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In this paper, we analyze the deflection angle of light by Brane-Dicke wormhole in the weak field
limit approximation to find the effect of the Brane-Dicke coupling parameter on the weak gravitation
lensing. For this purpose, we consider new geometric techniques, i.e., Gauss-Bonnet theorem and
optical geometry in order to calculate the deflection angle. Furthermore, we verify our results by
considering the most familiar geodesic technique. Moreover, we establish the quantum corrected
metric of Brane-Dicke wormhole by replacing the classical geodesic with Bohmian trajectories, whose
matter source and anisotropic pressure are influenced by Bohmian quantum effects and calculate its
quantum corrected deflection angle. Then, we calculate the deflection angle by naked singularities
and compare with the result of wormhole’s. Such a novel lensing feature might serve as a way to
detect wormholes, naked singularities and also the evidence of Brane-Dicke theory.
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I. INTRODUCTION

Last year researchers detected the first neutron star collision [1]. It was an epochal discovery. This is only just
the beginning of gravitational wave astronomy. Since the discovery of gravitational waves, many of the modified
gravity theories face difficulties to solve problems which were invented for. Furthermore, new data from the months
since this discovery made life more and more difficult for the defenders of the many remaining modified-gravity
theories [2]. For solving this issue, physicists analyze the rotating neutron stars or black holes to find some differ-
ences between their observations and general relativity estimates - the inconsistencies predicted by some alternative
gravitational theories. These systems allow astronomers to study gravity on a new scale and with new precision.
In every new observation, these alternative gravitational theories are becoming increasingly difficult to solve the
problems they have invented. For an alternative gravitational theory to work, it must replicate not only dark matter
and dark energy, but also general relativity estimates in all standard contexts. One of the proposed the modifications
of general relativity theory is the Brans-Dicke (BD) theory [3] which is in the category of Galileon theories similarly
to dilaton theories, chameleon theories and quintessence that attempt to get rid of dark energy and explain the ex-
pansion of the universe. There are only a few sets of dimensions in which the string theories is consistent in itself,
and the most promising is four-dimensional gravity which defines our Universe [4]. However, a 10-dimensional
BD theory of gravity was founded and to regain the seriousness of our universe, you have to get rid of the six di-
mensions and take the BD coupling parameter ω which is a dimensionless constant, to infinity. The BD gravitation
theory is a theoretical framework for explaining gravity ( a scalar tensor theory) where the gravitational interaction
is mediated by the scalar field as well as the general relativity tensor field [5]. They also predict that gravitational
waves are emitted more slowly than light. Although the gravity constant G is not assumed to be constant, 1

G is
replaced by a scalar field such as φ, which can vary depending on location and time. The BD coupling parameter ω
can be selected to match the observations [6]. The BD theory also predicts the deviation of light and the continuity
of planets orbiting the Sun and the deflection angle depends on the BD coupling constant ω. This means that from
the observations of the astronomical systems it is possible to put an observational lower limit to the possible omega
value. Moreover, general relativity is derived from the Brans-Dicke theory at the boundary of omega’s infinity [7].

Wormhole; physicist Einstein’s solution of the field equations in the general theory of relativity similar to a tunnel
between two black holes in space-time or a tunnel between other points. Traveling in a short distances between the
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stars make the wormholes attractive for space travel. It was also claimed that the tunnel would allow a wormhole to
travel back into the past. However, the wormholes are intrinsically unstable. Although exotic stabilization schemes
have been proposed, there is no evidence for the wormholes [8–28]. One of the way to detect the nature of the
wormhole is to use gravitational lensing [29–34].

In this work, we study the BD wormhole solutions to investigate the gravitational lensing in weak field limits.
Recently, Gibbons and Werner (GW) have proposed the method to obtain the deflection angle by black holes in
the weak field limit [35]. The optical geometry is used to calculate the Gaussian curvature K and then using the
following Gauss-Bonnet theorem, one can find the deflection angle for the asymptotically flat spacetimes:

α̂ = −
∫ ∫

D∞
KdS, (1)

which gives exact results for bending angle in leading order terms. Then this new method by GW was applied to a
variety of spacetime metric of black holes and wormholes [36–63].

