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1 Abstract: Mapping drought from space using, e.g., surface soil moisture (SSM), has become viable
= in the last decade. However, state of the art SSM retrieval products suffer from very poor coverage
s over northern latitudes. In this study, we propose an innovative drought indicator with a wider
«  spatial and temporal coverage than that obtained from satellite SSM retrievals. We evaluate passive
s microwave brightness temperature observations from the Soil Moisture and Ocean Salinity (SMOS)
s satellite as a surrogate drought metric, and introduce a Standardized Brightness Temperature Index
z  (STBI). The STBI is validated against drought indices from a land surface data assimilation system
¢ (LDAS-Monde), two satellite dervied SSM indices and a standardized precipitation index. Finally, we
» evaluate the STBI against the before mentioned drought indices in a case study of the 2018 Nordic
1o drought. The STBI is found to be superior to the drought index created from satellite derived SSM in
11 both spatial and temporal coverage over the Nordic region. Our results indicate that when compared
1z to drought indices from precipitation data and a land data assimilation system, the STBI is able to
1z capture the 2018 drought onset, severity and extent. Thus, the STBI index could provide additional
12 information for drought monitoring in regions where the SSM retrieval problem is difficult.

1s  Keywords: SMOS; Drought Index; Summer 2018 drought

s 1. Introduction

"

17 Droughts cost society billions of dollars every year, estimates from the World Meteorological
1z Organization WMO show that in the European Union alone droughts cost around 6.2 billion USD
1o per year [1]. It is therefore important to implement tools that can monitor and warn about drought
20 conditions, in order to mitigate and prevent losses from droughts [2,3]. Such tools will provide policy
=z and decision makers with a quantitative measure of drought characteristics, allowing them to act upon
22 scientifically based data. Drought indices from different sources, i.e., satellite platforms, models and
23 in-situ observations are crucial components of drought monitoring tools. By utilizing information (and
2a  creating drought indices) from multiple sources one avoids relying too much on just one source of
= information and the possible failure of this source to capture the drought.

26 In the spring and early summer of 2018 severe drought conditions developed over the Nordic
2z countries, Norway, Sweden, Finland and Denmark [4,5]. The drought conditions caused wildfires,
2s  decreased crop yield and increased crop failure, which resulted in large private and governmental
20 economic losses. In Norway alone the preliminary payout from the government to farmers (3 January
30 2019) have reached 187 million USD, compared to 4.9 million USD per year on average for the 2008-2017
a1 period [6]. Late winter and early spring precipitation deficit lead to a decrease in soil moisture, which
sz did not recover until late August and September [7]. For example, the rainfall for May to July in
s Lund, Sweden, was only about half of the previous low record, with observations dating back to
sa 1748 [5]. Droughts are rare in the Nordic countries, and regional monitoring capabilities and preventive
s measures were lacking, likely increasing the negative impacts of the drought. Recent studies have
ss found that climate change is likely to exacerbate droughts [8]; as a result, the drought will set in
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sz quicker and be more intense [9]. Although the Nordic region is projected to get wetter conditions
;s on average under climate change [8], droughts might still occur, and thus a way of monitoring and
s mapping droughts over the northern regions is much needed. One way of doing this is by satellite
« remote sensing [10-12], as satellites could provide near-real-time observations covering large regions
41 within a relative short amount of time.

a2 Satellite retrieval of surface soil moisture over northern latitudes is difficult because of snow cover,
«s  high open water fraction, steep topography and dense boreal vegetation that affect the microwave
as emissions from the soil [13]. This eventually results in large regions where the retrievals are missing
4 (masked), and hence the spatial and temporal coverage of satellite derived soil moisture over this
s region is poor. Although the inversion from brightness temperature to soil moisture might be ill
«z posed, the microwave signal carries information about water content in the vegetation (VWC) and
s soil system [14]. Thus, anomalies in the water content of the vegetation-soil system will be reflected
4 in anomalies in the passive microwave brightness temperature. In this paper we argue that when
so studying hydrological extremes, such as drought, we can omit the satellite soil moisture retrieval
51 problem over northern latitudes and look at the raw radiances (microwave brightness temperature,
s2 Tb) instead. The rationale is that the Tb is a convolution of soil moisture and VWC [11,15], hence it
s can be used to map drought (onset, extent and recovery) from space over northern latitudes, a region
ss Where soil moisture retrieval products have large spatial and temporal gaps. In this work we introduce
ss the Standardized Brightness Temperature Index (STBI) for drought monitoring over northern high
se latitudes.

