 50% (Gritton et al., 2016). We further demonstrated that the 181 182 behavioral power of cholinergic transients is due to the generation of high frequency oscillations in cortex, requiring muscarinic M1 acetylcholine receptor (mAChR) stimulation (Howe et al., 183 184 2017). 185 Further experimentation will be needed to disambiguate the precise computation driven by cholinergic transients. The task circumstances in which they have been demonstrated thus far -186

¹If it is correct that the AChE effectively limits, or even prevents, the presence of extracellular ACh concentrations, it would need to be postulated that the successful recovery of ACh by microdialysis, in the absence of an AChE-inhibitor in the perfusion medium (Herzog et al., 2003; Himmelheber et al., 1998; Chang et al., 2006), results from the protection of ACh from the AChE by the glia barrier formed in response to the probe penetration injury (Jaquins-Gerstl and Michael, 2009; for more discussion of such technical issues see Sarter and Kim, 2015).

i.e., "shift-hits", or signal detection after a long temporal delay or non-detection - suggest two possibilities: The first builds on decision theory and describes a noisy and imperfect balance between competitive "signal-absent" and "signal-present" representations of the current task context (Yu and Dayan, 2005). By this view, the cholinergic transient shifts the excitatory/suppressive balance away from the dominant 'signal-absent' context representation to the 'signal-present' one (Schmitz and Duncan, 2018). As an extreme experimental demonstration of this possibility, optogenetic generation of invalid cholinergic transients during signal-absent trials led to false alarms, i.e., incorrect reports of signal presence (Gritton et al., 2016).

The second view also emphasizes the (re)activation of the 'signal-present' taskset, but via a slightly different route. This interpretation starts from the observation that in humans performing the same signal-detection task as used in the rodent studies, shift-hits primarily activate a prefrontal region associated with switching from externally-oriented (monitoring) processes to internal processing (specifically, memory or task-set retrieval; (Burgess et al., 2005; Chun and Johnson, 2011; see Howe et al., 2013 for additional evidence that the fMRI findings related to shift-hits are cholinergically mediated).

The differences between these views are relatively subtle and careful experimentation will be required to differentiate between them (or other possibilities). However, they both replace the traditional view describing ACh in terms of functionality of relatively undefined variations in "states" related to presumed extracellular "levels" of ACh with more specific operations determined by the presence or absence of discrete cholinergic transients. Evidence indicating that phasic and precisely timed ACh release events are sufficient to produce cortical synaptic strength changes (Urban-Ciecko et al., 2018) that may be essential for the detection of attention-demanding cues are consistent with this proposal.

Cholinergic "tone": an intuitive, method-derived but unneeded concept?

As already mentioned, the traditionally dominant view that ACh acts relatively slowly to influence widespread target regions has been based in part on evidence obtained by using microdialysis to monitor extracellular ACh levels. Data obtained from this method have necessarily suggested the functionality of slowly-changing levels of cholinergic tone (e.g., Coppola et al., 2016; Lecrux et al., 2017; Savage, 2012). Correlations between slowly-changing ACh levels with slowly-changing brain (arousal) states (e.g., Anaclet et al., 2015; Xu et al., 2015; Zant et al., 2016; Yang et al., 2017; Teles-Grilo Ruivo et al., 2017) have further supported the view that variations in "tonic" ACh levels are functional.

220

221

222223

224

225

226

227

228

229

230

231

232

233

234

235236

237

238239

240

241242

243244

245

246247

248

249

250

251

Above we argued that the cholinergic synapse is equipped to support highly phasic cholinergic signaling. This view raises the guestion of whether dialysate-derived tonic ACh levels reflect the integration of transients. Because the dimensions of the neurochemical measures obtained from microdialysis versus enzyme-coated microelectrodes and amperometry cannot be readily unified, and because the measurement compartments and terminal fields monitored by these two methods differ rather profoundly (microdialysis probe insertion-induced millimeter-sized cavity versus reactions of enzyme immobilized on a micrometer-sized, relatively slim electrode; (e.g., Fig. 2 in Howe et al., 2017), a direct test of this possibility has remained elusive. To complicate the issue further, the amperometric method is optimized for the measurement of transients and probably not capable of tracking slow changes in ACh (should those exist), largely because hydrolyzed choline spikes are rapidly cleared by cholinergic synapses and also diffuse into the interstitial space. For a test of the possibility that dialysis-derived ACh levels represent integrated cholinergic transients, we measured choline currents using amperometry and ACh levels using microdialysis in (necessarily separate groups of) rats performing a cued appetitive response task, with long temporal delays between cues (60-120 s). In this task, amperometrically measured choline spikes occur in trials in which rats indicated behaviorally that they detected a cue which predicted subsequent reward delivery. Measures were obtained from prefrontal cortex and from motor cortex. To compare amperometric data with ACh levels measured in 8-min dialysate collections, we expressed both types of data dimension-free and collapsed transient amplitudes over 8-min periods (methods and results are detailed in Supplemental Data in Parikh et al., 2007). Statistical comparisons between these two data sets indicate the absence of a significant difference, suggesting that microdialysis levels were reproduced by folding transient data into time bins which matched the dialysis collection intervals. Several caveats are important here. First, it should be acknowledged that we originally interpreted some aspects of this data, particularly the spatially-specific nature of cue-evoked transients (exclusively in mPFC and not motor cortex) versus the equivalent results for mPFC and motor cortex using either the microdialysis or re-analyzed amperometric data, as supporting different timescale mechanisms. However, although cue-evoked transients were confined to mPFC, amperometric activity did occur in motor cortex as well at various points in the trial – interestingly, the patterns suggested they may occur during shifts in motor behavior (e.g., from grooming to

rearing). This leads to the second question of how transients could be integrated to lead to

microdialysis results in light of the fast, highly-efficient action of AChE. As noted above, this may