The main motivation of the paper is to find the effect of the BD coupling parameter on the deflection angle by
wormhole. To do so, the paper is organized as follows: In Section II, we investigate the deflection angle of light by
BD wormhole Class II using the geodesic method and the new method by GW. Section III, we study the deflection
angle of light by BD wormhole Class I using the geodesic and the new method by GW, then we verify our results.
In Section IV, we establish the quantum corrected metric of BD wormhole Class I as well as analyze the quantum
corrected deflection angle of light from it using the new method by GW. In Section V, we study the weak gravitational
lensing by naked singularities. Finally, the results of this paper are summarized in Section VII.

II. BRANE-DICKE WORMHOLE CLASS II

The fields equations of the BD field is given as follows [7]:

(φ;ρ);ρ =
8π

3 + 2ω
Tµ

µ ,

Rµν −
1
2

gµνR =− 8π

φ
Tµν −

ω

φ2

[
φ;µφ;ν −

1
2

gµνφ;ρφ;ρ
]

,

− 1
φ

[
φ;µ;ν − gµν (φ

;ρ);ρ

]
,

(2)

where Tmn is the energy-momentum tensor for matter with excluding the field φ field, and ω is a parameter without
any dimensions. One can obtain the the metric of new BD wormhole class II using the above BD field equations as
[7]

ds2 = −e2Φ(R̃)dt2 +

[
1− b̃(R̃)

R̃

]−1

dR̃2 + R̃2
[
dθ2 + sin2 θdφ2

]
, (3)

where

Φ(R̃) = α◦ = 0, R̃ = reβ◦(1 + B̃/r)2
(

1− B̃/r
1 + B̃/r

)1−C̃

, (4)

β◦ = 0, b̃(R̃) = R̃

[
1−

(
r2 − 2B̃C̃r(R̃) + B̃2

r2(R̃)− B̃2

)2]
, (5)

and

C̃2 ≡
(

ω + 2
2

)−1
> 0. (6)

Note that the b̃(R̃) and Φ(R̃) represent the shape and redshift functions, respectively. The term of φ0 is the integration
constant. The throat of the wormhole occurs at R̃ = R̃0, i.e., b(R̃0) = R̃0. The value of r±0 can be obtained as from
Eq.(5)

r±0 = B̃C̃

[
1±

(
1− 1

C̃2

) 1
2
]

, (7)
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where r0 represents the radius of the wormhole throat. By using the above value of r±0 , we can obtained the value
of R̃±0 from Eq.(4). An important feature of wormhole geometry is that the shape function b̃(R̃) must satisfy the
flaring-out condition

b(R̃)− R̃b′(R̃)
b2(R̃)

> 0, (8)

in which b′(R̃) = db
dR̃ ≤ 0, must be satisfied at the wormhole throat. Here ρφ ≤ 0 so that scalar field plays the role of

exotic matter at the wormhole throat, which violates the weak energy condition [7]. It is to be noted that R̃ → ∞ as

r → ∞ and b̃(R̃)
R̃ → 0 as R̃ → ∞. The Φ(R̃) function is zero everywhere, therefore no horizon exists & Φ(R̃) → 0 as

R̃→ ∞.

A. Deflection angle of Brane-Dicke wormhole class II using geodesic method

In order to calculate the geodesics of BD wormhole class II, the Lagrangian L̃ can be defined by the metric (3)
through a derivative to a parameter s̃ along the path as follows

2L̃ = −ṫ2(s̃) +
(r2(s̃)− B̃2)2

r4(s̃)

(
r(s̃)− B̃
r(s̃) + B̃

)−2C̃

ṙ2(s̃) + r2(s̃)
(

1 +
B̃

r(s̃)

)4

×
(

1− B̃/r(s̃)
1 + B̃/r(s̃)

)2−2C̃ (
θ̇2 + sin2 θφ̇2

)
. (9)

By following the standard procedure, setting 2L̃ = 0 for photons, we derive the two constants of motion of the
geodesics at the equatorial plane θ = π

2 i.e.,

Pφ =
∂L̃
∂φ̇

= 2r2(s̃)
(

1 +
B̃

r(s̃)

)4 (1− B̃/r(s̃)
1 + B̃/r(s̃)

)2−2C̃

φ̇(s̃) = `, (10)

Pt =
∂L̃
∂ṫ

= −2ṫ(s̃) = −ε̃. (11)

Furthermore, we consider a new variable v(φ), which is associated to the old radial coordinate as r = 1
v(φ) , which

leads to the identity

ṙ
φ̇
=

dr
dφ

= − 1
v2

dv
dφ

. (12)