57 This paper is divided into four parts, Sec. 1 introduces the paper, in Sec. 2 we present the remote
s  sensing, precipitation and modelling data; we also introduce the methods for the computation of the
s standardized drought indices. In Sec. 3.1 we evaluate the temporal dynamics of the STBI index using
s the Standardized Precipitation Index (SPI) from the gridded E-OBS in-situ rainfall dataset, and two
e1 Standardized Soil moisture Indices (SSI), one from the National Centre for Meteorological Research
o2 (CNRS) Météo-France Land Data Assimilation System Monde (LDAS-Monde), and one from the
es European Space Agency Climate Change Initiative (ESA CCI) satellite derived soil moisture product.
s« In Sec. 3.2 a case study of the summer 2018 Nordic drought is used to evaluate the STBI drought
es monitoring capabilities. Finally, in Sec. 4 we present our conclusions.

es 2. Data and Methods

e 2.1. Remote Sensing Data

o8 Launched in November 2009 by the European Space Agency (ESA), the Soil Moisture and Ocean
eo Salinity (SMOS) satellite is dedicated to measure passive microwave emissions in the L-band from the
70 Earth surface [13]. Here we use the SMOS Level-2 SMUDP2 version 650 reprocessed data (2010-2017)
= and the operational (April, May, June, July, August and September 2018) brightness temperature
72 data with horizontal polarization (Tby). From this product we also extract the Level-2 soil moisture
7 product, used to compute the SMOS standardized soil moisture index. The data are obtained from
7a the ESA SMOS dissemination service [16]. The SMOS retrieval algorithm simultaneously retrieves
7 soil moisture and vegetation optical depth by using information from mutli-angle observations of
76 Tb at horizontal and vertical polarization. The SMOS retrieval is done by minimizing the difference
7z between the satellite observed and model simulated Tb, using the L-band Microwave Emission of
7e the Biosphere model (L-MEB) [13,17]. The horizontal polarization is chosen because other studies
7 show that it is more sensitive to surface soil moisture than the vertical polarization [18]. However, we
s found little difference when applying the vertical polarization instead of the horizontal polarization in
e1 the computation of the microwave drought index, we therefore only show results for the horizontal
e2 polarization.

83 At L-band the Tby is sensitive to soil moisture in the upper 0 — 5 cm of the soil [19]. A limitation
sa Of the satellite derived drought index is the sensing depth, so we are unable to quantify the amount
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es of water in the root-zone. The 2018 drought set in early in the growing season, meaning that plants
s Were more reliant on surface zone soil moisture than root-zone soil moisture. Thus, the limited sensing
ez depth should not constrain this study too much [12].

e The microwave emissions are larger for a dry soil than for a wet soil [20], and the satellite observed
s Tby also depends on the effective soil and canopy temperature [21]. In addition the Tby is linked
o0 to the VWC; an increase in VWC leads to an increase in the observed brightness temperature [15].
o1 Effectively, this means that under dry vegetation conditions a larger fraction of the observed brightness
= temperature over vegetated areas will come from the soil, as the vegetation masking of the signal will
o3 be smaller than under wet conditions.

0a The SMOS Level-2 swath data are gridded to the Equal Area Scalable Earth (EASE) version 2.0
os 36 km grid using a nearest neighbour method; this is done to avoid smoothing from an interpolation
96 scheme. The SMOS data are extracted for the period 1 July 2010 until 1 October 2018 (April, May
oz and June 2010 are not utilized, following [22]). We only use the morning overpass to ensure that the
os land-atmosphere system is as close as possible to thermal equilibrium. The Tbyy data are screened for
9o values outside a range of 100 — 320K [22]. Other than that we do not do any detailed quality control,
100 because part of this work is to see if the SMOS Tby data contains drought information regardless of
11 grid-cell properties. Monthly Tbyy climatology is computed by averaging the ~ 6 a.m. overpasses; this
102 is done for April, May, June, July, August and September from 2010 (except April, May and June 2010)
103 until 2018. Only grid-cells with nine years of data are included in the climatology, except for April,
1s  May and June where we use eight years of data.

