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2 
 

Abstract  28 

Previous evidence in support of a slowly acting (scale of 100s of seconds) and volume-transmitted 29 

component of cholinergic signaling was based largely on studies using measures of brain 30 

acetylcholine (ACh) levels which required several minutes to generate a single data point and 31 

typically employed AChEsterase inhibitors (AChEIs) to foster ACh measurement. Moreover, 32 

collecting such data points in correlation with relatively stable behavioral states has further 33 

supported the view that extracellular ACh levels vary at a relatively slow rate. Here we argue that 34 

forebrain cholinergic signaling is exclusively phasic (milliseconds to perhaps seconds), unlikely to 35 

be volume-transmitted, and that previous neurochemical evidence and associated behavioral 36 

correlates may be re-interpreted in terms of integrated phasic cholinergic activity and specific 37 

behavioral and cognitive operations. The highly potent catalytic enzyme for ACh, AChE, prevents 38 

the presence of an “ambient” extracellular ACh level and thus renders it unlikely that ACh 39 

influences target regions via relatively slow changes in extracellular ACh concentrations. Real-40 

time amperometric recordings of cholinergic signaling have suggested a specific function of rapid, 41 

phasic or transient cholinergic signaling in attentional contexts. Optogenetic studies support a 42 

causal relationship between these transients on behavior. Combined electrochemical and 43 

neurophysiological recordings revealed that the powerful behavioral control by cholinergic 44 

transients involves the generation of high-frequency oscillations. Such oscillations are thought to 45 

recruit efferent circuitry to (re)activate dormant task sets. Evidence showing the impact of genetic 46 

variations of the capacity of cholinergic synapses likewise can be interpreted in terms of their 47 

impact on the ability to sustain generation of repeated phasic cholinergic signals, as opposed to 48 

effects on ambient ACh levels. Further, while notions of slowly-changing, sleep stage-associated 49 

variations in extracellular ACh levels and their functions are widely accepted, the evidence is in 50 

fact fairly limited. An alternative hypothesis offers a role for high-frequency cholinergic transient 51 

signaling during REM sleep. By employing a theoretical framework that focuses on the phasic 52 

and causative characteristics and functions of cholinergic signaling, results from human cognitive 53 

neuroscience studies of cholinergic function may be substantially clarified and simplified. 54 

Compared to the current treatment of cholinergic deficits using AChEIs, the conceptualization of 55 

forebrain cholinergic signaling as wired, phasic, and causative predicts that drugs that either 56 

rescue transient presynaptic signaling, or amplify or rescue the postsynaptic impact of phasic 57 

signals, will be more efficacious in treating age- and dementia-related cognitive and cognitive-58 

motor disorders. 59 

  60 
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Introduction: ACh as a phasic modulator 61 

Traditional descriptions of the anatomical organization of the basal forebrain cholinergic 62 

projections to telencephalic regions emphasize the hallmarks of a neuromodulatory system. 63 

These hallmarks include the presence of a relatively small number of soma in the basal forebrain 64 

giving rise to a relatively large innervation space, a limited topographical organization of 65 

cholinergic projections, a substantial degree of axonal collateralization, and the presence of extra-66 

synaptic, or non-classical, receptors and, by implication, volume-transmission. Consequently, 67 

theories of cholinergic function have centered around the functions of slowly changing 68 

extracellular ACh levels (Yu and Dayan, 2002) and the role of volume transmission in, for 69 

example, primary visual cortex function (e.g., Lean et al., 2019). The main goal of this article is to 70 

critically probe these traditional descriptions, including our own prior interpretations (e.g., St 71 

Peters et al., 2011), that ACh acts by slowly (over 100 of seconds or even minutes) affecting the 72 

excitability of widespread target regions, and thereby primarily modulating relatively global 73 

functions such as “arousal”. As an alternative, we discuss the evidence in support of the view that 74 

ACh mediates neuromodulatory effects based on highly phasic and probably largely synaptic 75 

signaling. This re-conceptualization of ACh signaling as phasic, synaptic, and behaviorally causal 76 

fosters the integration of diverse levels of analysis of cholinergic functions in rodents, non-human 77 

primates and humans, the development of computational models, and more effective approaches 78 

to the psychopharmacological development of pro-cholinergic treatments. 79 

Although the traditional anatomical and functional characteristics of forebrain cholinergic systems 80 

have been challenged in recent years (references below), the functional classification of ACh as 81 

a neuromodulator has persisted. Neuromodulation, however, has resisted a conclusive 82 

neuroscientific, categorical definition. Neuromodulators cannot be conclusively distinguished from 83 

