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Abstract: Mapping drought from space using, e.g., surface soil moisture (SSM), has become viable 
in the last decade. However, state of the art SSM retrieval products suffer from very poor coverage 
over northern latitudes. In this study, we propose an innovative drought indicator with a wider 
spatial and temporal coverage than that obtained from satellite SSM retrievals. We evaluate passive 
microwave brightness temperature observations from the Soil Moisture and Ocean Salinity (SMOS) 
satellite as a surrogate drought metric, and introduce a Standardized Brightness Temperature Index 
(STBI). The STBI is validated against drought indices from a land surface data assimilation system 
(LDAS-Monde), two satellite dervied SSM indices and a standardized precipitation index. Finally, we 
evaluate the STBI against the before mentioned drought indices in a case study of the 2018 Nordic 
drought. The STBI is found to be superior to the drought index created from satellite derived SSM in 
both spatial and temporal coverage over the Nordic region. Our results indicate that when compared 
to drought indices from precipitation data and a land data assimilation system, the STBI is able to 
capture the 2018 drought onset, severity and extent. Thus, the STBI index could provide additional 
information for drought monitoring in regions where the SSM retrieval problem is difficult.

Keywords: SMOS; Drought Index; Summer 2018 drought15

1. Introduction16

Droughts cost society billions of dollars every year, estimates from the World Meteorological17

Organization WMO show that in the European Union alone droughts cost around 6.2 billion USD18

per year [1]. It is therefore important to implement tools that can monitor and warn about drought19

conditions, in order to mitigate and prevent losses from droughts [2,3]. Such tools will provide policy20

and decision makers with a quantitative measure of drought characteristics, allowing them to act upon21

scientifically based data. Drought indices from different sources, i.e., satellite platforms, models and22

in-situ observations are crucial components of drought monitoring tools. By utilizing information (and23

creating drought indices) from multiple sources one avoids relying too much on just one source of24

information and the possible failure of this source to capture the drought.25

In the spring and early summer of 2018 severe drought conditions developed over the Nordic26

countries, Norway, Sweden, Finland and Denmark [4,5]. The drought conditions caused wildfires,27

decreased crop yield and increased crop failure, which resulted in large private and governmental28

economic losses. In Norway alone the preliminary payout from the government to farmers (3 January29

2019) have reached 187 million USD, compared to 4.9 million USD per year on average for the 2008-201730

period [6]. Late winter and early spring precipitation deficit lead to a decrease in soil moisture, which31

did not recover until late August and September [7]. For example, the rainfall for May to July in32

Lund, Sweden, was only about half of the previous low record, with observations dating back to33

1748 [5]. Droughts are rare in the Nordic countries, and regional monitoring capabilities and preventive34

measures were lacking, likely increasing the negative impacts of the drought. Recent studies have35

found that climate change is likely to exacerbate droughts [8]; as a result, the drought will set in36
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quicker and be more intense [9]. Although the Nordic region is projected to get wetter conditions37

on average under climate change [8], droughts might still occur, and thus a way of monitoring and38

mapping droughts over the northern regions is much needed. One way of doing this is by satellite39

remote sensing [10–12], as satellites could provide near-real-time observations covering large regions40

within a relative short amount of time.41

Satellite retrieval of surface soil moisture over northern latitudes is difficult because of snow cover,42

high open water fraction, steep topography and dense boreal vegetation that affect the microwave43

emissions from the soil [13]. This eventually results in large regions where the retrievals are missing44

(masked), and hence the spatial and temporal coverage of satellite derived soil moisture over this45

region is poor. Although the inversion from brightness temperature to soil moisture might be ill46

posed, the microwave signal carries information about water content in the vegetation (VWC) and47

soil system [14]. Thus, anomalies in the water content of the vegetation-soil system will be reflected48

in anomalies in the passive microwave brightness temperature. In this paper we argue that when49

studying hydrological extremes, such as drought, we can omit the satellite soil moisture retrieval50

problem over northern latitudes and look at the raw radiances (microwave brightness temperature,51

Tb) instead. The rationale is that the Tb is a convolution of soil moisture and VWC [11,15], hence it52

can be used to map drought (onset, extent and recovery) from space over northern latitudes, a region53

where soil moisture retrieval products have large spatial and temporal gaps. In this work we introduce54

the Standardized Brightness Temperature Index (STBI) for drought monitoring over northern high55

latitudes.56

This paper is divided into four parts, Sec. 1 introduces the paper, in Sec. 2 we present the remote57

sensing, precipitation and modelling data; we also introduce the methods for the computation of the58

standardized drought indices. In Sec. 3.1 we evaluate the temporal dynamics of the STBI index using59

the Standardized Precipitation Index (SPI) from the gridded E-OBS in-situ rainfall dataset, and two60