105 The monthly satellite derived soil moisture from the ESA CClI soil moisture project is extracted
10s  from the Copernicus Climate Change Service (C3S) [23,24]. We utilize the COMBINED product,
107 which is a combination of soil moisture retrievals from passive and active satellite sensors, such as
1e  METOP-A, METOP-B, AMSR2 and SMOS [25]. The COMBINED product is posted on a 0.25° regular
100 longitude/latitude grid. The dataset spans from 1979 until present; however, because of spatial and
uo temporal gaps in the product, we only use data from April 2010 until October 2018 (i.e., the same
1 time-period as the SMOS-L2 product). This also ensures that the climatologies for the standardized
12 indices are computed over the same time-period.

us  2.2. Precipitation Data

114 In this study, we use the E-OBS version 17.0 precipitation dataset, which corresponds of in-situ
us rain gauge data posted on a 0.25° grid [26]. Data for June, July, August and September 2018 are not
us included in v17.0 and were therefore downloaded separately. The E-OBS dataset spans from 1st January
17 1950 until 1st October 2018. The one month Standardized Precipitation Index (SPI-1) is computed
ue  to create a measure of drought, which is independent from the STBI (Tbyy) data. Accumulated total
us precipitation for individual months is computed by summarizing daily precipitation (mm/day) for
120 each month separately from 1950 until October 2018.

121 2.3. LDAS-Monde Soil Moisture Data

122 Analysis soil moisture data are from the Land Data Assimilation System Monde
123 (LDAS-Monde) [27], which has recently been applied to monitor and forecast the impact of the
124 2018 summer drought on vegetation over central Europe [28]. We run the LDAS-Monde system
125 over the Nordic region using ERA-5 reanalysis atmospheric forcing data and the ISBA (Interaction
126 between Soil Biosphere and Atmosphere) land surface model [29,30] within the SURFEX v.8.1 (SURFace
127 EXternalisée) modelling framework [31]. Surface soil moisture derived from the METOP satellite
126 platforms and Leaf Area Index (LAI) observation data from the Copernicus Global Land (CGL) service
120 are assimilated into the LDAS-Monde system using a simplified extended Kalman Filter (SEKF) [32-35].
130 The LDAS-Monde system is setup at a 0.25° regular longitude/latitude grid. Monthly means for
131 the 2010 to 2018 period are created from the 6 a.m. surface soil moisture model data; this is done to
132 correspond as closely as possible with the SMOS overpass time and the Tbyy observation time.
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133 2.4. Computation of the Standardized microwave Brightness Temperature Index (STBI)

In this section we introduce the new Standardized microwave Brightness Temperature Index
(STBI). Which to the best of our knowledge has not been utilized for drought monitoring before. In
this work the STBI is based on SMOS data. However, it can also be estimated based on data from
other L-band satellites, for example, the Soil Moisture Active Passive (SMAP) NASA mission [19].
The STBI_SMOS is computed assuming that the Tby; in each grid-cell follows a Gaussian probability
distribution. This assumption is tested using the Shapiro-Wilk test, where the null hypothesis is that
our sample comes from a normally distributed population. To fit the Gaussian distribution to the
Tby data we use the maximum likelihood method; this is done separately for each grid-cell. We then
compute the PDF of monthly Tby; data, for each summer month. By integrating over (0, Tbi;) we find
the probability of a given Tbi; value. This value is then converted to a standardized index using:

STBIL = @~ !(p(Tbly)), )

13« where ® 1 is the inverse standard normal distribution with zero mean and a standard deviation of
135 one. The standardization is based on an approximation detailed in [36].

e 2.5. Computation of the Standardized Soil moisture Index

For comparison to the STBI_SMOS index we compute three standardized soil moisture indices
(SSI_ESA_CCI, SSI_LDAS and SSI_SMOS), they are computed by assuming a Beta distribution for the
underlying soil moisture data [12,37]. The Beta probability distribution is given as:

(1 —g)F !

O @

L(@)C(p) , 0 is the volumetric soil moisture content, « and § are shape parameters. First
T(a+p)

13 we find the upper and lower limit on soil moisture for each individual grid-cell and month. We
130 assume that the first/last 10 % of the sorted soil moisture values are linearly related to their empirical
10 distribution function. After the computation of the upper and lower soil moisture values, we find the
11 Beta distribution shape parameters (¢ and ) using the maximum likelihood method. We then use Eq. 2
12 to compute the probability density function (PDF) of monthly soil moisture, for each summer month.
s By integrating over (0,0) we find the probability of a 6 value. This value is then used in Eq. 1, to find
1as  the standardized index (SSI). Negative/positive SSI values are below /above the average climatology
s Of soil moisture and indicate a dry/wet period.