For the sake of simplicity, we use the metric conditions ε̃ = 1 & ` = b for Eqs.(9)-(12) and after some algebraic
manipulations we obtain the following relation(

dv
dφ

)2
− (1− B2v2)2

b2

(
1− Bv
1 + Bv

)−2C̃
+ v2 = 0. (13)

After solving the above equation, we get(
dφ

dv

)
=

bΞ√
(1− B2v2)2 − b2v2Ξ2

, (14)

where

Ξ =

(
1− Bv
1 + Bv

)C̃
. (15)

In order to obtain the solution of differential Eq.(14), we use the following relation [64]

∆φ = π + α̃, (16)

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 29 March 2019                   doi:10.20944/preprints201903.0284.v1

Peer-reviewed version available at PHYSICAL REVIEW D 2019, 99, 084012; doi:10.1103/PhysRevD.99.084012

http://dx.doi.org/10.20944/preprints201903.0284.v1
https://doi.org/10.1103/PhysRevD.99.084012


4

where α̃ represents the deflection angle. The deflection angle can be obtained by following the same procedure of
Ref. [66]

α̃ = 2|φv=1/b − φv=0| − π. (17)

After solving the Eq. (14) and considering the leading order terms, we obtain

α̃ ' 4
C̃B
b

+O(B2, C̃2). (18)

For the value of C̃ the deflection angle can be written as follows

α̃ ' 8
B

b
√

2 ω + 4
+O(B2, C̃2). (19)

B. Deflection angle of Brane-Dicke wormhole class II using the new method

Now we calculate the deflection angle of Brane-Dicke wormhole class II using the Gauss-Bonnet theorem [35]. The
optical metric of Eq. (3) corresponding to the given shape function b̃(R̃) is given as follows

dt2 =
(r2 − B̃2)2

r4

(
r− B̃
r + B̃

)−2C̃

dr2 + r2
(

1 +
B̃
r

)4 (1− B̃/r
1 + B̃/r

)2−2C̃

dφ2. (20)

One can rewrite the above metric as follows

dt2 = h̃µνdλµdλν = dv2 + ξ2(v)dφ2. (21)

It is to be noted that (µ, ν = r, φ) and h̃ = det h̃µν. The Gaussian optical curvature can be given: [34]

K̃ =
RicciScalar

2
= − 1

ξ(v)

[
dr
dv

d
dr

(
dr
dv

)
dξ

dr
+

(
dr
dv

)2 d2ξ

dr2

]
. (22)

Using Eq. (22), we obtain the Gaussian optical curvature from Eq. (20) as follows

K̃ ' −2
C̃B
r3 +O(B2, C̃2). (23)

In order to calculate the deflection angle, we consider the straight line approximation as r(φ) = b
sin φ . Thus the

deflection angle can be calculated from given equation [34]

α̃ = −
∫ π

0

∫ ∞

b
sin φ

K̃dσ̃. (24)

After substituting Eq. (23) into Eq. (24), we obtain

α̃ = −
∫ π

0

∫ ∞

b
sin φ

(
−2

C̃B
r3

) (
2 C̃B + r

)
drdφ. (25)

The above equation implies

α̃ ' 4
C̃B
b

+O(B2, C̃2). (26)

Hence, we find the same deflection angle as in Eq. (18) so, we get the same deflection angle as in Eq. (19) for the
value of C̃.
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III. BRANE-DICKE WORMHOLE CLASS I

The metric of new BD wormhole class II is defined as [7]

ds2 = −e2Φ(R̃)dt2 +

[
1− b̃(R̃)

R̃

]−1

dR̃2 + R̃2
[
dθ2 + sin2 θdφ2

]
, (27)

where

Φ(R̃) = 0, R̃ = r
(

1 +
B̃2

r2

)
exp

[
1− 2

π
arctan

(
r
B̃

)]
β̃0, (28)

b̃(R̃) = R̃

[
1−

(
1− 2B̃(C̃r(R̃) + B̃)

r2(R̃) + B̃2

)2]
, (29)

and

C̃2 ≡ −
(

ω + 2
2

)−1
> 0. (30)

A. Deflection angle of Brane-Dicke wormhole class I using geodesic method

The Lagrangian of metric (27) can be defined as follows

2L̃ =

 β̃0(r2(s̃) + B̃2)
(
−2B̃r(s̃) + πr2(s̃)− B̃2π

)
e
(

2
π arctan

[
B̃

r(s̃)

])
πr2(s̃)

(
(r2(s̃) + B̃2) + 2B̃(C̃r(s̃) + B̃)

)
2

ṙ2(s̃)