Standardized Soil moisture Indices (SSI), one from the National Centre for Meteorological Research61

(CNRS) Météo-France Land Data Assimilation System Monde (LDAS-Monde), and one from the62

European Space Agency Climate Change Initiative (ESA CCI) satellite derived soil moisture product.63

In Sec. 3.2 a case study of the summer 2018 Nordic drought is used to evaluate the STBI drought64

monitoring capabilities. Finally, in Sec. 4 we present our conclusions.65

2. Data and Methods66

2.1. Remote Sensing Data67

Launched in November 2009 by the European Space Agency (ESA), the Soil Moisture and Ocean68

Salinity (SMOS) satellite is dedicated to measure passive microwave emissions in the L-band from the69

Earth surface [13]. Here we use the SMOS Level-2 SMUDP2 version 650 reprocessed data (2010-2017)70

and the operational (April, May, June, July, August and September 2018) brightness temperature71

data with horizontal polarization (TbH). From this product we also extract the Level-2 soil moisture72

product, used to compute the SMOS standardized soil moisture index. The data are obtained from73

the ESA SMOS dissemination service [16]. The SMOS retrieval algorithm simultaneously retrieves74

soil moisture and vegetation optical depth by using information from mutli-angle observations of75

Tb at horizontal and vertical polarization. The SMOS retrieval is done by minimizing the difference76

between the satellite observed and model simulated Tb, using the L-band Microwave Emission of77

the Biosphere model (L-MEB) [13,17]. The horizontal polarization is chosen because other studies78

show that it is more sensitive to surface soil moisture than the vertical polarization [18]. However, we79

found little difference when applying the vertical polarization instead of the horizontal polarization in80

the computation of the microwave drought index, we therefore only show results for the horizontal81

polarization.82

At L-band the TbH is sensitive to soil moisture in the upper 0 − 5 cm of the soil [19]. A limitation83

of the satellite derived drought index is the sensing depth, so we are unable to quantify the amount84
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of water in the root-zone. The 2018 drought set in early in the growing season, meaning that plants85

were more reliant on surface zone soil moisture than root-zone soil moisture. Thus, the limited sensing86

depth should not constrain this study too much [12].87

The microwave emissions are larger for a dry soil than for a wet soil [20], and the satellite observed88

TbH also depends on the effective soil and canopy temperature [21]. In addition the TbH is linked89

to the VWC; an increase in VWC leads to an increase in the observed brightness temperature [15].90

Effectively, this means that under dry vegetation conditions a larger fraction of the observed brightness91

temperature over vegetated areas will come from the soil, as the vegetation masking of the signal will92

be smaller than under wet conditions.93

The SMOS Level-2 swath data are gridded to the Equal Area Scalable Earth (EASE) version 2.094

36 km grid using a nearest neighbour method; this is done to avoid smoothing from an interpolation95

scheme. The SMOS data are extracted for the period 1 July 2010 until 1 October 2018 (April, May96

and June 2010 are not utilized, following [22]). We only use the morning overpass to ensure that the97

land-atmosphere system is as close as possible to thermal equilibrium. The TbH data are screened for98

values outside a range of 100 − 320 K [22]. Other than that we do not do any detailed quality control,99

because part of this work is to see if the SMOS TbH data contains drought information regardless of100

grid-cell properties. Monthly TbH climatology is computed by averaging the ∼ 6 a.m. overpasses; this101

is done for April, May, June, July, August and September from 2010 (except April, May and June 2010)102

until 2018. Only grid-cells with nine years of data are included in the climatology, except for April,103

May and June where we use eight years of data.104

The monthly satellite derived soil moisture from the ESA CCI soil moisture project is extracted105

from the Copernicus Climate Change Service (C3S) [23,24]. We utilize the COMBINED product,106

which is a combination of soil moisture retrievals from passive and active satellite sensors, such as107

METOP-A, METOP-B, AMSR2 and SMOS [25]. The COMBINED product is posted on a 0.25◦ regular108

longitude/latitude grid. The dataset spans from 1979 until present; however, because of spatial and109

temporal gaps in the product, we only use data from April 2010 until October 2018 (i.e., the same110

time-period as the SMOS-L2 product). This also ensures that the climatologies for the standardized111

indices are computed over the same time-period.112

2.2. Precipitation Data113

In this study, we use the E-OBS version 17.0 precipitation dataset, which corresponds of in-situ114

rain gauge data posted on a 0.25◦ grid [26]. Data for June, July, August and September 2018 are not115

included in v17.0 and were therefore downloaded separately. The E-OBS dataset spans from 1st January116