137 where B =

s 2.6. Computation of the Standardized Precipitation Index

147 For the sake of comparison with the land surface drought indices (STBI and SSI) we also compute
s a Standardized Precipitation Index (SPI). The SPI is frequently used in studies and monitoring of
1s  meteorological drought, it is used to characterize droughts at time-scales of 1 to 36 months. On shorter
10 time-scales the SPI is found to be closely related to soil moisture drought, while at longer time-scales it
151 is more closely related to groundwater drought [12]. We therefore chose to compute the one-month SPI
152 (SPI-1). The general interpretation of the SPI is that it expresses the number of standard deviations the
153 anomaly deviates from the long-term mean. In the computation of the SPI-1 we use a non-parametric
15 standardization approach. The empirical probabilities of the E-OBS precipitation data are computed
155 for each individual grid-cell, using the empirical Gringorten plotting position [36,38].

i—0.44
n+012"7 ®)

1ss  Where i is the rank of the precipitation data from the smallest value, and # is the sample size. The
1z constants 0.44 and 0.12 are unique for this plotting position. An empirical relationship is applied

p(rainf) =
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1ss  because the length of the dataset allows this (69 years) and we avoid assuming one constant parametric
1o distribution function for each grid-cell. The empirical probabilities are converted to a standardized
160 index using Eq. 1.

161 Negative or positive SPI-1 values indicate a below (dry) or above (wet) average climatology for
12 the precipitation or soil moisture, respectively. For the STBI_SMOS a high and therefore warm Tby
163 reflects drier conditions, while a low and cold Tby reflects wetter conditions. We therefore multiply
16 the STBI_SMOS with —1, for the sake of comparison with the SPI-1 and SSI.

16s 3. Results and Discussion
e 3.1. Evaluation of the proposed Standardized microwave Brightness Temperature Index

167 3.1.1. Tby probability distribution

168 The Tby distribution for each summer month is assumed to follow a Gaussian distribution. This
1es  assumption is tested using the Shapiro-Wilk test on the boreal summer (June, July and August) data.
170 The Shapiro-Wilk test looks at the correlation between the data and the Gaussian quantile. This test only
i1 checks if the data were drawn from a normal distribution, it does not check what the parameters of that
172 distribution might be [39]. Our null-hypothesis is that the data are normally distributed. If the p-value
173 is smaller than a chosen a value then the null-hypothesis is rejected and there is evidence that the
174 data are not normally distributed. If the p-value is larger than the chosen & value we cannot reject the
175 null-hypothesis that the data are normally distributed, hence the data are likely normally distributed.
176 Here we choose & = 0.05. In Fig. 1 a) grid-cells in dark blue show where the null-hypothesis was not
177 rejected, light blue grid-cells show where the null-hypothesis was rejected. White regions over land
17e  show where we had less than eight years of data for the Shapiro-Wilk test, these regions are excluded

in the calculation. The Gaussian fit to the Tby; for June (red), July (blue) and August (black) are shown

70°N /. 016f b) — June
— July

0.14 — August

a)

0.12

o
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Figure 1. a) Shapiro-Wilk test for normality of the Tby distribution shown for July. Dark blue regions
null-hypothesis is not rejected, i.e., the data appears to be normally distributed. Light blue regions
null-hypothesis is rejected, and white regions (over land) had too few years of data for testing. b) PDFs
of the fitted brightness temperature for boreal summmer months, June (red), July (blue) and August
(black).

10 in Fig. 1 b). The distributions show that June has a lower mean Tby; than July and August, with July
11 being on average the warmest. The drought index value is computed by integrating the PDFs over
= (0,Tby). The integral is approximated by a summation up to the Tby value of interest.
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a) Sweden, Latitude 61.9 N Longitude 16.3 E b) Norway, Latitude 60 N Longitude 11.5 E

Index

5| August 5| August

— SPI-1
— SSI

2010 2011

— SPI-1
— S§|

2010 2011

Figure 2. a) Time-series of the SPI-1 (blue), STBI_SMOS (cyan) and SSI_LDAS (red) over a grid-cell in
Sweden (61.9° N and 16.3° E) from 2010 until 2018 for the boreal summer months June, July and August.
The horizontal black dotted line indicate DO drought conditions, see text for further explanation. Note

— STBI_SMOS
— SSI_ESA_CCI

2012 2013

— STBI_SMOS
— SSI_ESA_CCI

2012 2013

2014 2015 2016 2017 2018 2014 2015 2016 2017 2018

that for this region there were no observations for the computation of the SSI_ESA_CCI. b) Same as a)
but for a grid-cell in Norway (60.0° N and 11.5° E), here observations from the ESA CCI were available
for the computation of the SSI_ESA_CCI drought index. For the different indices the grid-cell sizes are:
0.36° for the STBI_SMOS and 0.25° for the SPI-1, SSI_LDAS and SSI_ESA_CCI