"classical neurotransmitters" on the basis of the presence of volume transmission (e.g., Okubo et 84 

al., 2010) or of a particular class of post-synaptic receptors (ionotropic as well as metabotropic 85 

receptors for ACh). A focus on the description of effects on neuronal states (e.g., Picciotto et al., 86 

2012; Avery and Krichmar, 2017) likewise does not conclusively identify neuromodulators and 87 

dissociates them from “classical neurotransmitters” (see also Table 1 in Dayan, 2012). Instead, 88 

as noted by Dayan (2012), neuromodulators can act via anatomically differentiated pathways and 89 

on fast timescales to support selective computations. Below we describe the evidence challenging 90 

the idea of ACh neuromodulation as nonspecific, slow, and spatially diffuse, and new evidence 91 

consistent with this more modern, computationally-based view of neuromodulator function. 92 
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The catalytic power of acetylcholinesterase (AChE) supports spatially and temporally 93 

constrained cholinergic signaling 94 

The catalytic power of the AChE has been called “amazing” (Quinn, 1987). Indeed, the rate of 95 

ACh hydrolysis is limited by the rate of ACh diffusion to the active site, rather than by how quickly 96 

AChE can break it down. Thus, proposals suggesting extra-synaptic, or volume, transmission, or 97 

of nano- to micromolar concentrations of “ambient extracellular ACh levels”, capable of reaching 98 

targets across tens of micrometers of extracellular space (Descarries, 1998), require postulating 99 

mechanisms that limit synaptic hydrolysis of ACh. The AChE is abundantly present in the 100 

dendrites, perikarya, axons, and synaptic clefts (Blotnick-Rubin and Anglister, 2018), with a minor 101 

exception of the relatively small number of bipolar cholinergic interneurons in the cortex which 102 

exhibit low levels of AChE (Levey et al., 1984). Although translational and post-translational AChE 103 

modifications have been demonstrated and associated with neuro- and psychopathologies 104 

(Meshorer and Soreq, 2006), we are not aware of evidence that such modifications limit ACh 105 

hydrolysis to the degree that they could support the presence of ambient extracellular ACh levels. 106 

We explored the possibility that a portion of newly released ACh in cortex escapes hydrolysis by 107 

endogenous AChE, by measuring new extracellular choline production (a main product of ACh 108 

hydrolysis) with choline-sensitive electrodes. In addition, we (co-)immobilized AChE on these 109 

electrodes to potentially hydrolize ACh not hydrolyzed by endogenous AChE (Giuliano et al., 110 

2008). In vitro, these electrodes were potentially able to detect “spared” extra-synaptic ACh at low 111 

femtomolar concentrations. In the cortex in vivo, we produced relatively large, non-physiological, 112 

potassium-driven waves of ACh release in order to optimize the possibility that a portion of such 113 

ACh escapes the endogenous AChE. However, even in such conditions, choline currents did not 114 

indicate that a portion of ACh “escaped” the endogenous AChE.  115 

Related to the presence or absence of ambient extracellular ACh levels, the presence or absence 116 

of classical cholinergic synapses (in cortex) has remained in dispute (Umbriaco et al., 1994; 117 

Smiley et al., 1997; Descarries and Mechawar, 2000; Turrini et al., 2001). However, if ACh indeed 118 

is nearly completely hydrolyzed by endogenous AChE, a significant degree of volume 119 

transmission would appear unlikely. Moreover, different firing patterns of basal forebrain 120 

cholinergic neurons may support different spatial ACh release dynamics (e.g., Manns et al., 2000; 121 