1950 until 1st October 2018. The one month Standardized Precipitation Index (SPI-1) is computed117

to create a measure of drought, which is independent from the STBI (TbH) data. Accumulated total118

precipitation for individual months is computed by summarizing daily precipitation (mm/day) for119

each month separately from 1950 until October 2018.120

2.3. LDAS-Monde Soil Moisture Data121

Analysis soil moisture data are from the Land Data Assimilation System Monde122

(LDAS-Monde) [27], which has recently been applied to monitor and forecast the impact of the123

2018 summer drought on vegetation over central Europe [28]. We run the LDAS-Monde system124

over the Nordic region using ERA-5 reanalysis atmospheric forcing data and the ISBA (Interaction125

between Soil Biosphere and Atmosphere) land surface model [29,30] within the SURFEX v.8.1 (SURFace126

EXternalisée) modelling framework [31]. Surface soil moisture derived from the METOP satellite127

platforms and Leaf Area Index (LAI) observation data from the Copernicus Global Land (CGL) service128

are assimilated into the LDAS-Monde system using a simplified extended Kalman Filter (SEKF) [32–35].129

The LDAS-Monde system is setup at a 0.25◦ regular longitude/latitude grid. Monthly means for130

the 2010 to 2018 period are created from the 6 a.m. surface soil moisture model data; this is done to131

correspond as closely as possible with the SMOS overpass time and the TbH observation time.132
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2.4. Computation of the Standardized microwave Brightness Temperature Index (STBI)133

In this section we introduce the new Standardized microwave Brightness Temperature Index
(STBI). Which to the best of our knowledge has not been utilized for drought monitoring before. In
this work the STBI is based on SMOS data. However, it can also be estimated based on data from
other L-band satellites, for example, the Soil Moisture Active Passive (SMAP) NASA mission [19].
The STBI_SMOS is computed assuming that the TbH in each grid-cell follows a Gaussian probability
distribution. This assumption is tested using the Shapiro-Wilk test, where the null hypothesis is that
our sample comes from a normally distributed population. To fit the Gaussian distribution to the
TbH data we use the maximum likelihood method; this is done separately for each grid-cell. We then
compute the PDF of monthly TbH data, for each summer month. By integrating over (0, Tbi

H) we find
the probability of a given Tbi

H value. This value is then converted to a standardized index using:

STBI = Φ−1(p(Tbi
H)) , (1)

where Φ−1 is the inverse standard normal distribution with zero mean and a standard deviation of134

one. The standardization is based on an approximation detailed in [36].135

2.5. Computation of the Standardized Soil moisture Index136

For comparison to the STBI_SMOS index we compute three standardized soil moisture indices
(SSI_ESA_CCI, SSI_LDAS and SSI_SMOS), they are computed by assuming a Beta distribution for the
underlying soil moisture data [12,37]. The Beta probability distribution is given as:

f (θ) =
θα−1(1 − θ)β−1

B(α, β)
, (2)

where B = Γ(α)Γ(β)
Γ(α+β)

, θ is the volumetric soil moisture content, α and β are shape parameters. First137

we find the upper and lower limit on soil moisture for each individual grid-cell and month. We138

assume that the first/last 10 % of the sorted soil moisture values are linearly related to their empirical139

distribution function. After the computation of the upper and lower soil moisture values, we find the140

Beta distribution shape parameters (α and β) using the maximum likelihood method. We then use Eq. 2141

to compute the probability density function (PDF) of monthly soil moisture, for each summer month.142

By integrating over (0, θ) we find the probability of a θ value. This value is then used in Eq. 1, to find143

the standardized index (SSI). Negative/positive SSI values are below/above the average climatology144

of soil moisture and indicate a dry/wet period.145

2.6. Computation of the Standardized Precipitation Index146

For the sake of comparison with the land surface drought indices (STBI and SSI) we also compute147

a Standardized Precipitation Index (SPI). The SPI is frequently used in studies and monitoring of148

meteorological drought, it is used to characterize droughts at time-scales of 1 to 36 months. On shorter149

time-scales the SPI is found to be closely related to soil moisture drought, while at longer time-scales it150

is more closely related to groundwater drought [12]. We therefore chose to compute the one-month SPI151