3.1.2. Temporal and spatial patterns of the drought indices

Figure 2 shows time-series of the SPI-1 (blue), STBI_SMOS (cyan), SSI_LDAS (red) and SSI_ESA_CCI
(mangenta) over a grid-cell in Sweden (61.9° N and 16.3° E) (a) and Norway (60.0° N and 11.5° E) (b)
from 2010 until 2018 for the boreal summer months, June, July and August. The two regions were
selected to represent a region with and without the SSI_ESA_CCI data, and therefore show how the
STBI_SMOS can represent regions were soil moisture retrievals are masked. Furthermore, these two
regions were affected by the 2018 summer drought, as seen from the negative anomalies in the indices
for 2018. Depending on the severity, a drought can be classified into a drought scale or D-scale [2]. In
this classification an SSI below 0.5 is defined as being abnormally dry. Using D0 as a drought threshold,
we see that for the regions in Fig. 2 a) and b), severe drought conditions (see 2018 summer) is captured
by the STBI_SMOS. The STBI_SMOS does not only capture dry events, it also captures years where a
month is wetter than normal (index larger than zero). However, for positive index anomalies there
seems to be more false events (e.g., June 2015 in Sweden, and June 2015 in Norway) than for the dry
events. We evaluate how well the STBI_SMOS, SSI_ESA_CCI and SPI-1 could capture the temporal
dynamics of the soil moisture drought by computing the correlation coefficients between the SSI_LDAS
and the other metrics (STBI_SMOS, SSI_ESA_CCI and SPI-1). The LDAS-Monde index is then used as
the reference index. This is justified by the fact that it incorporates both model and observation data in
a data assimilation system. Other studies have shown that land data assimilation systems are able
to correct for errors in precipitation datasets, and as a result, improve the representation of surface
soil moisture (see for example Blyverket ef al. [40]). Another example is provided by Albergel et al.
[41], where the authors show that the LDAS-Monde improves the representation of the 2012 US corn
belt drought. In the computation of the correlation coefficient, we used June, July and August (boreal
summer) data together from 2011 until 2018 to increase the number of data-points. The domain average

rints201904.0009.v1


http://dx.doi.org/10.20944/preprints201904.0009.v1
https://doi.org/10.3390/rs11101200

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 1 April 2019 d0i:10.20944/preprints201904.0009.v1

7 of 16

Correlation between STBI_SMOS and SSI_LDAS Correlation between SSI_ESA_CCl and SSI_LDAS

70°N|._ a) . 70°N{._ b)

Figure 3. a) Pearson correlation coefficient between the STBI_SMOS and SSI_LDAS, red regions indicate

a high positive correlation, masked (grey) regions have a correlation not significantly different from
zero. b) Same as a) but for the Pearson correlation between the SSI_ESA_CCI and SSI_LDAS

206 was only computed for grid-cells where the Pearson correlation value was statistically significant at the
207 0.05 level. Figure 3 a) shows the Pearson correlation coefficient between the STBI_SMOS and SSI_LDAS,
208 regions with no values (grey regions over land) had a correlation not different from zero at the 0.05
200 significance level. Most of the domain has a high correlation, except regions in south central Norway
20 and from mid-Norway to northern Norway. In Fig. 3 b) the Pearson correlation coefficient between the
2 SSI_ESA_CCI and SSI_LDAS is shown. Here large regions in the Nordic countries (Norway, Sweden
22 and Finland) have non significant correlation. This is likely because the SSI_ESA_CCI index has large
x3 regions with missing data for the individual months, thus resulting in a non-significant correlation
za  and discarded values (grey regions in Fig. 3). Summary statistics for the spatial correlations are shown
=5 in Table 1.

216 The STBI_SMOS has a correlation with the SSI_LDAS of 0.71, it also has the highest number
a1z of grid-cells with a statistically significant correlation value (n = 2437 out of 2997 grid-cells (81 %)).
zne The SSI_ESA_CCI index had a correlation of 0.70 with the SSI_LDAS index, and significant values
20 in n = 1523 out of 2997 (51 %) grid-cells. Finally, the SPI-1 correlation with SSI_LDAS was 0.56 for
220 1 = 1537 out of 2997 (51 %) grid-cells. The high correlation between the STBI_SMOS and the SSI_LDAS
a1 indicate that the STBI_SMOS is able to capture the variability in the soil moisture over the Nordic
222 region as good as the SSI_ESA_CCI index. The number of grid-cells with statistically significant
223 correlation values are higher for the STBI_SMOS than for the SSI_ESA_CCI, hence it provides better
224 spatial coverage than the satellite derived soil moisture index. To check that the high-correlation is not
225 only found in regions where the SSI_ESA_CCI data were missing, we also compute the correlation for
226 grid-cells covered by both products, see Table 1. Here the mean correlation is only taken for grid-cells
22z where we have data for all the four indices (resulting in 800 of 2997 land grid-cells being covered, i.e.,
228 27 %).