Lee et al., 2005; Unal et al., 2012); however, for ACh to exert relatively distant effects, akin to 122 

effects of monoamines over several millimeters (Schneider et al., 1994; Puopolo et al., 2005), it 123 

would seem necessary to postulate additional regulatory constraints of the efficacy of AChE.   124 
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It may be of limited usefulness to raise such a binary question (“volume or not”) (see also Sarter 125 

et al., 2009), and conclusive experiments that could reject the presence of volume transmission 126 

do not appear straight forward. However, the cholinergic synapse seems exquisitely equipped to 127 

limit the spatial range of cholinergic signaling (see also Dunant and Gisiger, 2017). The recent 128 

demonstration that electrical stimulation yielded a very limited spread of activated (fluorescent) 129 

G-protein-coupled ACh receptors (Jing et al., 2018) is consistent with this view.  130 

Cholinergic neurotransmission is also often viewed as temporally diffuse, exhibiting variations in 131 

release levels across minutes. The attribution of relatively long-lasting arousal states to different 132 

extracellular ACh levels has supported this view (e.g., Kametani and Kawamura, 1990; Marrosu 133 

et al., 1995). However, to a substantial degree, this view may be confounded by the limited 134 

temporal resolution of previously predominant methods for monitoring changes in extracellular 135 

ACh levels. Using microdialysis to collect ACh from the extracellular space typically yields 136 

samples containing pM to low nM concentrations which are close to the detection limit of 137 

traditional analytical methods. Thus, it has been necessary to collect samples over several 138 

minutes. Moreover, such collections typically occurred while an AChEI was reverse-dialyzed to 139 

artificially increase levels of recoverable ACh1.  As a result, ACh levels were long considered to 140 

vary at the scale of minutes by methodological default. 141 

However, the catalytic power of the AChE limits, at a superb speed and efficacy, the duration of 142 

ACh action. The minutes-scale of view of cholinergic neurotransmission is also challenged by 143 

evidence from experiments using newer methods that allow real-time monitoring of ACh release. 144 

Using amperometric measures of evoked choline currents, demonstrated to reflect newly released 145 

and hydrolyzed ACh (Parikh and Sarter, 2006), we observed phasic, or “transient” cholinergic 146 

activity in the prefrontal cortex of rats performing a signal detection task. Such transients reliably 147 

predicted “switch hits” – correct signal detections following either a long temporal delay or a 148 

perceived nonsignal trial (i.e., after a correct rejection or miss (Parikh et al., 2007; Howe et al., 149 

2013; Howe et al., 2017). These transients did not occur for other trial types, including correct 150 

rejections, misses, or hits following other hits (there were too few false alarms to analyze). We 151 

further demonstrated that the behavioral power of cholinergic transients is due to the generation 152 

1If it is correct that the AChE effectively limits, or even prevents, the presence of extracellular ACh 
concentrations, it would need to be postulated that the successful recovery of ACh by microdialysis, in 
the absence of an AChE-inhibitor in the perfusion medium (Himmelheber et al., 1998; Herzog et al., 
2003; Chang et al., 2006), results from the protection of ACh from the AChE by the glia barrier formed 
in response to the probe penetration injury (Jaquins-Gerstl and Michael, 2009; for more discussion of 
such technical issues see Sarter and Kim, 2015).  
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of high frequency oscillations in cortex, requiring muscarinic M1 acetylcholine receptor (mAChR) 153 

stimulation (Howe et al., 2017).  154 

Critically, optogenetic studies (Gritton et al., 2016) demonstrated that cholinergic transients cause 155 

behavior: Optogenetic inhibition of such transients during signal trials reduced hits, but did not 156 

affect correct rejections, similar to the effects of cholinergic lesions (McGaughy et al., 1996). 157 

Moreover, optogenetic generation of cholinergic transients during cued trials, which therefore 158 

coincided with, or substituted the occasional absence of, endogenously-generated transients, 159 

increased detection rates (or hits). However, the most conclusive evidence for the causal power 160 

of cholinergic transients comes from the effects of optogenetically-generated cholinergic 161 

transients during non-cue (or blank) trials - in which normally no such transients are observed. 162 

Evoked transients in such trials drastically increased the rate of false alarms (incorrect reports of 163 

a signal) from around 20% to nearly 50% (Gritton et al., 2016).  164 

Further experimentation will be needed to disambiguate the precise computation driven by 165 

cholinergic transients. The task circumstances in which they have been demonstrated thus far 166 

suggest two possibilities:  One is a cholinergic reduction of “expected uncertainty” (Yu and Dayan, 167 