(SPI-1). The general interpretation of the SPI is that it expresses the number of standard deviations the152

anomaly deviates from the long-term mean. In the computation of the SPI-1 we use a non-parametric153

standardization approach. The empirical probabilities of the E-OBS precipitation data are computed154

for each individual grid-cell, using the empirical Gringorten plotting position [36,38].155

p(rainf) =
i − 0.44
n + 0.12

, (3)

where i is the rank of the precipitation data from the smallest value, and n is the sample size. The156

constants 0.44 and 0.12 are unique for this plotting position. An empirical relationship is applied157
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because the length of the dataset allows this (69 years) and we avoid assuming one constant parametric158

distribution function for each grid-cell. The empirical probabilities are converted to a standardized159

index using Eq. 1.160

Negative or positive SPI-1 values indicate a below (dry) or above (wet) average climatology for161

the precipitation or soil moisture, respectively. For the STBI_SMOS a high and therefore warm TbH162

reflects drier conditions, while a low and cold TbH reflects wetter conditions. We therefore multiply163

the STBI_SMOS with −1, for the sake of comparison with the SPI-1 and SSI.164

3. Results and Discussion165

3.1. Evaluation of the proposed Standardized microwave Brightness Temperature Index166

3.1.1. TbH probability distribution167

The TbH distribution for each summer month is assumed to follow a Gaussian distribution. This168

assumption is tested using the Shapiro-Wilk test on the boreal summer (June, July and August) data.169

The Shapiro-Wilk test looks at the correlation between the data and the Gaussian quantile. This test only170

checks if the data were drawn from a normal distribution, it does not check what the parameters of that171

distribution might be [39]. Our null-hypothesis is that the data are normally distributed. If the p-value172

is smaller than a chosen α value then the null-hypothesis is rejected and there is evidence that the173

data are not normally distributed. If the p-value is larger than the chosen α value we cannot reject the174

null-hypothesis that the data are normally distributed, hence the data are likely normally distributed.175

Here we choose α = 0.05. In Fig. 1 a) grid-cells in dark blue show where the null-hypothesis was not176

rejected, light blue grid-cells show where the null-hypothesis was rejected. White regions over land177

show where we had less than eight years of data for the Shapiro-Wilk test, these regions are excluded178

in the calculation. The Gaussian fit to the TbH for June (red), July (blue) and August (black) are shown
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Figure 1. a) Shapiro-Wilk test for normality of the TbH distribution shown for July. Dark blue regions
null-hypothesis is not rejected, i.e., the data appears to be normally distributed. Light blue regions
null-hypothesis is rejected, and white regions (over land) had too few years of data for testing. b) PDFs
of the fitted brightness temperature for boreal summmer months, June (red), July (blue) and August
(black).

179

in Fig. 1 b). The distributions show that June has a lower mean TbH than July and August, with July180

being on average the warmest. The drought index value is computed by integrating the PDFs over181

(0, TbH). The integral is approximated by a summation up to the TbH value of interest.182

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 1 April 2019                   doi:10.20944/preprints201904.0009.v1

Peer-reviewed version available at Remote Sens. 2019, 11, 1200; doi:10.3390/rs11101200

http://dx.doi.org/10.20944/preprints201904.0009.v1
https://doi.org/10.3390/rs11101200


6 of 16

2010 2011 2012 2013 2014 2015 2016 2017 2018

2

1

0

1

2

SPI-1

SSI

STBI_SMOS

SSI_ESA_CCI

2

1

0

1

2

In
d

e
x

2

1

0

1

2

In
d

e
x

2

1

0

1

2

Sweden, Latitude 61.9 N Longitude 16.3 E

2010 2011 2012 2013 2014 2015 2016 2017 2018

2

1

0

1

2

SPI-1

SSI

STBI_SMOS

SSI_ESA_CCI

2

1

0

1

2

Norway, Latitude 60 N Longitude 11.5 E

June

July

August

July

August

a)

June

b)

Figure 2. a) Time-series of the SPI-1 (blue), STBI_SMOS (cyan) and SSI_LDAS (red) over a grid-cell in
Sweden (61.9◦ N and 16.3◦ E) from 2010 until 2018 for the boreal summer months June, July and August.
The horizontal black dotted line indicate D0 drought conditions, see text for further explanation. Note
that for this region there were no observations for the computation of the SSI_ESA_CCI. b) Same as a)
but for a grid-cell in Norway (60.0◦ N and 11.5◦ E), here observations from the ESA CCI were available
for the computation of the SSI_ESA_CCI drought index. For the different indices the grid-cell sizes are:
0.36◦ for the STBI_SMOS and 0.25◦ for the SPI-1, SSI_LDAS and SSI_ESA_CCI