220 3.2. Summer 2018 Drought Case Study

230 To further evaluate the performance of the STBI for drought mapping we utilized the 2018 summer
21 drought over the Nordic countries as a case study.
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Table 1. Pearson R correlation coefficient between the SSI_LDAS and the, STBI_SMOS, SSI_ESA_CCI
and the SPI-1. Computed for individual grid-cells and summed over the whole domain (all columns)
and over grid-cells with overlap between all datasets (overlap columns). N indicates grid-cells with
statistically significant correlation at the 0.05 level, total number of land grid-cells were 2997.

All Overlap
Index R N R N
STBI_SMOS 0.71 2437 0.70 800
SSI_ESA_CCI 0.70 1523 0.70 800
SPI-1 0.56 1537 0.56 800

3.2.1. Comparison between the STBI_SMOS, SSI_LDAS, SSI_ESA_CC(I, SPI-1 and SSI_SMOS

The limited number of reliable satellite derived soil moisture observations in the SMOS-L2 (Fig. 4
g-t) and ESA CCI COMBINED product (Fig. 4 i-1) motivated our attempt to describe the 2018 Nordic
drought using the observed brightness temperature (Tby). In addition to the poor coverage, the
Standardized Soil moisture Index for SMOS (SSI_SMOS) exhibits noisy patterns, and little resemblance
to the SSI_LDAS in Fig. 4. Comparing the STBI in Fig. 4 a-d) to the SSI_ESA_CCl in Fig. 4 i-1) we see
that the STBI_SMOS has a better spatial coverage than the SSI_ESA_CCI. Large regions over Sweden
and northern Finland are not covered by the SSI_ESA_CCI. This problem is addressed by using the
Thy data.

Figures 4 a), e), i), m) and q) show the STBI_SMOS, SSI_LDAS, SSI_ESA_CCI, SPI-1 and SSI_SMOS
over the Nordic region. The SPI-1 indicates a precipitation deficit for most of the domain. The
STBI_SMOS, SSI_LDAS and SSI_ESA_CCI show that northern parts of Norway and the mountain
regions in the south of Norway are wetter (colder for the STBI) than usual. This signal might come
from late snowmelt wetting the soil in the northern latitudes and the mountainous regions in southern
Norway. We also note that southern parts of Sweden and Finland are drier (warmer) than usual for the
STBI_SMOS, SSI_LDAS and SSI_ESA_CCI. In general, the spatial patterns for May are very similar for
the STBI and SSI_LDAS, although the STBI overestimates the wet regions in northern Norway and in
Finland.

Next we examine the indices during June 2018. Figures 4 b), f), j), n) and r) show the STBI_SMOS,
SSI_LDAS, SSI_ESA_CCI, SPI-1 and SSI_SMOS, respectively. The dry conditions seen in the SPI-1
continue in eastern Norway, southern Sweden and Denmark. Northern parts of Norway and most of
Finland experience rainy conditions seen from the SPI-1. Eastern Norway, Sweden, Finland, Denmark
and the Baltic countries have a dry anomaly in the STBI_SMOS, SSI_LDAS and SSI_ESA_CCI. Northern
parts of Sweden and Finland have missing values for the SSI_ESA_CCI index; however, the STBI_SMOS
shows similar patterns as the SSI_LDAS, except from the wet regions in southwestern and northern
Norway. When comparing the STBI_SMOS to the SSI_LDAS we see that the STBI_SMOS captures the
wet (cold) regions in the east of the domain.

For July in Figs. 4 ¢), g), k), 0) and s) the SPI-1 shows a dry anomaly for Norway, Sweden, Finland
and Denmark. In July, drought conditions were dominant over most of the domain, except for regions
in the south central and east, which is reflected in all of the indices. Again, there are gaps in the
SSI_ESA_CCI over large regions of Sweden and Finland. These gaps are not present in the STBI_SMOS,
which is consistent with the SSI_LDAS, showing dry anomalies for this region. Close to normal
conditions in northern parts of Poland are found for both the STBI_SMOS and the SSI_LDAS for July;
this is not seen for the SSI_ESA_CCI.