- be related to the glial barrier created in response to the microdialysis probe penetration injury
- 253 (Footnote 1).
- In short, the evidence that transient signaling is sufficient to describe forebrain cholinergic
- signaling is currently tentative but appears to be at least quantitatively possible. More critically,
- 256 the evidence for longer-timescale action is methodologically problematic, and on first principles
- appears contradictory to the known efficiency of AChE. Definitive evidence on this point likely
- awaits further methodological development. However, to test the potential strength of a 'phasic
- 259 only' conceptualization, below we assess the usefulness of this hypothesis in the context of
- 260 evidence from two areas of research, or cases, on arousal states and on the impact of genetic
- variations of the synaptic capacity for cholinergic signaling.

Case 1: Arousal states

- lt has been widely accepted that forebrain cholinergic tone is elevated during REM sleep, and
- that ACh levels in that stage are nearly comparable with levels seen in the awake state. Indeed,
- 265 evidence connecting arousal-states to ACh levels has remained a major source of support for the
- idea of a cholinergic tone. However, this may once again be at least partially a methodological
- 267 artifact.

- 268 The primary evidence comes from classical studies which preceded even the availability of
- 269 microdialvsis. Sealed chambers were placed onto the pial surface of the cortex of anesthetized
- and immobilized animals and perfused with AChEIs to prevent ACh hydrolysis. Individual samples
- were collected over 10-15 min periods. ACh levels in these samples, in response to electrical
- stimulation of the reticular formation, formed the basis of the notion that arousing events increase
- cortical ACh levels (Celesia and Jasper, 1966; Szerb, 1971; Phillis, 1968). Subsequent
- 274 microdialysis studies measured extracellular ACh levels in 5-60-min dialysate samples. Results
- from these studies seemed to confirm that ACh levels were higher during wakefulness and
- paradoxical sleep when compared with slow-wave-sleep (Kametani and Kawamura, 1990, 1991;
- Marrosu et al., 1995; Jimenez-Capdeville and Dykes, 1996). However, as noted above, both of
- these measurements occurred in the presence of AChE inhibitors in the perfusion fluid to prevent
- 279 ACh hydrolysis.
- Overall, the available evidence showing elevated cholinergic tone during arousal states seems
- unexpectedly limited and is largely based on older methods which relied on inhibiting ACh
- 282 hydrolysis and which, by default, generated measurement time points incapable of revealing
- 283 underlying potential phasic release patterns patterns that are predicted based on the

neurophysiological activity of cholinergic soma during paradoxical sleep and wakefulness. In particular, recordings from cholinergic neurons in the basal forebrain indicate phasic, high frequency bursts during wake and REM sleep stages, that is, activity on a time scale that mirrors the time scale of transient ACh release events (Lee et al., 2005).

Consistent with these prior findings, we observed cholinergic transients, recorded at a sampling rate of 20 Hz in cortex and hippocampus, across all stages of the sleep/wake cycle but at a relatively higher frequency during REM sleep (Gritton et al., 2009). These transients had amplitudes of 5-40 pA and decay rates of 3-5 pA/sec. During REM sleep, the frequency of transients was about 4-fold higher than during slow-wave sleep (0.4 versus 0.1 transients/min), and also significantly higher than during wakefulness (0.25 transients/min). While such transient frequencies appear unexpectedly low, we observed non-correlated, or desynchronized, transients at recordings sites that were separated by only about 100 µm. This finding suggests that within a neuronal space of 500 µm³, approximating the space contributing to analyte recovery in microdialysis studies (Dykstra et al., 1992), transients during REM sleep may occur at a rate of over 10-50/min. Such a rate would be robustly higher than the rate observed during behavior (above) and thus could readily account for the elevated ACh levels seen in studies which used microdialysis or other low-temporal resolution methods to monitor ACh.

Case 2: Cholinergic top-down control – evidence for a relatively "tonic" action of ACh?

Thus far our description of the cognitive operations supported by cholinergic transients has focused on dynamic operations – shifts from one task or context representation (non-signal) to another (signal detection). However, successful cognition also requires the ability to maintain stability and stay "on task", especially in the face of distractors or other challenges. The cholinergic system also plays a critical role in this aspect of cognition, one which we and others have previously ascribed to longer-term (seconds-to-minutes) cholinergic activity.