3.1.2. Temporal and spatial patterns of the drought indices183

Figure 2 shows time-series of the SPI-1 (blue), STBI_SMOS (cyan), SSI_LDAS (red) and SSI_ESA_CCI184

(mangenta) over a grid-cell in Sweden (61.9◦ N and 16.3◦ E) (a) and Norway (60.0◦ N and 11.5◦ E) (b)185

from 2010 until 2018 for the boreal summer months, June, July and August. The two regions were186

selected to represent a region with and without the SSI_ESA_CCI data, and therefore show how the187

STBI_SMOS can represent regions were soil moisture retrievals are masked. Furthermore, these two188

regions were affected by the 2018 summer drought, as seen from the negative anomalies in the indices189

for 2018. Depending on the severity, a drought can be classified into a drought scale or D-scale [2]. In190

this classification an SSI below 0.5 is defined as being abnormally dry. Using D0 as a drought threshold,191

we see that for the regions in Fig. 2 a) and b), severe drought conditions (see 2018 summer) is captured192

by the STBI_SMOS. The STBI_SMOS does not only capture dry events, it also captures years where a193

month is wetter than normal (index larger than zero). However, for positive index anomalies there194

seems to be more false events (e.g., June 2015 in Sweden, and June 2015 in Norway) than for the dry195

events. We evaluate how well the STBI_SMOS, SSI_ESA_CCI and SPI-1 could capture the temporal196

dynamics of the soil moisture drought by computing the correlation coefficients between the SSI_LDAS197

and the other metrics (STBI_SMOS, SSI_ESA_CCI and SPI-1). The LDAS-Monde index is then used as198

the reference index. This is justified by the fact that it incorporates both model and observation data in199

a data assimilation system. Other studies have shown that land data assimilation systems are able200

to correct for errors in precipitation datasets, and as a result, improve the representation of surface201

soil moisture (see for example Blyverket et al. [40]). Another example is provided by Albergel et al.202

[41], where the authors show that the LDAS-Monde improves the representation of the 2012 US corn203

belt drought. In the computation of the correlation coefficient, we used June, July and August (boreal204

summer) data together from 2011 until 2018 to increase the number of data-points. The domain average205
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Figure 3. a) Pearson correlation coefficient between the STBI_SMOS and SSI_LDAS, red regions indicate
a high positive correlation, masked (grey) regions have a correlation not significantly different from
zero. b) Same as a) but for the Pearson correlation between the SSI_ESA_CCI and SSI_LDAS

was only computed for grid-cells where the Pearson correlation value was statistically significant at the206

0.05 level. Figure 3 a) shows the Pearson correlation coefficient between the STBI_SMOS and SSI_LDAS,207

regions with no values (grey regions over land) had a correlation not different from zero at the 0.05208

significance level. Most of the domain has a high correlation, except regions in south central Norway209

and from mid-Norway to northern Norway. In Fig. 3 b) the Pearson correlation coefficient between the210

SSI_ESA_CCI and SSI_LDAS is shown. Here large regions in the Nordic countries (Norway, Sweden211

and Finland) have non significant correlation. This is likely because the SSI_ESA_CCI index has large212

regions with missing data for the individual months, thus resulting in a non-significant correlation213

and discarded values (grey regions in Fig. 3). Summary statistics for the spatial correlations are shown214

in Table 1.215

The STBI_SMOS has a correlation with the SSI_LDAS of 0.71, it also has the highest number216

of grid-cells with a statistically significant correlation value (n = 2437 out of 2997 grid-cells (81 %)).217

The SSI_ESA_CCI index had a correlation of 0.70 with the SSI_LDAS index, and significant values218

in n = 1523 out of 2997 (51 %) grid-cells. Finally, the SPI-1 correlation with SSI_LDAS was 0.56 for219

n = 1537 out of 2997 (51 %) grid-cells. The high correlation between the STBI_SMOS and the SSI_LDAS220

indicate that the STBI_SMOS is able to capture the variability in the soil moisture over the Nordic221

region as good as the SSI_ESA_CCI index. The number of grid-cells with statistically significant222

correlation values are higher for the STBI_SMOS than for the SSI_ESA_CCI, hence it provides better223

spatial coverage than the satellite derived soil moisture index. To check that the high-correlation is not224

only found in regions where the SSI_ESA_CCI data were missing, we also compute the correlation for225

grid-cells covered by both products, see Table 1. Here the mean correlation is only taken for grid-cells226

where we have data for all the four indices (resulting in 800 of 2997 land grid-cells being covered, i.e.,227