+

[
β̃0
(
r2(s̃) + B̃2)

r(s̃)
e
(

2
π arctan

[
B̃

r(s̃)

]) ]2 (
θ̇2(s̃) + sin2 θφ̇2(s̃)

)
− ṫ2(s̃). (31)

Setting 2L̃ = 0 for photons and considering the deflection of planar photons at the equatorial plane θ = π
2 , two

constants of motion of the geodesics are derived at the equatorial plane θ = π
2 i.e., [64]

Pφ =
∂L̃
∂φ̇

= 2

[
β̃0
(
r2(s̃) + B̃2)

r(s̃)
e
(

2
π arctan

[
B̃

r(s̃)

]) ]2

φ̇2(s̃) = `, (32)

Pt =
∂L̃
∂ṫ

= −2ṫ(s̃) = −ε̃. (33)

Furthermore, we consider a new variable v(φ), which is associated to the old radial coordinate as r = 1
v(φ) , which

leads to the identity

ṙ
φ̇
=

dr
dφ

= − 1
v2

dv
dφ

. (34)

For the sake of simplicity, we use the metric conditions ε̃ = 1 & ` = b for Eqs.(31)-(34) and after some algebraic
manipulations we obtain the following relation

0 =

 β0e
(

2
π arctan

[
B̃
r

])2 (
1 + B2v2) (−2Bv + π − B2v2π

)
π
(
1 + B2v2 + 2B(C̃v + Bv2)

)
v2


2 (

dv
dφ

)2

− 1
b2

 β0e
(

2
π arctan

[
B̃
r

])2 (
1 + B2v2)

v


4

+

 β0e
(

2
π arctan

[
B̃
r

])2 (
1 + B2v2)

v


2

.

(35)
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The above equation implies

dφ

dv
= ±

b
(
1 + B2v2) (2Bv + π(−1 + B2v2)

)
π
(
1 + 2BC̃v + 3B2v2

)√
−b2v2 + e

(
2
π arctan

[
B̃
r

])2

(1 + B2v2)β2
0

. (36)

By using the relation from Eq.(36), we can derive the following deflection angle

α̃ ' 4B− 8BC̃π

b
+O(B2, C̃3). (37)

For the value of C̃ the equation can be written as

α̃ ' 4
B
b
− 8

π B
b

+ 2
ω π B

b
− 3ω2π B

4b
+O(B2, C̃2). (38)

B. Deflection angle of Brane-Dicke wormhole class I using the new method

In order to find the wormhole optical metric, we consider ds2 = 0. In the equatorial plane we suppose θ = π
2 and

dθ = 0 and using Eq.(28)-(29) in Eq.(27), we get

dt2 =

 β̃0(r2 + B̃2)
(
−2B̃r + πr2 − B̃2π

)
e
(

2
π arctan

[
B̃
r

])
πr2

(
(r2 + B̃2) + 2B̃(C̃r + B̃)

)
2

dr2

+

[
β̃0
(
r2 + B̃2)

r
e
(

2
π arctan

[
B̃
r

]) ]2

dφ2. (39)

We calculate the Gaussian optical curvature of wormhole, as follows:

K̃ = RicciScalar
2 =

−e
(

2
π arctan

[
B̃
r

])2

π3β2
0

[
2Bπ − 4BC̃π2

r3

]
+O(B2, C̃2). (40)

In order to calculate the deflection angle, we consider the straight line approximation as r(φ) = b
sin φ . Thus the

deflection angle can be calculated from given equation [34]

α̃ = −
∫ π

0

∫ ∞

b
sin φ

K̃dσ̃. (41)

By putting Eq.(40) into (41), we get

α̃ = −
∫ π

0

∫ ∞

b
sin φ

−e
(

2
π arctan

[
B̃
r

])2

π3β2
0

[
2Bπ − 4BC̃π2

r3

]√
det h̃µνdrdφ. (42)

The above equation implies

α̃ ' 4B− 8BC̃π

b
+O(B2, C̃2). (43)

which is the same as in Eq. (37). Thus, for the value of C̃, we can also find the same result as in Eq. (38).
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IV. BRANE-DICKE WORMHOLE WITH QUANTUM CORRECTIONS TO CLASS I

In this section we analyze the BD wormhole metric (27) with the effects of quantum corrections. For this purpose
we focus on the quantum correction effects. The Einstein’s equations in the energy momentum tensor remain the
same under the influence of quantum corrections.