For example, right frontal and parietal ACh levels measured using microdialysis in rats performing the same signal-detection task used to demonstrate cholinergic transients (above) are elevated relatively to pre-task baseline and increase further in the face of a perceptual-attentional challenge (changing background illumination) that disrupts performance (St Peters et al., 2011; see Gill et al., 2000; Kozak et al., 2006 for additional evidence of the cholinergic system's essential role in responding to challenge). Humans performing a parallel task show parallel increases in activation along the right middle/inferior frontal gyrus (Berry et al., 2017; Demeter et al., 2011). These increases in ACh levels and activation appear to be more strongly related to attempts to maintain or regain the task set, and thus performance, than with successful performance *per se* (see also

317 Gritton et al., 2013; Paolone et al., 2012). They have thus been described as related to "attentional 318 effort", or the motivated activation of attentional systems in order to stabilize or recover 319 performance, especially in the face of challenge (Sarter et al., 2006; for evidence from other 320 investigators and tasks reaching similar conclusions see Passetti et al., 2000; McGaughy et al., 2002). 321 322 Support for this interpretation also comes from humans with a genetic variant that reduces the 323 capacity of the neuronal choline transporter (CHT) in vitro (Okuda et al., 2002) and, expressed in 324 mice, choline clearance in vivo (Donovan et al., 2019). CHT capacity is essential for, and the rate-325 limiting step of, ACh synthesis and release (for reviews see Okuda and Haga, 2003; Ferguson 326 and Blakely, 2004; Sarter and Parikh, 2005). We showed that the attentional performance of 327 humans expressing this sub-capacity CHT variant is drastically impaired in the presence of a distractor (Berry et al., 2014; for review of evidence from humans and from a mouse model of 328 impaired CHT function see Sarter et al., 2016). Additional support for a cholinergic role in 329 330 "attentional effort" has been derived from investigations in patients with Parkinson's disease with PET-based determination of cholinergic losses, in addition to the disease defining striatal 331 dopaminergic degeneration. In these patients, reduced signal detection is associated with 332 denervation of thalamic, rather than cortical, cholinergic pathways (Kim et al., 2017b). Cortical 333 cholinergic denervation is associated instead with an increased vulnerability to irrelevant external 334 stimuli (Kim et al., 2017a). 335 336 Together these data would seem to present a strong case for a dissociation between a "shifting" function associated with cholinergic transients, and a "stabilization" function associated with more 337 338 sustained cholinergic firing, and indeed that was our initial interpretation (e.g., Sarter et al., 2001). However, the dissociation may be anatomical, rather than temporal. The fMRI activation patterns 339 340 associated with shift-hits are observed in an anterior PFC region associated with retrieval and turning attention towards internal representations (see above). In contrast, those associated with 341 342 responding to distraction and other attentional challenges occur along the right middle/inferior 343 frontal gyrus, in a region frequently discussed as a "hub" for the network-level neural representation of relevant task sets, so that cognition and behavior are driven by these goal-344 345 relevant task sets, rather than being stimulus-driven (e.g., Braver et al., 2009; Lustig and Sarter, 346 2016; Berry et al., 2017). 347 Critically, maintaining representations in working memory - including task-set representations does not require persistent neuronal firing (Lundqvist et al., 2018). Instead, they can be 348 maintained by shifts in synaptic weights or coordinated variability and oscillatory behavior (e.g., 349

Schmitz and Duncan, 2018; Lustig et al., 2007; Sadaghiani et al., 2015; Dehaene et al., 1998). Explicit activity may only be required during the initial acquisition, to recover the task set after an error, or to 'protect' the representation in the face of competing inputs (see especially the discussion in Dehaene et al., 1998), or more occasionally to 'refresh' the representation to counteract degradation in network coherence that would otherwise occur as a result of stochastic variability among its components (Lustig et al., 2009). Recent computational work demonstrates how cholinergic activity supporting the same fundamental operation – normalization, or shared variability among neurons – can support both stimulus and goal-driven attention by operating at different levels of the cortical hierarchy (Schmitz and Duncan, 2018).

In other words, the current evidence suggests that working memory representations – including those of the current task context – do not require constant, sustained neuronal spiking activity. In the absence of perturbation by external distractors or competing task sets, they can instead be maintained by correlated variability and shifts in synaptic weights, with occasional 'refreshing' needed to counteract stochastic variability that over time degrades their synchronization. The introduction of competing stimuli/task sets increases the need to "reinforce" the correct representation, but again this may be accomplished by short-burst firing – albeit at a more closely-spaced intervals. This view predicts that populations with low CHT function should have largely preserved, though somewhat less stable, performance in the absence of competition, with increasingly degraded performance with increasing salience and frequency of competing inputs – exactly the pattern shown by humans with genetically reduced CHT capacity and Parkinson's patients with cortical cholinergic degeneration but relatively preserved thalamic cholinergic innervation (see above).

We recognize that the distinction between "closely spaced cholinergic transients" and "persistent neuronal firing" may be difficult to empirically discern (but see Cui and Strowbridge, 2019 for a neuronal mechanism via which cholinerigc transients can induced persistent firing of cortical cells). However, there are critical conceptual distinctions: by this view the frequency of cholinergic activity is driven quantitatively by situational needs to refresh the task-set representation in the face of interference, rather than being a qualitatively different physiological "mode" operating at a different timescale (see also Fiebelkorn and Kastner, 2019).