27 %).228

3.2. Summer 2018 Drought Case Study229

To further evaluate the performance of the STBI for drought mapping we utilized the 2018 summer230

drought over the Nordic countries as a case study.231
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Table 1. Pearson R correlation coefficient between the SSI_LDAS and the, STBI_SMOS, SSI_ESA_CCI
and the SPI-1. Computed for individual grid-cells and summed over the whole domain (all columns)
and over grid-cells with overlap between all datasets (overlap columns). N indicates grid-cells with
statistically significant correlation at the 0.05 level, total number of land grid-cells were 2997.

All Overlap
Index R N R N

STBI_SMOS 0.71 2437 0.70 800
SSI_ESA_CCI 0.70 1523 0.70 800
SPI-1 0.56 1537 0.56 800

3.2.1. Comparison between the STBI_SMOS, SSI_LDAS, SSI_ESA_CCI, SPI-1 and SSI_SMOS232

The limited number of reliable satellite derived soil moisture observations in the SMOS-L2 (Fig. 4233

q-t) and ESA CCI COMBINED product (Fig. 4 i-l) motivated our attempt to describe the 2018 Nordic234

drought using the observed brightness temperature (TbH). In addition to the poor coverage, the235

Standardized Soil moisture Index for SMOS (SSI_SMOS) exhibits noisy patterns, and little resemblance236

to the SSI_LDAS in Fig. 4. Comparing the STBI in Fig. 4 a-d) to the SSI_ESA_CCI in Fig. 4 i-l) we see237

that the STBI_SMOS has a better spatial coverage than the SSI_ESA_CCI. Large regions over Sweden238

and northern Finland are not covered by the SSI_ESA_CCI. This problem is addressed by using the239

TbH data.240

Figures 4 a), e), i), m) and q) show the STBI_SMOS, SSI_LDAS, SSI_ESA_CCI, SPI-1 and SSI_SMOS241

over the Nordic region. The SPI-1 indicates a precipitation deficit for most of the domain. The242

STBI_SMOS, SSI_LDAS and SSI_ESA_CCI show that northern parts of Norway and the mountain243

regions in the south of Norway are wetter (colder for the STBI) than usual. This signal might come244

from late snowmelt wetting the soil in the northern latitudes and the mountainous regions in southern245

Norway. We also note that southern parts of Sweden and Finland are drier (warmer) than usual for the246

STBI_SMOS, SSI_LDAS and SSI_ESA_CCI. In general, the spatial patterns for May are very similar for247

the STBI and SSI_LDAS, although the STBI overestimates the wet regions in northern Norway and in248

Finland.249

Next we examine the indices during June 2018. Figures 4 b), f), j), n) and r) show the STBI_SMOS,250

SSI_LDAS, SSI_ESA_CCI, SPI-1 and SSI_SMOS, respectively. The dry conditions seen in the SPI-1251

continue in eastern Norway, southern Sweden and Denmark. Northern parts of Norway and most of252

Finland experience rainy conditions seen from the SPI-1. Eastern Norway, Sweden, Finland, Denmark253

and the Baltic countries have a dry anomaly in the STBI_SMOS, SSI_LDAS and SSI_ESA_CCI. Northern254

parts of Sweden and Finland have missing values for the SSI_ESA_CCI index; however, the STBI_SMOS255

shows similar patterns as the SSI_LDAS, except from the wet regions in southwestern and northern256

Norway. When comparing the STBI_SMOS to the SSI_LDAS we see that the STBI_SMOS captures the257

wet (cold) regions in the east of the domain.258

For July in Figs. 4 c), g), k), o) and s) the SPI-1 shows a dry anomaly for Norway, Sweden, Finland259

and Denmark. In July, drought conditions were dominant over most of the domain, except for regions260

in the south central and east, which is reflected in all of the indices. Again, there are gaps in the261

SSI_ESA_CCI over large regions of Sweden and Finland. These gaps are not present in the STBI_SMOS,262

which is consistent with the SSI_LDAS, showing dry anomalies for this region. Close to normal263

conditions in northern parts of Poland are found for both the STBI_SMOS and the SSI_LDAS for July;264

this is not seen for the SSI_ESA_CCI.265

For August most of Norway experienced wetter than usual conditions (seen from the SPI-1), this266

is reflected in the SSI_ESA_CCI and the SSI_LDAS, but not in the STBI_SMOS, see Figs. 4 d), h), l) and267

p). One reason for this could be precipitation intercepted by the vegetation, increasing the VWC, again268
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increasing the emissivity from the vegetation. Higher emissivity for wetter vegetation could therefore269

mask out precipitation events and cause a false drought signal for this month.270