2005) about the presence of a signal, to the point that invalid cholinergic transients can instill 168 

relative certainty about the presence of a signal even in blank (nonsignal) trials. The other is the 169 

(re)activation of the dormant task set associated with the signal (due to the long monitoring 170 

periods and that the signal occurs on 50% of trials, the participant spends most of the time in the 171 

‘nonsignal’ state). This latter possibility is supported both by the isolation of the transient to signals 172 

occurring either after long temporal delays or (perceived) nonsignal trials, as well as fMRI data 173 

from humans performing a parallel task (Howe et al., 2013): The ‘shift-hits’ associated with 174 

cholinergic transients primarily activated a prefrontal region associated with switching from 175 

external (monitoring) to internal (task-set retrieval) processing (Burgess et al., 2005; Chun and 176 

Johnson, 2011). Regardless, either interpretation replaces the traditional view describing ACh in 177 

terms of functionality of relatively undefined variations “states” related to presumed extracellular 178 

“levels” of ACh with more specific operations determined by the presence or absence of discrete 179 

cholinergic transients. 180 

Anatomical foundations of locally-specific cholinergic signaling 181 

Contemporary neuroanatomical research has revealed a heretofore unexpected degree of 182 

anatomical and functional parcellation of basal forebrain cholinergic neurons and a highly 183 

topographical organization of the basal forebrain cholinergic projection system, including complex 184 

relationships between basal forebrain afferent with efferent projection patterns (Zaborszky et al., 185 
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2008; Zaborszky et al., 2015b; Zaborszky et al., 2015a; Gielow and Zaborszky, 2017; Huppé-186 

Gourgues et al., 2018; Lean et al., 2019). Combined with a limited degree of axonal 187 

collateralization (Price and Stern, 1983), this evidence suggests a neuronal projection system that 188 

can support regionally discrete cholinergic stimulation (see also Chavez and Zaborszky, 2017). 189 

The presence of neuronal subpopulations and topographic projections also supports proposals 190 

about cholinergic modules which can selectively modulate information processing in individual 191 

cortical areas and layers (see also Tingley et al., 2015).  192 

The relatively high density of cholinergic contacts, relative to axonal lengths and neuron number 193 

(Mechawar et al., 2000), would seem to significantly limit the spatial selectivity of cholinergic 194 

function. However, further differentiation of cholinergic actions may be derived from the presence 195 

of target area-specific organization of microcircuits, involving diverse and regionally-specific 196 

populations of interneurons (e.g., Xiang et al., 1998; Eggermann and Feldmeyer, 2009; Chen et 197 

al., 2015). Moreover, evidence indicating neuronal activity-dependent cholinergic modulation of 198 

dendritic computation (e.g., Williams and Fletcher, 2018), and region-specific wiring of cholinergic 199 

terminals, in part via heteroreceptors expressed at cholinergic terminals (Lambe et al., 2003; 200 

Parikh et al., 2008; Parikh et al., 2010; Poorthuis et al., 2013), offer additional mechanisms for 201 

differentiated, locally-specific cholinergic signaling. Together, the previous view that ACh acts 202 

uniformly across large regions to, for example, “enhance cortical arousal”, seems increasingly 203 

obsolete. 204 

Cholinergic “tone”: an intuitive, method-derived but unneeded concept? 205 

As already mentioned, the traditionally dominating view that ACh acts relatively slowly to influence 206 

widespread target regions has been based in part on evidence obtained by using microdialysis to 207 

monitor extracellular ACh levels. Because of the limited sensitivity of conventional analytical 208 

methods, dialysates needed to be collected over several minutes in order to yield detectable 209 

concentrations of ACh in the sample (see also Footnote 1). Thus, by definition, data obtained 210 

from this method have suggested the functionality of slowly-changing levels of cholinergic tone 211 