For August most of Norway experienced wetter than usual conditions (seen from the SPI-1), this
is reflected in the SSI_ESA_CCI and the SSI_LDAS, but not in the STBI_SMOS, see Figs. 4 d), h), 1) and
p)- One reason for this could be precipitation intercepted by the vegetation, increasing the VWC, again
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260 increasing the emissivity from the vegetation. Higher emissivity for wetter vegetation could therefore
20 mask out precipitation events and cause a false drought signal for this month.

an 3.2.2. Drought Severity

22 Following the D-scale [2], an SSI below —1.3 is defined as a severe drought (D2 conditions). In Fig. 5
23 we have plotted the STBI_SMOS (a-d), SSI_LDAS (e-h), SSI_ESA_CCI (i-1) and SPI-1 (m-p) for D2
z7a  conditions for May, June, July and August in 2018. The difference between the one-month land
zrs  surface indices (STBI_SMOS, SSI_LDAS and SSI_ESA_CCI) and the SPI-1 is most likely due to the lag
ze  time between the meteorological drought (one-month SPI) and the agricultural drought (one-month
277 SSI). The SPI-1 has a shorter memory than the SSI, hence a dry SPI-1 in month i is often followed
2z by a dry SSI in month i + 1, even though the precipitation is back to normal conditions in month
ars 1+ 1. Using the SSI_LDAS as a reference we see that the STBI_SMOS is able to capture regions in
200 severe drought where the SSI_ESA_CCI has masked values from the retrieval. This can be seen in
21 southern Norway (July) and northern and central Sweden (July). Comparing Figs. 5 ¢), g) and k) we
202 see that northern parts of Poland do not have severe drought conditions for the SSI_LDAS, and this is
2e3  captured by the STBI_SMOS but not by the SSI_ESA_CCI. On the other hand, the spatial pattern of the
2es  SSI_ESA_CCI drought severity in June has better agreement with the SSI_LDAS than the comparison
2es  Of the STBI_SMOS versus the SSI_LDAS. In August the STBI_SMOS (Fig. 2 d)) is overestimating the
286 regions experiencing severe drought conditions in northern Norway and Sweden, when compared to
27 the SSI_LDAS (Fig. 5 h)).

2es  3.2.3. Drought Onset and Recovery

280 Accurate monitoring of drought onset and recovery could help farmers and decision makers
200 Mminimize the negative impacts of a drought. Here we evaluate the temporal evolution of the
201 STBI_SMOS index against the temporal evolution of the SSI_LDAS SSI_ESA_CCI and SPI-1 during
202 the 2018 summer drought. As a consequence of the drought several regions in the Nordic countries
203 experienced wildfires and agricultural losses [7,42], here we have chosen three sites to represent such
20¢ conditions. In Fig. 6 we have selected grid-cells in the vicinity of a) Jokkmokk municipality, Sweden, b)
205 Tovaasen, Sweden and c) Nes in Akershus municipality, Norway. These regions experienced large
206 wildfires and agricultural droughts during the summer 2018 heatwave. The horizontal dotted black
207 line shows the D0 condition (moderate drought). The first thing to note is that in Fig. 6 a) and b) there
208 are no data for the SSI_ESA because these grid locations are flagged in the retrieval algorithm. This
200 limits the use of the SSI_ESA_CCI over regions in the Nordic countries for drought monitoring and
;0 mapping. Hence a reason for choosing grid-cells where we have no SSI_ESA_CCI data is to show that
s00  the STBI_SMOS can be used to monitor the drought in these regions.

302 Jokkmokk municipality lies above the Arctic circle in northern Sweden and it experienced large
sos  wildfires during the 2018 summer. In Fig. 6 a) we see that the precipitation deficit (low SPI-1) starting
s« in May causes the STBI_SMOS (cyan) and SSI_LDAS (red) to fall below DO conditions in June. The
s0s close to normal SPI-1 conditions in June has little impact on the land surface indices (STBI_SMOS
s and SSI_LDAS). Precipitation deficit in July and only close to normal SPI-1 conditions in August and
;07 September, results in a slow recovery of the land surface indices for the Jokkmokk site.

308 Tovaasen lies in the Ljusdalen muncipality, a region in Sweden which experienced large wildfires
300 in mid-July 2018. In Fig. 6 b) we see that the SPI-1 (blue) is close to normal for February, March and
a0 April. In May and June the precipitation deficit leads to a decrease in the STBI_SMOS (cyan) and
su  SSI_LDAS (red). In August the SPI-1 is close to normal conditions, but this is not enough for the
a1z STBI_SMOS and SSI_LDAS to recover. In September the STBI_SMOS and the SSI_LDAS diverges, with
a1z the STBI_SMOS showing drought recovery while the SSI_LDAS more closely follows the SPI-1 and
s1e  shows drought conditions.