Conclusions

Traditional assumptions about relatively lasting brain states controlled by the forebrain cholinergic system have coalesced with traditional neurochemical methods which generate minute-based measures of cholinergic activity and sample from relatively large neuronal spaces. The

384

385

386

387

388 389

390

391

392

393

394 395

396

397 398

399

widespread uses of AChEIs to optimize ACh measures and as a pharmacological tool have further cemented the view that tonic (scale of 100s of seconds) changes in extracellular ACh levels mediate relatively large-scale cognitive functions (such as arousal or top-down attentional control). Based on the demonstration of the presence and functions of fast, phasic or "transient" cholinergic signaling, here we argue that cholinergic signaling and functions can be sufficiently described by the presence of cholinergic transients which mediate a single computation that, behaviorally, favors the detection of behaviorally significant cues in attentional settings, specifically when such detection involves shifts between modes of attention (e.g., intrinsic to extrinsic, or monitoring to cue-oriented responding). The interpretation of evidence from behavioral, neurophysiological as well as human imaging studies on the role of cholinergic signaling will be more constrained and eventually heuristically more powerful by focusing on the role of fast cholinergic signaling for defined computational processes. Moreover, the search for effective pro-cholinergic, pro-cognitive treatments may benefit significantly from moving away from drugs the effects of which conform with views about tonic cholinergic activity and function, such as AChEIs, to drugs that enhance and rescue transient cholinergic signaling or their postsynaptic processing (e.g., Kucinski et al., 2019; Uslaner et al., 2018; Moran et al., 2018; Howe et al., 2010).

400 References

- Anaclet C, Pedersen NP, Ferrari LL, Venner A, Bass CE, Arrigoni E, Fuller PM (2015) Basal forebrain control of wakefulness and cortical rhythms. Nature Communications 6:8744.
- Andres C, el Mourabit M, Stutz C, Mark J, Waksman A (1990) Are soluble and membrane-bound rat brain acetylcholinesterase different? Neurochem Res 15:1065-1072.
 - Antosiewicz J, Gilson MK, Lee IH, McCammon JA (1995) Acetylcholinesterase: diffusional encounter rate constants for dumbbell models of ligand. Biophys J 68:62-68.
 - Appleyard ME (1992) Secreted acetylcholinesterase: non-dassical aspects of a dassical enzyme. Trends Neurosci 15:485-490.
 - Berry AS, Sarter M, Lustig C (2017) Distinct Frontoparietal Networks Underlying Attentional Effort and Cognitive Control. J Cogn Neurosci 29:1212-1225.
 - Berry AS, Demeter E, Sabhapathy S, English BA, Blakely RD, Sarter M, Lustig C (2014) Disposed to distraction: genetic variation in the cholinergic system influences distractibility but not time-on-task effects. J Cogn Neurosci 26:1981-1991.
 - Blotnick-Rubin E, Anglister L (2018) Fine Localization of Acetylcholinesterase in the Synaptic Cleft of the Vertebrate Neuromuscular Junction. Front Mol Neurosci 11:123.
 - Botti SA, Felder CE, Lifson S, Sussman JL, Silman I (1999) A Modular Treatment of Molecular Traffic Through the Active Site of Cholinesterase. Biophysical Journal 77:2430-2450.
 - Braver TS, Paxton JL, Locke HS, Barch DM (2009) Flexible neural mechanisms of cognitive control within human prefrontal cortex. P Natl Acad Sci USA 106:7351-7356.
 - Burgess PW, Simons JS, Dumontheil I, Gilbert SJ (2005) The gateway hypothesis of rostral prefrontal cortex (area 10) function. In: Measuring the mind: speed, control, and age (Duncan J, McLeod P, Philips LH, eds), pp 217-248.
 - Celesia GG, Jasper HH (1966) Acetylcholine released from cerebral cortex in relation to state of activation. Neurology 16:1053-1063.
 - Chang Q, Savage LM, Gold PE (2006) Microdialysis measures of functional increases in ACh release in the hippocampus with and without inclusion of acetylcholinesterase inhibitors in the perfusate. J Neurochem 97:697-706.
 - Chavez C, Zaborszky L (2017) Basal Forebrain Cholinergic-Auditory Cortical Network: Primary Versus Nonprimary Auditory Cortical Areas. Cereb Cortex 27:2335-2347.
 - Chen N, Sugihara H, Sur M (2015) An acetylcholine-activated microcircuit drives temporal dynamics of cortical activity. Nat Neurosci 18:892-902.
 - Chun MM, Johnson MK (2011) Memory: enduring traces of perceptual and reflective attention. Neuron 72:520-535.
 - Coppola JJ, Ward NJ, Jadi MP, Disney AA (2016) Modulatory compartments in cortex and local regulation of cholinergic tone. J Physiol Paris 110:3-9.
 - Cui ED, Strowbridge BW (2019) Selective attenuation of Ether-a-go-go related K(+) currents by endogenous acetylcholine reduces spike-frequency adaptation and network correlation. Elife 8.
 - Dehaene S, Kerszberg M, Changeux JP (1998) A neuronal model of a global workspace in effortful cognitive tasks. Proc Natl Acad Sci U S A 95:14529-14534.
 - Descarries L (1998) The hypothesis of an ambient level of acetylcholine in the central nervous system. J Physiol Paris 92:215-220.
 - Descarries L, Mechawar N (2000) Ultrastructural evidence for diffuse transmission by monoamine and acetylcholine neurons of the central nervous system. Prog Brain Res 125:27-47.
- Dobbertin A, Hrabovska A, Dembele K, Camp S, Taylor P, Krejci E, Bernard V (2009) Targeting of acetylcholinesterase in neurons in vivo: a dual processing function for the proline-rich membrane anchor subunit and the attachment domain on the catalytic subunit. J Neurosci 29:4519-4530.