(e.g., Savage, 2012; Coppola et al., 2016; Lecrux et al., 2017). Correlations between slowly-212 

changing ACh levels with slowly-changing brain (arousal) states (e.g., Anaclet et al., 2015; Xu et 213 

al., 2015; Zant et al., 2016; Teles-Grilo Ruivo et al., 2017; Yang et al., 2017) have further 214 

supported the view that variations in “tonic” ACh levels are functional. 215 

We repeatedly reported elevated ACh levels, based on the analysis of dialysate samples collected 216 

over 5-10 min and compared to pre-task baselines, in rats performing the very same sustained 217 

attention task which more recently yielded the demonstration of cue detection-associated 218 
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cholinergic transients (above). Moreover, such ACh levels were particularly high in the presence 219 

of a distractor that suppressed performance, and higher levels of ACh levels were correlated with 220 

better post-distractor performance recovery (St Peters et al., 2011). We interpreted these 221 

elevations as indicative of relatively better top-down control of attention, including task- and 222 

response rule-maintenance and performance compliance which support relatively better 223 

performance during and after the distractor period. In contrast, the unstable performance of rats 224 

with a neuronally-limited capacity for elevating cholinergic signaling was attributed to relatively 225 

weaker capacities for top-down control (Sarter and Paolone, 2011; Paolone et al., 2013; Sarter 226 

and Phillips, 2018). Other investigators reported similar findings and offered comparable 227 

conclusions from experiments in rodents performing tasks measuring similar or related cognitive-228 

behavioral functions (Passetti et al., 2000; McGaughy et al., 2002). 229 

Above we argued that the cholinergic synapse is designed and wired to support highly phasic 230 

cholinergic signaling. This view raises the question of whether dialysate-derived tonic ACh levels 231 

reflect the integration of transients. Because the dimensions of the neurochemical measures 232 

obtained from microdialysis versus enzyme-coated microelectrodes and amperometry cannot be 233 

readily unified, and because the measurement compartments and terminal fields monitored by 234 

these two methods differ rather profoundly (microdialysis probe insertion-induced millimeter-sized 235 

cavity versus reactions of enzyme immobilized on a micrometer-sized, relatively slim electrode;  236 

(e.g., Fig. 2 in Howe et al., 2017), a direct test of this possibility has remained elusive. To 237 

complicate the issue further, the amperometric method is optimized for the measurement of 238 

transients and probably not capable of tracking slow or tonic changes in ACh (should those exist), 239 

largely because hydrolyzed choline spikes are rapidly cleared by cholinergic synapses and also 240 

diffuse into the interstitial space.  241 

For a test of the possibility that dialysis-derived tonic ACh levels represent integrated cholinergic 242 

transients, we measured choline currents using amperometry and ACh levels using microdialysis 243 

in (necessarily separate groups of) rats performing a cued appetitive response task. In this task, 244 

amperometrically measured choline spikes occur in trials in which rats indicated behaviorally that 245 

they detected a cue which predicted subsequent reward delivery. Measures were obtained from 246 

prefrontal cortex and from motor cortex. To compare amperometric data with ACh levels 247 

measured in 8-min dialysate collections, we expressed both types of data dimension-free and 248 

collapsed transient amplitudes over 8-min periods (methods and results are detailed in 249 

Supplemental Data in Parikh et al., 2007). Statistical comparisons between these two data sets 250 
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indicate the absence of a significant difference, suggesting that microdialysis levels were e 251 

reproduced by folding transient data into time bins which matched the dialysis collection intervals.  252 

Several caveats are important here.  First, it should be acknowledged that we originally interpreted 253 

some aspects of this data, particularly the spatially-specific nature of cue-evoked transients 254 

(exclusively in mPFC and not motor cortex) versus the equivalent results for mPFC and motor 255 

cortex using either the microdialysis or re-analyzed amperometric data, as supporting different 256 

timescale mechanisms. However, although cue-evoked transients were confined to mPFC, 257 

amperometric activity did occur in motor cortex as well at various points in the trial – interestingly, 258 

the patterns suggested they may occur during shifts in motor behavior (e.g., from grooming to 259 

rearing). This leads to the second question of how transients could be integrated to lead to 260 

microdialysis results in light of the fast, highly-efficient action of AChE. As noted above, this may 261 

be related to the glial barrier created in response to the microdialysis probe penetration injury 262 