3.2.2. Drought Severity271

Following the D-scale [2], an SSI below −1.3 is defined as a severe drought (D2 conditions). In Fig. 5272

we have plotted the STBI_SMOS (a-d), SSI_LDAS (e-h), SSI_ESA_CCI (i-l) and SPI-1 (m-p) for D2273

conditions for May, June, July and August in 2018. The difference between the one-month land274

surface indices (STBI_SMOS, SSI_LDAS and SSI_ESA_CCI) and the SPI-1 is most likely due to the lag275

time between the meteorological drought (one-month SPI) and the agricultural drought (one-month276

SSI). The SPI-1 has a shorter memory than the SSI, hence a dry SPI-1 in month i is often followed277

by a dry SSI in month i + 1, even though the precipitation is back to normal conditions in month278

i + 1. Using the SSI_LDAS as a reference we see that the STBI_SMOS is able to capture regions in279

severe drought where the SSI_ESA_CCI has masked values from the retrieval. This can be seen in280

southern Norway (July) and northern and central Sweden (July). Comparing Figs. 5 c), g) and k) we281

see that northern parts of Poland do not have severe drought conditions for the SSI_LDAS, and this is282

captured by the STBI_SMOS but not by the SSI_ESA_CCI. On the other hand, the spatial pattern of the283

SSI_ESA_CCI drought severity in June has better agreement with the SSI_LDAS than the comparison284

of the STBI_SMOS versus the SSI_LDAS. In August the STBI_SMOS (Fig. 2 d)) is overestimating the285

regions experiencing severe drought conditions in northern Norway and Sweden, when compared to286

the SSI_LDAS (Fig. 5 h)).287

3.2.3. Drought Onset and Recovery288

Accurate monitoring of drought onset and recovery could help farmers and decision makers289

minimize the negative impacts of a drought. Here we evaluate the temporal evolution of the290

STBI_SMOS index against the temporal evolution of the SSI_LDAS SSI_ESA_CCI and SPI-1 during291

the 2018 summer drought. As a consequence of the drought several regions in the Nordic countries292

experienced wildfires and agricultural losses [7,42], here we have chosen three sites to represent such293

conditions. In Fig. 6 we have selected grid-cells in the vicinity of a) Jokkmokk municipality, Sweden, b)294

Tovaasen, Sweden and c) Nes in Akershus municipality, Norway. These regions experienced large295

wildfires and agricultural droughts during the summer 2018 heatwave. The horizontal dotted black296

line shows the D0 condition (moderate drought). The first thing to note is that in Fig. 6 a) and b) there297

are no data for the SSI_ESA because these grid locations are flagged in the retrieval algorithm. This298

limits the use of the SSI_ESA_CCI over regions in the Nordic countries for drought monitoring and299

mapping. Hence a reason for choosing grid-cells where we have no SSI_ESA_CCI data is to show that300

the STBI_SMOS can be used to monitor the drought in these regions.301

Jokkmokk municipality lies above the Arctic circle in northern Sweden and it experienced large302

wildfires during the 2018 summer. In Fig. 6 a) we see that the precipitation deficit (low SPI-1) starting303

in May causes the STBI_SMOS (cyan) and SSI_LDAS (red) to fall below D0 conditions in June. The304

close to normal SPI-1 conditions in June has little impact on the land surface indices (STBI_SMOS305

and SSI_LDAS). Precipitation deficit in July and only close to normal SPI-1 conditions in August and306

September, results in a slow recovery of the land surface indices for the Jokkmokk site.307

Tovaasen lies in the Ljusdalen muncipality, a region in Sweden which experienced large wildfires308

in mid-July 2018. In Fig. 6 b) we see that the SPI-1 (blue) is close to normal for February, March and309

April. In May and June the precipitation deficit leads to a decrease in the STBI_SMOS (cyan) and310

SSI_LDAS (red). In August the SPI-1 is close to normal conditions, but this is not enough for the311

STBI_SMOS and SSI_LDAS to recover. In September the STBI_SMOS and the SSI_LDAS diverges, with312

the STBI_SMOS showing drought recovery while the SSI_LDAS more closely follows the SPI-1 and313

shows drought conditions.314

Much of the agriculture in Norway lies in the south-eastern parts of the country and here we315

choose a grid-cell which covers Nes in Akershus municipality. In Fig. 6 c) we see that low SPI-1316
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conditions in the February and March likely caused abnormally dry (warm) conditions in April for the317