315 Much of the agriculture in Norway lies in the south-eastern parts of the country and here we
s choose a grid-cell which covers Nes in Akershus municipality. In Fig. 6 c¢) we see that low SPI-1
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a1z conditions in the February and March likely caused abnormally dry (warm) conditions in April for the
as STBI_SMOS (cyan) and SSI_ESA_CCI (magenta). The continued precipitation deficit in May, June and
a0 July was propagated into the land seen by the low STBI_SMOS, SSI_LDAS and SSI_ESA_CCI. Here the
s20 three land surface drough indices follow each other closely during the dry spell in May, June, July and
=1 August.

322 The summer 2018 case study show that the STBI_SMOS has potential to supplement information
s23  to drought monitoring over the Nordic region. Especially, we see that it was able to monitor the
;22 drought in regions where data from the soil moisture retrievals were missing. The STBI_SMOS did
s however miss the transition to a wet anomaly for large regions in Norway in August 2018 (Fig. 4 d)).

26 4. Conclusions

327 In this study we outlined a new approach for directly applying passive microwave brightness
22 temperature to monitor and map drought over the Nordic countries. We propose a standardized index
s20 (STBI) based on passive microwave brightness temperature data (Tbyy). The rationale behind this
330 choice is that the Tby convolves information about soil moisture, soil temperature and vegetation
a1 water content, which are all important factors in drought monitoring. The brightness temperature also
sz provides a better spatial and temporal coverage than the retrieved soil moisture, because we avoid
333 the retrieval problem, which is problematic over northern latitudes owing to dense vegetation, strong
;s topography, high water fraction and snow cover. The brightness temperature is also available earlier
335 than than the retrieved soil moisture, which will benefit the drought monitoring capabilities of the
336 index.

337 We found that the STBI_SMOS metric was able to capture the spatial patterns of the drought,
a3s  especially for the very dry conditions seen in July 2018, when comparing it to the SSI from
:3s  LDAS-Monde. As seen for two test sites in Sweden and one in Norway, the STBI_SMOS drought
a0 onset and end were in line with the SSI_LDAS and SPI-1. The STBI_SMOS was also characterized by a
sa1  one-month lag compared to the SPI-1 (as often seen in land surface drought metrics [37]), indicating that
sz it contained information about soil/vegetation moisture, and not only about land surface temperature.
343 The results from this work show that observations from passive microwave observations (in the
;s L-band) could be implemented in a Nordic drought monitoring system. We expect that the STBI could
as  be a supplement to modelling tools, and that downscaling of the index would enhance its applicability
s for drought monitoring at decision making scales. In the future it would be possible to calculate
sz the STBI for observations from more recently launched L-band satellites, such as the Soil Moisture
s Active Passive (SMAP) NASA mission [19]. The performance of passive microwave observations
a0 in the C-band should also be investigated for drought monitoring over northern latitudes because
0 the temporal span of these missions are longer than the L-band missions, and hence a more reliable
351 estimate of the (Tby) climatology can be computed. The method could also be expanded to other
2 regions of the world, where retrieval of soil moisture is difficult. This study was also the first attempt
53 to monitor agricultural drought over this region from space and compare the skill of a space based
ssa  drought index with that of a state-of-the-art land surface data assimilation system (LDAS-Monde). We
355 expect that future development of the STBI_SMOS metric could benefit farmers, decision makers and
s others depending on information concerning agricultural drought over the Nordic countries.
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Figure 4. Drought indices, blue/red is above/below average precipitation, Tby; or soil moisture. Grey
colour indicates regions without data. Columns from left to right are for May, June, July and August.
(a-d) Standardized microwave Brightness Temperature Index (STBI_SMOS). (e-h) Standardized Soil
moisture Index (SSI_LDAS). (i-1) Standardized Soil moisture Index ESA CCI (SSI_ESA_CCI). (m-p)
Standardized Precipitation Index (SPI-1). (q-t) Standardized Soil moisture Index SMOS (SSI_SMOS).
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Figure 5. Regions with severe drought conditions, drought index < —1.3 for May, June, July and
August. Red regions are severe drought conditions, while yellow and white are regions with less severe
drought conditions. Grey colour indicates regions where the drought indices are larger than —1.3. (a-d)
STBI < —1.3. (e-h) SSI_LDAS < —1.3. (i-1) SSI_ESA_CCI < —1.3. (m-p) SPI-1 < —1.3.
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Figure 6. SPI-1 (blue), SSI_LDAS (red), STBI_SMOS (cyan) and SSI_ESA_CCI (magenta) time
series.Black dotted horizontal line indicate DO drought conditions. a) Jokkmokk municipality, Sweden,

b) Tovaasen, Sweden, ¢) Nes in Akershus municipality, Norway. Latitudes are given in degrees north

(N) and longitudes are given in degrees east (E)
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