(Footnote 1). 263 

In short, the evidence that transient signaling is sufficient to describe forebrain cholinergic 264 

signaling is currently tentative, but appears to be at least quantitatively possible.  More critically, 265 

the evidence for longer-timescale action is methodologically problematic, and on first principles 266 

appears contradictory to the known efficiency of AChE. Definitive evidence on this point likely 267 

awaits further methodological development. However, to test the potential strength of a ‘phasic 268 

only’ conceptualization, below we assess the usefulness of this hypothesis in the context of 269 

evidence from research on arousal states and neurophysiological and cognitive neuroscience 270 

studies. 271 

Arousal states: Cholinergic tone versus phasic ACh  272 

It has been widely accepted that forebrain cholinergic tone is elevated during REM sleep, and 273 

that ACh levels in that stage are nearly comparable with levels seen in the awake state. Indeed, 274 

evidence indicating arousal-state associated ACh levels has remained a major source of support 275 

for the idea of a cholinergic tone. However, this may once again be at least partially a 276 

methodological artifact. 277 

The primary evidence comes from classical studies which preceded even the availability of 278 

microdialysis. Sealed chambers were placed onto the pial surface of the cortex of anesthetized 279 

and immobilized animals and perfused with AChEIs to prevent ACh hydrolysis. Individual samples 280 

were collected over 10-15 min periods. ACh levels in these samples, in response to electrical 281 

stimulation of the reticular formation, formed the basis of the notion that arousing events increase 282 
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cortical ACh levels (Celesia and Jasper, 1966; Phillis, 1968; Szerb, 1971). Subsequent 283 

microdialysis studies measured extracellular ACh levels in 5-60-min dialysate samples. Results 284 

from these studies seemed to confirm that ACh levels were higher during wakefulness and 285 

paradoxical sleep when compared with slow-wave-sleep (Kametani and Kawamura, 1990, 1991; 286 

Marrosu et al., 1995; Jimenez-Capdeville and Dykes, 1996). However, as  noted  above, these 287 

measurements occurred in the presence of AChE inhibitors in the perfusion fluid to prevent ACh 288 

hydrolysis. 289 

Overall, the available evidence showing elevated cholinergic tone during arousal states seems 290 

unexpectedly limited and is largely based on older methods which relied on inhibiting ACh 291 

hydrolysis and which, by default, generated measurement time points incapable of revealing 292 

underlying potential phasic release patterns – patterns that are predicted based on the 293 

neurophysiological activity of cholinergic soma during paradoxical sleep and wakefulness. In 294 

particular, recordings from cholinergic neurons in the basal forebrain indicate phasic, high 295 

frequency bursts during wake and REM sleep stages, that is, activity on a time scale that mirrors 296 

the time scale of transient ACh release events (Lee et al., 2005). It will be important to measure 297 

transient generation during sleep stages in future studies and to determine whether integrated 298 

transients reproduce the minute-based elevations seen in studies using microdialysis.  299 

Genetic CHT variants, transients and attentional control 300 

The capacity of the neuronal choline transporter (CHT) to import choline into cholinergic terminals 301 

is essential for, and the rate-limiting step of, ACh synthesis and release (for reviews see Okuda 302 

and Haga, 2003; Ferguson and Blakely, 2004; Sarter and Parikh, 2005). In both rodents and 303 

humans, sub-capacity variants of the CHT that limit elevations of cholinergic activity are 304 

associated with attentional vulnerabilities (English et al., 2009; Paolone et al., 2013; Parikh et al., 305 

2013; Berry et al., 2014; Sarter et al., 2016). These vulnerabilities have been interpreted in terms 306 

of relatively weak attentional control mechanisms that are revealed, in part, by heightened 307 

distractibility (e.g., Kim et al., 2017b; Sarter and Lustig, 2019). As this interpretational framework 308 

considers relatively weak attentional control in these populations as a psychological trait, our 309 

focus on phasic or transient ACh release raises the question of how variations in such phasic 310 

signaling can support the expression of a relatively complex and stable cognitive style.  311 

As noted above, there are (at least) two potential interpretations of the computation performed by 312 

cholinergic transients. Each suggests a slightly different solution to this question. The first, that 313 

cholinergic transients reduce “expected uncertainty” about the presence of the signal, suggests 314 

that the subcapacity CHT variants should result in either a failure to generate cholinergic 315 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 1 April 2019                   doi:10.20944/preprints201904.0010.v1

http://dx.doi.org/10.20944/preprints201904.0010.v1


11 
 

transients, or to generate transients with a reduced amplitude, and that this in turn would reduce 316 

decisional certainty about the presence of the signal.  The resulting conservative bias (“saying 317 

no”) would further impair detection performance and impede the capacity for shifting between 318 

internal and external attention (Chun et al., 2011) 319 

The second possibility takes into account that (at least in humans) the transients associated with 320 