G̃ab = R̂ab −
1
2

g̃abR̂ = 8πT̃e f f
ab , (44)

where T̃e f f
ab and G̃ab denote the effective energy-momentum tensor and Einstein tensor, respectively. The T̃e f f

ab can be
defined as follows

T̃e f f
ab = T̃ab + T̃corr.

ab . (45)

here T̃ab represents the energy momentum tensor which can be expressed as

T̃a
b =

(
−ρ̃, P̃r, P̃θ , P̃φ

)
, (46)

where ρ̃ stands for energy density and P̃r, P̃θ , P̃φ shows the non-zero components of diagonal terms. The term T̃corr.
ab

can be given as

T̃corr.
ab =

(
−ρ̃(corr.), P̃(corr.)

r , P̃(corr.)
θ , P̃(corr.)

φ

)
. (47)

According to the definition of 4-momentum we have

p̃i = ˜̄h∂iS̃, (48)

by using the wave function solution the geodesic equation can be modified due to the relativistic quantum potential
which can be defined by [34, 65]

ṼQ = ˜̄h2�R
R . (49)

The non-zero components of stress-energy tensor can be given as [65]

ρ̃(corr.) = P̃(corr.)
r = P̃(corr.)

θ = P̃(corr.)
φ =

˜̄hη̃

8πR̃4 , (50)

here η̃ stands for dimensionless constant. The non-zero components from Einstein tensor G̃ab of the metric (27) are
given as

G̃t
t = − b′(R̃)

R̃2 , G̃r
r = −

b(R̃)
R̃3 + 2

(
1− b(R̃)

R̃

)
Φ′

R̃
,

G̃θ
θ =

(
1− b(R̃)

R̃

) [
Φ
′′
+ (Φ′)2 − b′R− b

2R(R− b)
Φ′ − b′R− b

2R2(R− b)
Φ′ +

Φ′

R

]
,

G̃φ
φ = G̃θ

θ . (51)

By utilizing the metric (27) and Eq.(44), we get the following set of Einstein field equations

ρ̃(R̃) =
1

8πR̃2

[
b′(R̃)−

˜̄hη̃

R̃2

]
,

P̃r(R̃) =
1

8π

[
2
(

1− b(R̃)
R̃

)
Φ′

R̃
− b(R̃)

R̃3 −
˜̄hη̃

R̃4

]
,

P̃θ(R̃) = P̃φ(R̃) =
1

8π

(
1− b(R̃)

R̃

) [
Φ
′′
+ (Φ′)2 − b′R− b

2R(R− b)
Φ′

− b′R− b
2R2(R− b)

Φ′ +
Φ′

R
−

˜̄hη̃

R̃4

]
, (52)
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The geometry of wormhole under the influence of quantum effects can be derived by shifting the shape function as
follows

b→ be f f = b−
˜̄hη̃

R̃
. (53)

Also

Φ(R̃)→ Υ̃(R̃) =
1
2

ln
(

1 +
˜̄hη̃

R̃2

)
. (54)

The Einstein’s field equations in terms of effective shape function can be expressed as follows

ρ̃(R̃) = −
b′e f f (R̃)

8πR̃2 , P̃r(R̃) =
1

8π

[
2

(
1−

be f f (R̃)

R̃

)
Υ̃′

R̃
−

be f f (R̃)

R̃3

]
,

P̃θ(R̃) = P̃φ(R̃) =
1

8π

(
1−

be f f (R̃)

R̃

)[
Υ̃
′′
+ (Υ̃′)2 −

b′e f f R− be f f

2R(R− be f f )
Υ̃′

−
b′e f f R− be f f

2R2(R− be f f )
Υ̃′ +

Υ̃′

R

]
, (55)

where

Υ̃′ = −
˜̄hη̃

R̃3

(
1 +

˜̄hη̃

R̃2

)−1

,

Υ̃
′′

=
˜̄hη̃

R̃4

(
1 +

˜̄hη̃

R̃2

)−1 [
3− 2˜̄hη̃

R̃2

(
1 +

˜̄hη̃

R̃2

)−1]
. (56)

The spacetime metric (27) in-term of quantum corrections can be rewritten as follows

ds2 = −
(

1 +
˜̄hη̃

R̃2

)
dt2 +

[
1− b̃(R̃)

R̃
+

˜̄hη̃

R̃2

]−1

dR̃2 + R̃2
[
dθ2 + sin2 θdφ2

]
. (57)