- Donovan E, Avila C, Parikh V, Antcliff A, Blakely RD, Sarter M (2019) Reduced choline clearance in vivo in mice expressing a choline transporter subcapacity variant associated with low attentional control in humans. In: Society for Neuroscience Annual Meeting. Chicago, IL.
 - Dunant Y, Gisiger V (2017) Ultrafast and Slow Cholinergic Transmission. Different Involvement of Acetylcholinesterase Molecular Forms. Molecules 22.
 - Dykstra KH, Hsiao JK, Morrison PF, Bungay PM, Mefford IN, Scully MM, Dedrick RL (1992) Quantitative examination of tissue concentration profiles associated with microdialysis. J Neurochem 58:931-940.
 - Eggermann E, Feldmeyer D (2009) Cholinergic filtering in the recurrent excitatory microcircuit of cortical layer 4. Proc Natl Acad Sci U S A 106:11753-11758.
 - Farar V, Mohr F, Legrand M, Lamotte d'Incamps B, Cendelin J, Leroy J, Abitbol M, Bernard V, Baud F, Fournet V, Houze P, Klein J, Plaud B, Tuma J, Zimmermann M, Ascher P, Hrabovska A, Myslivecek J, Krejci E (2012) Near-complete adaptation of the PRiMA knockout to the lack of central acetylcholinesterase. J Neurochem 122:1065-1080.
 - Ferguson SM, Blakely RD (2004) The choline transporter resurfaces: new roles for synaptic vesicles? Mol Interv 4:22-37.
 - Fiebelkorn IC, Kastner S (2019) A Rhythmic Theory of Attention. Trends Cogn Sci 23:87-101.
 - Gielow MR, Zaborszky L (2017) The input-output relationship of the cholinergic basal forebrain. Cell Reports 18:1817-1830.
 - Gill TM, Sarter M, Givens B (2000) Sustained visual attention performance-associated prefrontal neuronal activity: evidence for cholinergic modulation. J Neurosci 20:4745-4757.
 - Giuliano C, Parikh V, Ward JR, Chiamulera C, Sarter M (2008) Increases in cholinergic neurotransmission measured by using choline-sensitive microelectrodes: enhanced detection by hydrolysis of acetylcholine on recording sites? Neurochem Int 52:1343-1350.
 - Gritton HJ, Lee TM, Opp M, Sarter M (2009) Cholinergic neurotransmission during REM sleep: combined electrochemical recordings of cholinergic transients and field potentials challenge an old dogma. In: Society for Neuroscience Annual Meeting. Chicago, IL.
 - Gritton HJ, Stasiak AM, Sarter M, Lee TM (2013) Cognitive performance as a zeitgeber: cognitive oscillators and cholinergic modulation of the SCN entrain circadian rhythms. PLoS One 8:e56206.
 - Gritton HJ, Howe WM, Mallory CS, Hetrick VL, Berke JD, Sarter M (2016) Cortical cholinergic signaling controls the detection of cues. Proc Natl Acad Sci U S A 113:E1089-1097.
 - Hartmann J, Kiewert C, Duysen EG, Lockridge O, Greig NH, Klein J (2007) Excessive hippocampal acetylcholine levels in acetylcholinesterase-deficient mice are moderated by butyrylcholinesterase activity. J Neurochem 100:1421-1429.
 - Hasinoff BB (1982) Kinetics of acetylthiocholine binding to electric eel acetylcholinesterase in glycerol/water solvents of increased viscosity. Evidence for a diffusion-controlled reaction. Biochim Biophys Acta 704:52-58.
 - Herzog CD, Nowak KA, Sarter M, Bruno JP (2003) Microdialysis without acetylcholinesterase inhibition reveals an age-related attenuation in stimulated cortical acetylcholine release. Neurobiol Aging 24:861-863.
 - Himmelheber AM, Fadel J, Sarter M, Bruno JP (1998) Effects of local cholinesterase inhibition on acetylcholine release assessed simultaneously in prefrontal and frontoparietal cortex. Neuroscience 86:949-957.
 - Howe WM, Ji J, Parikh V, Williams S, Mocaër E, Trocmé-Thibierge C, Sarter M (2010) Enhancement of attentional performance by selective stimulation of alpha4beta2* nAChRs: underlying cholinergic mechanisms. Neuropsychopharmacology 35:1391-1401.
- 496 nAChRs: underlying cholinergic mechanisms. Neuropsychopharmacology 35:1391-1401.
 497 Howe WM, Gritton HJ, Lusk NA, Roberts EA, Hetrick VL, Berke JD, Sarter M (2017) Acetylcholine
 498 release in prefrontal cortex promotes gamma oscillations and theta-gamma coupling
 499 during cue detection. J Neurosci 37:3215-3230.