“shift-hits” are observed in anterior PFC, whereas activity associated with responding to 321 

distraction and other attentional challenges occurs in more dorsolateral/ventrolateral regions, 322 

especially along the border of right middle and inferior frontal gyri. A wide range of evidence from 323 

patient studies, task-based neuroimaging, and functional and anatomical connectivity studies 324 

point to this latter region as a major “hub” for interactions between attention networks, and its 325 

importance in motivated cognitive control (see review by Lustig and Sarter, 2016; see discussion 326 

in Berry et al., 2017, as well as many others). More specifically, right middle/inferior frontal gyrus  327 

has been discussed as critical for coordinating the network-level neural representation of (rMFG) 328 

relevant task sets, so that cognition and behavior are driven by these goal-relevant task sets, 329 

rather than being stimulus-driven (e.g., Braver et al., 2009). 330 

Importantly, maintaining representations in working memory - including task-set representations 331 

- does not require tonic neuronal firing.  Instead, they can be maintained by shifts in synaptic 332 

weights or coordinated variability and oscillatory behavior (e.g., Dehaene et al., 1998; Lustig et 333 

al., 2007; Sadaghiani et al., 2015; Schmitz and Duncan, 2018). Explicit activity may only be 334 

required only during the initial acquisition, to recover the task set after an error, or to ‘protect’ the 335 

representation in the face of competing inputs (see especially the discussion in Dehaene et al., 336 

1998) or more occasionally to ‘refresh’ the representation as stochastic variability among 337 

components in the network gradually cause them to fall out of synch (Lustig et al., 2009). 338 

These considerations concerning a second possible interpretational framework for cholinergic 339 

transients predict that reduced CHT function primarily results in behavioral deficits when repeated 340 

interference from irrelevant stimuli or task sets requires frequent, rapid refreshing of the relevant 341 

task set representation. Notably, this is the pattern shown by humans with a genetically reduced-342 

capacity CHT: They fail to activate the right medial frontal gyrus in response to attentional 343 

challenge, but have preserved signal detection performance (Berry et al., 2015). However, they 344 

show a specific vulnerability to ongoing, salient external distractors both in the laboratory and 345 

everyday life (Berry et al., 2014).   346 

In other words, as would be predicted by a CHT that limits the rate at which choline can be 347 

transported for the synthesis of ACh, humans expressing a reduced capacity variant of the CHT 348 
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appear to have a specific deficit when repeated cholinergic transients are required with relatively 349 

short intervals between successive transients. A similar pattern was shown in Parkinson’s patients 350 

with primarily cortical (rather than thalamic) cholinergic degeneration: They showed preserved 351 

signal detection (Kim et al., 2017a) but specific vulnerabilities in the face of external distractors 352 

(Kim et al., 2017b). We recognize that, at some point the distinction between “closely spaced 353 

cholinergic transients” and “tonic neuronal firing” may be difficult to empirically discern. However, 354 

there are critical conceptual distinctions:  By this view the frequency of cholinergic activity is driven 355 

quantitatively by situational needs to refresh the task-set representation in the face of interference, 356 

rather than being a qualitatively different physiological “mode” (see also Fiebelkorn and Kastner, 357 

2019). 358 

This view appears to be consistent with a recent computational model suggesting that ACh acts 359 

to optimize a single computation that enhances multiple dimensions of the responses of cortical 360 

neurons (firing rate, rate variability, and correlated variability) to attention-demanding cues 361 