STBI_SMOS (cyan) and SSI_ESA_CCI (magenta). The continued precipitation deficit in May, June and318

July was propagated into the land seen by the low STBI_SMOS, SSI_LDAS and SSI_ESA_CCI. Here the319

three land surface drough indices follow each other closely during the dry spell in May, June, July and320

August.321

The summer 2018 case study show that the STBI_SMOS has potential to supplement information322

to drought monitoring over the Nordic region. Especially, we see that it was able to monitor the323

drought in regions where data from the soil moisture retrievals were missing. The STBI_SMOS did324

however miss the transition to a wet anomaly for large regions in Norway in August 2018 (Fig. 4 d)).325

4. Conclusions326

In this study we outlined a new approach for directly applying passive microwave brightness327

temperature to monitor and map drought over the Nordic countries. We propose a standardized index328

(STBI) based on passive microwave brightness temperature data (TbH). The rationale behind this329

choice is that the TbH convolves information about soil moisture, soil temperature and vegetation330

water content, which are all important factors in drought monitoring. The brightness temperature also331

provides a better spatial and temporal coverage than the retrieved soil moisture, because we avoid332

the retrieval problem, which is problematic over northern latitudes owing to dense vegetation, strong333

topography, high water fraction and snow cover. The brightness temperature is also available earlier334

than than the retrieved soil moisture, which will benefit the drought monitoring capabilities of the335

index.336

We found that the STBI_SMOS metric was able to capture the spatial patterns of the drought,337

especially for the very dry conditions seen in July 2018, when comparing it to the SSI from338

LDAS-Monde. As seen for two test sites in Sweden and one in Norway, the STBI_SMOS drought339

onset and end were in line with the SSI_LDAS and SPI-1. The STBI_SMOS was also characterized by a340

one-month lag compared to the SPI-1 (as often seen in land surface drought metrics [37]), indicating that341

it contained information about soil/vegetation moisture, and not only about land surface temperature.342

The results from this work show that observations from passive microwave observations (in the343

L-band) could be implemented in a Nordic drought monitoring system. We expect that the STBI could344

be a supplement to modelling tools, and that downscaling of the index would enhance its applicability345

for drought monitoring at decision making scales. In the future it would be possible to calculate346

the STBI for observations from more recently launched L-band satellites, such as the Soil Moisture347

Active Passive (SMAP) NASA mission [19]. The performance of passive microwave observations348

in the C-band should also be investigated for drought monitoring over northern latitudes because349

the temporal span of these missions are longer than the L-band missions, and hence a more reliable350

estimate of the (TbH) climatology can be computed. The method could also be expanded to other351

regions of the world, where retrieval of soil moisture is difficult. This study was also the first attempt352

to monitor agricultural drought over this region from space and compare the skill of a space based353

drought index with that of a state-of-the-art land surface data assimilation system (LDAS-Monde). We354

expect that future development of the STBI_SMOS metric could benefit farmers, decision makers and355

others depending on information concerning agricultural drought over the Nordic countries.356
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Figure 4. Drought indices, blue/red is above/below average precipitation, TbH or soil moisture. Grey
colour indicates regions without data. Columns from left to right are for May, June, July and August.
(a-d) Standardized microwave Brightness Temperature Index (STBI_SMOS). (e-h) Standardized Soil
moisture Index (SSI_LDAS). (i-l) Standardized Soil moisture Index ESA CCI (SSI_ESA_CCI). (m-p)
Standardized Precipitation Index (SPI-1). (q-t) Standardized Soil moisture Index SMOS (SSI_SMOS).
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Figure 5. Regions with severe drought conditions, drought index < −1.3 for May, June, July and
August. Red regions are severe drought conditions, while yellow and white are regions with less severe
drought conditions. Grey colour indicates regions where the drought indices are larger than −1.3. (a-d)
STBI < −1.3. (e-h) SSI_LDAS < −1.3. (i-l) SSI_ESA_CCI < −1.3. (m-p) SPI-1 < −1.3.
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a)

b)

c)

Figure 6. SPI-1 (blue), SSI_LDAS (red), STBI_SMOS (cyan) and SSI_ESA_CCI (magenta) time
series.Black dotted horizontal line indicate D0 drought conditions. a) Jokkmokk municipality, Sweden,
b) Tovaasen, Sweden, c) Nes in Akershus municipality, Norway. Latitudes are given in degrees north
(N) and longitudes are given in degrees east (E)
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