- Howe WM, Berry AS, Francois J, Gilmour G, Carp JM, Tricklebank M, Lustig C, Sarter M (2013) Prefrontal cholinergic mechanisms instigating shifts from monitoring for cues to cueguided performance: converging electrochemical and fMRI evidence from rats and humans. J Neurosci 33:8742-8752.
 - Huppé-Gourgues F, Jegouic K, Vaucher E (2018) Topographic Organization of Cholinergic Innervation From the Basal Forebrain to the Visual Cortex in the Rat. Frontiers in Neural Circuits 12.
 - Jaquins-Gerstl A, Michael AC (2009) Comparison of the brain penetration injury associated with microdialysis and voltammetry. J Neurosci Methods 183:127-135.
- Jimenez-Capdeville ME, Dykes RW (1996) Changes in cortical acetylcholine release in the rat during day and night: differences between motor and sensory areas. Neuroscience 71:567-579.
- Jing M et al. (2018) A genetically encoded fluorescent acetylcholine indicator for in vitro and in vivo studies. Nat Biotechnol.
- Kametani H, Kawamura H (1990) Alterations in acetylcholine release in the rat hippocampus during sleep-wakefulness detected by intracerebral dialysis. Life Sci 47:421-426.
- Kametani H, Kawamura H (1991) Circadian rhythm of cortical acetylcholine release as measured by in vivo microdialysis in freely moving rats. Neurosci Lett 132:263-266.
- Kim K, Muller M, Bohnen NI, Sarter M, Lustig C (2017a) The cortical cholinergic system contributes to the top-down control of distraction: Evidence from patients with Parkinson's disease. Neuroimage:in press.
- Kim K, Muller M, Bohnen NI, Sarter M, Lustig C (2017b) Thalamic cholinergic innervation makes a specific bottom-up contribution to signal detection: Evidence from Parkinson's disease patients with defined cholinergic losses. Neuroimage 149:295-304.
- Kozak R, Bruno JP, Sarter M (2006) Augmented prefrontal acetylcholine release during challenged attentional performance. Cereb Cortex 16:9-17.
- Kucinski A, Phillips KB, Koshy Cherian A, Sarter M (2019) Rescuing the attentional performance of rats with cholinergic losses by the M1 positive allosteric modulator TAK-071. Submitted for publication.
- Lambe EK, Picciotto MR, Aghajanian GK (2003) Nicotine induces glutamate release from thalamocortical terminals in prefrontal cortex. Neuropsychopharmacology 28:216-225.
- Lean GA, Liu YJ, Lyon DC (2019) Cell type specific tracing of the subcortical input to primary visual cortex from the basal forebrain. J Comp Neurol 527:589-599.
- Lecrux C, Sandoe CH, Neupane S, Kropf P, Toussay X, Tong XK, Lacalle-Aurioles M, Shmuel A, Hamel E (2017) Impact of altered cholinergic tones on the neurovascular coupling response to whisker stimulation. J Neurosci.
- Lee MG, Hassani OK, Alonso A, Jones BE (2005) Cholinergic basal forebrain neurons burst with theta during waking and paradoxical sleep. J Neurosci 25:4365-4369.
- Lundqvist M, Herman P, Miller EK (2018) Working Memory: Delay Activity, Yes! Persistent Activity? Maybe Not. J Neurosci 38:7013-7019.
- Lustig C, Sarter M (2016) Attention and the cholinergic system: relevance to schizophrenia. Curr Top Behav Neurosci 28:327-362.
- Lustig C, Matell MS, Meck WH (2007) Not "just" a coincidence: Frontal-striatal interactions in working memory and interval timing. Memory 13:441-448.
- Lustig C, Shah P, Seidler R, Reuter-Lorenz PA (2009) Aging, training, and the brain: a review and future directions. Neuropsychol Rev 19:504-522.
- Manns ID, Alonso A, Jones BE (2000) Discharge profiles of juxtacellularly labeled and immunohistochemically identified GABAergic basal forebrain neurons recorded in association with the electroencephalogram in anesthetized rats. J Neurosci 20:9252-9263.