(termed “normalization”). This model predicts that loss of ACh-mediated normalization involves 362 

detection losses and enhanced distractibility (Schmitz and Duncan, 2018). As we argue herein, 363 

this model likewise does not require assuming that multiple time scales of cholinergic 364 

neurotransmission mediate dissociable cognitive functions of ACh. 365 

AChEIs and cholinergic transients 366 

AChEis not only have been used to elevate extracellular ACh levels in order to recover detectable 367 

levels of ACh in neurochemical studies, and therefore to support notions about the functionality 368 

of tonic levels of ACh (above), but also as a pharmacological tool in human studies to determine 369 

effects of elevated ACh levels on cognitive functions. The synaptic effects of AChEIs are 370 

insufficiently described merely in terms of elevated ACh levels. AChEIs elevate extracellular ACh 371 

levels by several 100 to several 1000% (e.g., Giacobini et al., 1996; Scali et al., 2002; Noori et 372 

al., 2012). As ACh stimulates presynaptic autoinhibitory muscarinic acetylcholine receptors 373 

(mAChRs), such strikingly elevated ACh levels are expected to silence presynaptic ACh release 374 

(e.g., Yan and Surmeier, 1996). At the same time, postsynaptic mAChRs and nAChRs, including 375 

receptors which may be located at distant extrasynaptic sites, experience presumably non-376 

physiological levels of stimulation. It is extremely difficult to see how the resulting scenario - 377 

blockade of presynaptic signaling combined with excessive postsynaptic stimulation - can 378 

preserve and even enhance cholinergic information processing. These complexities may explain 379 

the limited therapeutic efficacy of AChEIs for treating age- and neurodegeneration-related 380 

cognitive impairments (e.g., Courtney et al., 2004; Maher-Edwards et al., 2011).  381 
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The effects of AChEIs on pre- and postsynaptic signaling, particularly in interaction with 382 

endogenously generated transients, are not known (see also Basselin et al., 2009). Because the 383 

presence of ACEIs invalidates the amperometric measurement scheme used for recording 384 

cholinergic transients, this issue presently resists investigation. However, the finding that AChEIs 385 

sharpen the response of the visual cortex to visual stimulation, both in terms of fmri-based BOLD 386 

response (Silver et al., 2008) and the size of the receptive field of neurons in this region (Roberts 387 

et al., 2005), suggests that AChEIs, based on unknown mechanisms, can amplify spatially and 388 

temporally restricted cholinergic signaling (see also Runfeldt et al., 2014). Perhaps for this reason, 389 

AChEIs have been found occasionally to produce beneficial effects on attentional performance 390 

(e.g., Bentley et al., 2004; Rokem et al., 2010; Bauer et al., 2012; Gratton et al., 2017). New 391 

methods, such as G-protein-coupled ACh sensors (Jing et al., 2018) may be capable of shedding 392 

light on the effects of AChEI on phasic ACh release events.  393 

Conclusions 394 

Traditional assumptions about relatively lasting brain states controlled by the forebrain cholinergic 395 

system have coalesced with traditional neurochemical methods which generate minute-based 396 

measures of cholinergic activity and sample from relatively large neuronal spaces. The 397 

widespread uses of AChEIs to optimize ACh measures and as a pharmacological tool have further 398 

cemented the view that tonic (scale of 100s of seconds) changes in extracellular ACh levels 399 

mediate relatively large-scale cognitive functions (such as arousal or top-down attentional 400 

control). Based on the demonstration of the presence and functions of fast, phasic or “transient” 401 

cholinergic signaling, here we argue that cholinergic signaling and functions can be sufficiently 402 

described by the presence of cholinergic transients which mediate a single computation that, 403 

behaviorally, favors the detection of behaviorally significant cues in attentional settings, 404 

specifically when such detection involves shifts between modes of attention (e.g., intrinsic to 405 

extrinsic, or monitoring to cue-oriented responding). The interpretation of evidence from 406 

behavioral, neurophysiological as well as human imaging studies on the role of cholinergic 407 

signaling will be more constrained and eventually heuristically more powerful by abandoning 408 

intuitive notions about “tonic” cholinergic control of brain states and focusing instead on the role 409 

of fast cholinergic signaling for precise computational processes. Moreover, the search for 410 

effective pro-cholinergic, pro-cognitive treatments may benefit significantly from moving away 411 

from drugs the effects of which conform with views about tonic cholinergic activity and function, 412 

such as AChEIs, to drugs that enhance and rescue transient cholinergic signaling or their post-413 
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synaptic processing (e.g., Howe et al., 2010; Moran et al., 2018; Uslaner et al., 2018; Kucinski et 414 

al., 2019).  415 

  416 
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