A. Gravitational Lensing using the Gauss-Bonnet theorem

In this subsection we study the deflection of light for quantum corrected metric of BD Wormhole given in Eq.(57).
By following the same procedure as section 2, the Gaussian optical curvature with quantum corrections can be
calculated as follows

K̃ =

−e
(

2
π arctan

[
B̃
r

])2

π3β2
0

[2Bπ − 4BC̃hηπ2

r3

]
+O(B2, C̃2). (58)

The asymptotic form of the geodesic curvature is defined as

lim
R
→ 1
R , (59)

which yields the deflection angle as follows

α̃ ' 4B− 8BC̃hηπ

b
+O(B2, C̃2). (60)

Hence we find as follows:

α̃ ' 4
B
b
− 8

π Bhη

b
+ 2

ω π Bhη

b
− 3ω2π Bhη

4b
+O(B2, C̃2). (61)
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V. DEFLECTION OF LIGHT BY NAKED SINGULARITIES IN BRANE-DICKE THEORY

The metric of BD wormhole found firstly by Agnese and Camera is defined in the form [6]

ds2 = −e2Φ(R̃)dt2 +

[
1− b̃(R̃)

R̃

]−1

dR̃2 + R̃2
[
dθ2 + sin2 θdφ2

]
, (62)

where

2Φ(R̃) =

√
2

1 + γ
ln
[

1− 2η

r(R̃)

]
, R̃ = r

[
1− 2η

r

][1−γ
√

2/(1+γ)]/2
, (63)

b̃(R̃)
R̃

= 1− {1− [η/r(R̃)][1 + γ
√

2/(1 + γ)}}2

1− 2η/r(R̃)
. (64)

The value of r±0 can be obtained as follows:

r±0 = r

[
1 + γ

√
2

1 + γ

]
, (65)

here r0 is the radius of the wormhole throat.
In the case γ < 1, there is a singularity at R̃ = 0 and this point stands for the naked singularity. On the other hand

at the limit of γ → 1, the BD reduces to Einstein theory where the event horizon is at R̃ = 2M, that shows the black
hole solution shown by Hawking [5]. Moreover, there is a static wormhole solution in the BD theory for the case
γ > 1.

Using the same procedure, first we obtain the optical metric of te naked singularity case and then calculate the
Gaussian curvature in leading order as follows:

K̃ '
√

2η

r3
(

2
√

2γ + 1
)2 +O(η2). (66)

Then using the GBT within the optical naked singularity spacetime (for the case γ < 1), we obtain the deflection
angle in weak field limits as follows:

α̃ = −2

√
2η

b
− 1/2

η2π

b2 + 2
η
(√

2π η + 8 b
)

γ

b2 . (67)

Note that for the case of γ > 1, one can find the deflection angle of the BD wormhole in weak field limits.

VI. CONCLUSION

In this work, we have analyzed the deflection angle for the BD wormhole. For this purpose, by using the new
geometric techniques founded by GW, i.e., Gauss-Bonnet theorem and optical geometry, we have computed the de-
flection angle for BD wormhole. It is also important to note that the deflection of a light ray is calculated by outside
of the lensing area which shows that the gravitational lensing effect is a global and even topological effect, i.e., there
are more than one light ray converging between the source and observer. Furthermore, we have also calculated the
same result of deflection angle by using the standard geodesic technique. Moreover, we have established the quan-
tum corrected metric of BD wormhole by replacing the classical geodesic with Bohmian trajectories, whose matter
source and anisotropic pressure are influenced by Bohmian quantum effects. We have also studied the quantum
corrected deflection angle for BD wormhole. Furthermore, we have investigated the weak gravitational lensing by
naked singularities in BD theory and showed the difference between the deflection angle of naked singularities and
wormholes. In the BD theory, the role of exotic matter is important for the the mass distribution in the Universe if
γ > 1 (or ω < −2).

Clearly, the agreement has been shown to arise from the GBT and the geodesics method for calculating the deflec-
tion angle in weak field limits. This method as a quantitative tool can be used in any asymptotically flat spacetimes.

The main message of this article is that, these results provide an excellent tool to direct detect the nature of the
wormholes and naked singularities and also to find the evidence of the Brane-Dicke theory.
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[60] A. Övgün, I. Sakalli and J. Saavedra, JCAP 1810, no. 10, 041 (2018).
[61] G. Crisnejo, E. Gallo and A. Rogers, arXiv:1807.00724 [gr-qc].
[62] T. Ono, A. Ishihara and H. Asada, arXiv:1811.01739 [gr-qc].
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