554

555

556 557

558

559

560

561

562

563

564

565 566

567

568

569

570 571

572

573

574

575 576

577

578 579

580

581

582

583 584

585 586

587

588

589 590

591 592

593

594 595

- 549 Marrosu F. Portas C. Mascia MS. Casu MA. Fa M. Giagheddu M. Imperato A. Gessa GL (1995) 550 Microdialysis measurement of cortical and hippocampal acetylcholine release during 551 sleep-wake cycle in freely moving cats. Brain Res 671:329-332.
- McGaughy J, Kaiser T, Sarter M (1996) Behavioral vigilance following infusions of 192 IgGsaporin into the basal forebrain: selectivity of the behavioral impairment and relation to 553 cortical AChE-positive fiber density. Behav Neurosci 110:247-265.
 - McGaughy J, Dalley JW, Morrison CH, Everitt BJ, Robbins TW (2002) Selective behavioral and neurochemical effects of cholinergic lesions produced by intrabasalis infusions of 192 IgGsaporin on attentional performance in a five-choice serial reaction time task. J Neurosci 22:1905-1913.
 - Mechawar N, Cozzari C, Descarries L (2000) Cholinergic innervation in adult rat cerebral cortex: a quantitative immunocytochemical description. J Comp Neurol 428:305-318.
 - Moran SP, Dickerson JW, Cho HP, Xiang Z, Maksymetz J, Remke DH, Lv X, Doyle CA, Rajan DH, Niswender CM, Engers DW, Lindsley CW, Rook JM, Conn PJ (2018) M1-positive allosteric modulators lacking agonist activity provide the optimal profile for enhancing cognition. Neuropsychopharmacology 43:1763-1771.
 - Okuda T, Haga T (2003) High-affinity choline transporter. Neurochem Res 28:483-488.
 - Okuda T, Okamura M, Kaitsuka C, Haga T, Gurwitz D (2002) Single nucleotide polymorphism of the human high affinity choline transporter alters transport rate. J Biol Chem 277:45315-45322.
 - Paolone G, Lee TM, Sarter M (2012) Time to pay attention: attentional performance time-stamped prefrontal cholinergic activation, diurnality, and performance. J Neurosci 32:12115-12128.
 - Parikh V, Sarter M (2006) Cortical choline transporter function measured in vivo using cholinesensitive microelectrodes: clearance of endogenous and exogenous choline and effects of removal of cholinergic terminals. J Neurochem 97:488-503.
 - Parikh V, Kozak R, Martinez V, Sarter M (2007) Prefrontal acetylcholine release controls cue detection on multiple timescales. Neuron 56:141-154.
 - Parikh V, Man K, Decker MW, Sarter M (2008) Glutamatergic contributions to nicotinic acetylcholine receptor agonist-evoked cholinergic transients in the prefrontal cortex. J Neurosci 28:3769-3780.
 - Parikh V, Ji J, Decker MW, Sarter M (2010) Prefrontal beta2 subunit-containing and alpha7 nicotinic acetylcholine receptors differentially control glutamatergic and cholinergic signaling. J Neurosci 30:3518-3530.
 - Passetti F, Dalley JW, O'Connell MT, Everitt BJ, Robbins TW (2000) Increased acetylcholine release in the rat medial prefrontal cortex during performance of a visual attentional task. Eur J Neurosci 12:3051-3058.
 - Phillis JW (1968) Acetylcholine release from the cerebral cortex: its role in cortical arousal. Brain Res 7:378-389.
 - Poorthuis RB, Bloem B, Verhoog MB, Mansvelder HD (2013) Layer-specific interference with cholinergic signaling in the prefrontal cortex by smoking concentrations of nicotine. J Neurosci 33:4843-4853.
 - Price JL, Stern R (1983) Individual cells in the nucleus basalis--diagonal band complex have restricted axonal projections to the cerebral cortex in the rat. Brain Res 269:352-356.
 - Puopolo M, Hochstetler SE, Gustincich S, Wightman RM, Raviola E (2005) Extrasynaptic Release of Dopamine and Volume Transmission in the Retina. In: Dendritic Neurotransmitter Release (Ludwig M, ed), pp 175-189. Boston, MA: Springer US.
 - Quinn DM (1987) Acetylcholinesterase: enzyme structure, reaction dynamics, and virtual transition states. Chemical Reviews 87:955-979.
- 597 Sadaghiani S, Poline JB, Kleinschmidt A, D'Esposito M (2015) Ongoing dynamics in large-scale functional connectivity predict perception. Proc Natl Acad Sci U S A 112:8463-8468. 598

- Sarter M, Bruno JP (1997) Cognitive functions of cortical acetylcholine: toward a unifying hypothesis. Brain Res Brain Res Rev 23:28-46.
- Sarter M, Parikh V (2005) Choline transporters, cholinergic transmission and cognition. Nat Rev Neurosci 6:48-56.
- Sarter M, Kim Y (2015) Interpreting chemical neurotransmission in vivo: techniques, time scales, and theories. ACS Chem Neurosci 6:8-10.
 - Sarter M, Givens B, Bruno JP (2001) The cognitive neuroscience of sustained attention: where top-down meets bottom-up. Brain Res Rev 35:146-160.
 - Sarter M, Gehring WJ, Kozak R (2006) More attention must be paid: The neurobiology of attentional effort. Brain Res Rev 51:155-160.
 - Sarter M, Parikh V, Howe WM (2009) Phasic acetylcholine release and the volume transmission hypothesis: time to move on. Nat Rev Neurosci 10:383-390.
 - Sarter M, Lustig C, Blakely RD, Koshy Cherian A (2016) Cholinergic genetics of visual attention: Human and mouse choline transporter capacity variants influence distractibility. J Physiol Paris 110:10-18.
 - Savage LM (2012) Sustaining high acetylcholine levels in the frontal cortex, but not retrosplenial cortex, recovers spatial memory performance in a rodent model of diencephalic amnesia. Behav Neurosci 126:226-236.
 - Schmitz TW, Duncan J (2018) Normalization and the Cholinergic Microcircuit: A Unified Basis for Attention. Trends Cogn Sci 22:422-437.
 - Schneider JS, Rothblat DS, Distefano L (1994) Volume Transmission of Dopamine over Large Distances May Contribute to Recovery from Experimental Parkinsonism. Brain Research 643:86-91.
 - Smiley JF, Morrell F, Mesulam MM (1997) Cholinergic synapses in human cerebral cortex: an ultrastructural study in serial sections. Exp Neurol 144:361-368.
 - St Peters M, Demeter E, Lustig C, Bruno JP, Sarter M (2011) Enhanced control of attention by stimulating mesolimbic-corticopetal cholinergic circuitry. J Neurosci 31:9760-9771.
 - Szerb JC (1971) Cortical acetylcholine release and electroencephalographic arousal. Journal of Physiology 192:329-343.
 - Teles-Grilo Ruivo LM, Baker KL, Conway MW, Kinsley PJ, Gilmour G, Phillips KG, Isaac JT, Lowry JP, Mellor JR (2017) Coordinated Acetylcholine Release in Prefrontal Cortex and Hippocampus Is Associated with Arousal and Reward on Distinct Timescales. Cell Rep 18:905-917.
 - Tingley D, Alexander AS, Quinn LK, Chiba AA, Nitz DA (2015) Cell assemblies of the basal forebrain. J Neurosci 35:2992-3000.
 - Turrini P, Casu MA, Wong TP, De Koninck Y, Ribeiro-da-Silva A, Cuello AC (2001) Cholinergic nerve terminals establish classical synapses in the rat cerebral cortex: synaptic pattern and age-related atrophy. Neuroscience 105:277-285.
 - Umbriaco D, Watkins KC, Descarries L, Cozzari C, Hartman BK (1994) Ultrastructural and morphometric features of the acetylcholine innervation in adult rat parietal cortex: an electron microscopic study in serial sections. J Comp Neurol 348:351-373.
 - Unal CT, Golowasch JP, Zaborszky L (2012) Adult mouse basal forebrain harbors two distinct cholinergic populations defined by their electrophysiology. Frontiers in Behavioral Neuroscience 6.
 - Urban-Ciecko J, Jouhanneau JS, Myal SE, Poulet JFA, Barth AL (2018) Precisely Timed Nicotinic Activation Drives SST Inhibition in Neocortical Circuits. Neuron 97:611-625 e615.
- Uslaner JM, Kuduk SD, Wittmann M, Lange HS, Fox SV, Min C, Pajkovic N, Harris D, Cilissen C,
 Mahon C, Mostoller K, Warrington S, Beshore DC (2018) Preclinical to Human
 Translational Pharmacology of the Novel M1 Positive Allosteric Modulator MK-7622. J
 Pharmacol Exp Ther 365:556-566.

- Williams SR, Fletcher LN (2018) A Dendritic Substrate for the Cholinergic Control of Neocortical
 Output Neurons. Neuron.
- Xiang Z, Huguenard JR, Prince DA (1998) Cholinergic switching within neocortical inhibitory networks. Science 281:985-988.
- Xu M, Chung S, Zhang S, Zhong P, Ma C, Chang WC, Weissbourd B, Sakai N, Luo L, Nishino S, Dan Y (2015) Basal forebrain circuit for sleep-wake control. Nat Neurosci.
 - Yang C, Thankachan S, McCarley RW, Brown RE (2017) The menagerie of the basal forebrain: how many (neural) species are there, what do they look like, how do they behave and who talks to whom? Curr Opin Neurobiol 44:159-166.
- Yu AJ, Dayan P (2002) Acetylcholine in cortical inference. Neural Netw 15:719-730.
- 659 Yu AJ, Dayan P (2005) Uncertainty, neuromodulation, and attention. Neuron 46:681-692.
 - Zaborszky L, Hoemke L, Mohlberg H, Schleicher A, Amunts K, Zilles K (2008) Stereotaxic probabilistic maps of the magnocellular cell groups in human basal forebrain. Neuroimage 42:1127-1141.
 - Zaborszky L, Duque A, Gielow M, Gombkoto P, Nadasdy Z, Somogyi J (2015a) Organization of the basal forebrain cholinergic projection system: Specific or diffuse? In: The rat nervous system (Paxinos G, ed), pp 491-507. San Diego: Academic Press.
 - Zaborszky L, Csordas A, Mosca K, Kim J, Gielow MR, Vadasz C, Nadasdy Z (2015b) Neurons in the basal forebrain project to the cortex in a complex topographic organization that reflects corticocortical connectivity patterns: an experimental study based on retrograde tracing and 3D reconstruction. Cereb Cortex 25:118-137.
 - Zant JC, Kim T, Prokai L, Szarka S, McNally J, McKenna JT, Shukla C, Yang C, Kalinchuk AV, McCarley RW, Brown RE, Basheer R (2016) Cholinergic neurons in the basal forebrain promote wakefulness by actions on neighboring non-cholinergic neurons: an opto-dialysis study. Journal of Neuroscience 36:2057-2067.